
Scalable Computing: Practice and Experience

Volume 6, Number 2, pp. 83–92. http://www.scpe.org
ISSN 1895-1767

c© 2005 SWPS

A CORBA-BASED MIDDLEWARE FOR AN ADAPTIVE STREAMING SERVER

BALÁZS GOLDSCHMIDT† , ROLAND TUSCH‡ , AND LÁSZLÓ BÖSZÖRMÉNYI‡

Abstract. A CORBA-based infrastructure for an adaptive multimedia server is introduced, enabling dynamic migration or
replication of certain multimedia applications among a set of available server nodes. The requirements from both the server’s
and the middleware’s point of view are discussed. A specification of a CORBA interface and a corresponding implementation is
presented. Finally, as a proof of concept, measurements of the implementation are shown and discussed. The measurements show
the importance of the related servers’ distribution on the network.

Key words. Multimedia, CORBA, proactive adaptation, mobile agents

1. Introduction. In [15, 16] we presented a distributed multimedia streaming server architecture, which
builds upon the concepts for distributed multimedia servers described in [7]. The key extension of the pre-
sented architecture therein is the capability that server components (also referred to as applications) may be
dynamically migrated or replicated to other server nodes on demand. Program and data dependencies are also
considered. The proposed adaptive multimedia server architecture (ADMS) mainly consists of four distinguished
types of components: one cluster manager, a set of data managers, data collectors, and data distributors. The
cluster manager controls the layout of the ADMS cluster concerning the locations of instances of the three other
component types (see figure 2.3). Data managers provide facilities for efficient storage and retrieval of units of
media data. A data distributor distributes a media stream received from a production client to a given set of
data managers. Finally, data collectors perform inverse operations to distributors. A collector retrieves stripe
units from data managers, reassembles and streams them to the requesting client(s). Thereby it can serve as a
proxy which caches media streams possibly in different qualities, in order to satisfy a number of client requests
with varying QoS demands.

Since the proposed architecture employs the full server utility model [14], each server node can run at most
one component at a time. Following this model and focusing on especially the data collector component, there
are two main questions regarding an optimal provision of quality of service to the requesting clients: (1) Does the
component run on optimal locations? (2) If not, what locations should be recommended to run the component,
and what are the costs for performing a component migration or replication? These questions typically can not
be answered by the server nodes themselves, since for an answer both local and global views on the performance
behaviour of the distributed server architecture are needed. Thus, a kind of infrastructure is required which
monitors the resource usage on each server node, as well as the quality of the connection links between the
nodes.

Infrastructures for managing adaptive multimedia servers are rather spare. Adaptive servers usually support
code migration or replication, however, they hardly provide QoS support. An example for such infrastructures is
Symphony [3], which provides a number of services for executing virtual servers in internet settings. Symphony
does not support a QoS-constrained replication/migration of a multimedia service. The same is valid for Jini[17],
a middleware for maintaining a dynamic network of resources and users. Jini’s object replication algorithms
rely on a network of reasonable speed and latency. QoS-aware middleware frameworks enabling QoS-driven
adaptations, as presented in [8], focus on resource management dynamics, rather than on application-level
dynamics.

In [1] it is illustrated that mobile agents are very well suited for network management issues like fault,
configuration and performance management. Monitoring application demands, network and server loads are
predestinated tasks for a mobile agent-based middleware. These lead us to the idea of using such a middleware
for an adaptive multimedia server. Since the process of replication/migration is not intended to happen in
real-time, an extended version of the CORBA-based mobile agent system Vagabond [4] is used. Vagabond is a
100% pure Java mobile agent system, first developed to be used in distributed multimedia database systems.
However, its modular design allows to modify and use it as a middleware for an adaptive multimedia server,
resulting in its successor Vagabond2.

1Budapest University of Technology and Economics, Department of Control Engineering and Information Technology;
balage@inf.bme.hu

2Klagenfurt University, Institute of Information Technology; {roland, laszlo}@itec.uni-klu.ac.at

83

84 Goldschmidt, Tusch, Böszörményi

This paper addresses the requirements of the adaptive distributed multimedia streaming server ADMS to the
underlying infrastructure Vagabond2, as well as the needs of Vagabond2 to ADMS. The remainder of this paper
is organized as follows. Section 2 discusses the requirements of ADMS to the underlying infrastructure. In section
3 the needs of Vagabond2 to ADMS are disputed. Section 4 presents the CORBA interface specification between
ADMS and Vagabond2. Section 5 deals with the internal architecture and implementation of Vagabond2. In
section 6 the results of first measurements in the ADMS testbed are presented. Section 7 concludes this paper
including a plan on future work.

2. Requirements to the Underlying Infrastructure. In [16], the limitations of a static distributed
multimedia streaming server (SDMS) are discussed. Consider figure 2.1, which illustrates a retrieval scenario of
an MPEG-4[9] presentation (Sample.mp4) from a SDMS. The presentation consists of only one video elementary
stream, whose data is striped among two data manager instances dm1 and dm2. The meta data of all available
presentations on the SDMS is stored in an MPEG-7 meta data database, and can be queried by a so-called meta
data manager (mdm). The mdm is not a separated server component, but simply an object which is typically
integrated into the cluster manager component. Further, there exists one instance of a cluster manager (cm),
data collector (dc1), and adaptation engine (ae). The adaptation engine tries to find an optimum data collector
for a given client request, taking into account the locations of the data managers, among which the data
of the requested media stream is striped. Similar to the mdm, the ae needs not to be a separated server
component, and can also be an integral object of the cm. However, for the reason of executing computation-
intensive optimization algorithms, it might be designed as a separated component, which can also be migrated
or replicated on demand.

Fig. 2.1. Interaction Scenario for Retrieving a Presentation from a SDMS

A retrieval client initially queries the mdm for a set of available presentations on the SDMS. For a par-
ticular presentation the client asks for metadata (in MPEG-7[10] format), describing for example a temporal
decomposition of the stream into segments. Afterwards, the client collects the terminal capabilities of the client
device and the network QoS requirements imposed by the requested presentation. Since QoS constraints are
used for data collector selection by the ae, they have to be communicated using a standardized descriptor. For
example this can be an MPEG-21 descriptor [11, 12], as contained in the RTSP SETUP message illustrated in
figure 2.2.

The MPEG-21 descriptor is rooted by the DIA element. The capability element of the descriptor says that

A CORBA-based Middleware For An Adaptive Streaming Server 85

SETUP rtsp://sdms.itec.uni-klu.ac.at/Sample.mp4 RTSP/1.0
CSeq: 2
Range: npt=20-40;time=20030301T140000Z
Content-Type: application/mpeg21 dia
Content-Length: 557
<?xml version=”1.0” encoding=”UTF-8”?>
<DIA xmlns=”urn:mpeg:mpeg21:dia:schema:2003” xmlns:mpeg7=”urn:mpeg:mpeg7:schema:2001”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”urn:mpeg:mpeg21:dia:schema:2003 UsageEnvironment.xsd”>
<Description xsi:type=”UsageEnvironmentType”>

<Network>
<Capability maxCapacity=”128000” minGuaranteed=”32000”

inSequenceDelivery=”false” errorDelivery=”true”/>
<Condition>

<Utilization maximum=”1.0” average=”0.5” avgInterval=”1”/>
<Delay packetOneWay=”500” delayVariation=”100”/>
<Error packetLossRate=”0.02”/>

</Condition>
</Network>

</Description>
</DIA>

Fig. 2.2. A RTSP SETUP Message Including an MPEG-21 DIA Descriptor

a bandwidth range between 32 and 128 kbit/sec is acceptable, packets might be delivered out of order and may
be lost. The condition element specifies that the 128 kbit/sec link may be fully utilized, but on average should
only get 64 kbit/sec. The packet delay from a data collector to the client should not be greater than 500 msec,
and delay variation not greater than 100 msec. Finally, the packet loss rate must be below two percent.

The RTSP message further indicates that the client wants to get the stream segment from the 20th to the
40th second, relative to the media time. Additionally, the request should be scheduled for March 1st, 2003
at 14 o’clock. This time indication at session setup enables the ae to proactively schedule the request to an
appropriate data collector, taking into account the given QoS constraints, and the locations of the required
data managers. The cm achieves this by calling the method selectOptimumDC(Request,StringSeq) on the ae.
The ae solves the dynamic server selection problem based on a statically configured set of data collector hosts.
It achieves this by communicating with a resource broker (not illustrated in the figure), which provides load
information of each server host, as well as host distance information between server-server, and server-client
hosts. If there exists at least one data collector which can handle the request, the cm redirects the client to
the recommended data collector (dc1 in this case). The limitation of a SDMS lies exactly in the result of this
method call. If the method call results in an empty set, the client request has to be rejected, due to server
resource limitations. In an adaptive distributed multimedia streaming server (ADMS) environment, where a
new facility (e.g. data collector) may be created on demand, it may be possible to accept the client request.

The key objective of ADMS is to maximize the number of acceptable client requests by replicating/migrating
server components and media objects on demand to idle server nodes. These actions allow to minimize startup
latencies and to reduce network traffic along the delivery paths to the clients. The goal can be achieved by
applying a number of adaptation strategies, such as keeping server nodes load balanced, or letting clients be
served by their nearest data collector. To perform these adaptation steps, a set of services has to be provided by
the underlying infrastructure, which can be divided into two major classes: application services and adaptation
services.

Consider figure 2.3, where an ADMS cluster Cj consists of a set of nodes M either being idle or running a
certain server component. Each node is equipped with the ADMS runtime environment. Consider also 1 node
being reserved for the cluster manager, k nodes running the data manager component, and l nodes running a
data collector component (k + l + 1 < M must hold). The application service of the underlying infrastructure
has to provide means for replicating or migrating a server component from a host to one of the M − k − l − 1
remaining hosts, which are in an idle state. This is illustrated in figure 2.3 by replicating the data collector
component to cluster node CNM−1. Since a multimedia component may be dependent on program and data
files, it also has to provide facilities for carrying those dependencies during the replication/migration processes.
Migration or replication of stateful components in real-time is not required.

86 Goldschmidt, Tusch, Böszörményi

Fig. 2.3. Replication of a Data Collector to the Idle Node CNM−1

The adaptation services have to provide means for automatically controlling an optimal distribution of
server components, as well as host recommendations in the case of a required component adaptation. Thus,
the adaptive streaming server must also be able to delegate the adaptation control over a certain component
(typically the data collectors) to the underlying middleware. On the other hand, the given recommendations
have to take into account server resource information (e.g. CPU, network, disk and memory usage) of each
server node, global information concerning the quality of the network connections between the cluster’s server
nodes, as well as the topological distances and QoS parameters of the clients served by ADMS.

3. Needs by the Underlying Infrastructure. The major problem for the middleware—concerning the
requirements of the adaptive server—is the one of recommending a set of server nodes for a required application-
adaptation. The data collectors described in §2 are distributed in the network using the services of Vagabond2.
One central component of the infrastructure, namely the so-called host recommender, should recommend host
machines (Harbours) where these applications should be loaded. In particular, the host recommender should (1)
provide recommendations concerning the set of hosts that should be used by the data collectors, (2) give hints
on the costs (in time) for a certain adaptation, and finally (3) dynamically adapt an already loaded application
according to the previous two offers.

The problem of recommending the optimum set of server nodes can be modelled as a capacitated facility
location problem (or k -median problem, where k is a given constraint). In [6] it is shown that this problem
is NP-hard for general graphs. However, several approximation algorithms have been studied recently and the
best published approximation factor to date is 4, with a running time of O(N3) [2].

In order to perform approximative recommendations for application locations the host recommender needs
information about the server nodes, the network, as well as the current and future set of requesting clients.
Concerning the server nodes the infrastructure itself can monitor the usage of the server’s resources (CPU-
load, disk and memory usage). Regarding the quality of the network links between the server nodes a network
monitoring agent can be used to periodically perform observations on network throughput and latency times.
The major requirements of Vagabond2 to the managed multimedia components are (1) the estimated resource
usage of each component, (2) the topological locations of the current and future set of clients serviced by the
components, and (3) the QoS-parameters of the client requests (bandwidth, delay, loss rate). Section 4 provides
a more detailed specification of these requirements.

4. Interfacing ADMS and Vagabond2. Our intention when designing the interface between ADMS
and Vagabond2 was to minimize the coupling between them. Some parts of the interface are implemented on
the side of the media server, some on the side of Vagabond2. Either party only depends on the interface when
communicating with the other one. There are three major parts of the interface definition (given in CORBA
IDL syntax): basic, application-specific, and adaptation-specific.

The basic part—illustrated in figure 4.1—holds interfaces that are implemented on the media server’s

A CORBA-based Middleware For An Adaptive Streaming Server 87

side. They provide information about the applications Vagabond2 should run, and the clients using these
applications. Date defines a structure to hold data about a time instance. RequestInfo contains QoS requirements
of a client request. TimedRequest includes a set of requests scheduled for the same date (e.g. a video and an audio
elementary stream of an MPEG-4 presentation). Client defines the information to be provided about an ADMS
client. Interface ApplicationInfo provides all required information for running and managing a server application
on a remote host.

module vagabond2 {
// exceptions and basic type declarations

struct Date {
short seconds;
short minutes;
short hours;
short day;
short month;
long year;

};

struct RequestInfo {
long long avgBitRate;
long long maxBitRate;
float maxLossRate;
long maxDelay;
long maxJitter;
long maxLatency;
long long duration;

};
typedef sequence<RequestInfo> RequestInfoSeq;

struct TimedRequest {
Date startDate;
RequestInfoSeq requestInfos;

};
typedef sequence<TimedRequest> TimedRequestSeq;

struct Client {
string hostAddress;
TimedRequestSeq timedRequests;

};

interface ApplicationInfo {
string getApplicationName();
string getMainClassName();
OctetSeq getApplicationJAR()

raises (ServerIOException);
OctetSeq getDependentFilesZIP()

raises (ServerIOException);
};
typedef sequence<Client> ClientSeq;

interface AdaptiveApplication {
void start(in StringSeq params)

raises (ServiceAlreadyStartedException);
void stop()

raises (ServiceNotStartedException);
boolean isIdle();
ApplicationInfo getApplicationInfo();
ClientSeq getClients();
void setLocked(in boolean locked);
boolean isLocked();

};
}; // vagabond2

Fig. 4.1. The Basic Part of Vagabond2’s CORBA-based Interface

The interfaces in the application specific part are implemented in Vagabond2. They provide services for
loading, evacuating and locating adaptive server applications. Interface ApplicationLocator provides means for
locating all hosts on which a certain application currently runs on. Each application that has been loaded on
at least one host has an own application locator. Interface ApplicationService provides means for loading a given
application on a given host, evacuating an application from a given host, locating server application instances,
and retrieving all applications on a given host. It is the centre of the application part, whose IDL specification
is shown in figure 4.2.

The interfaces of the adaptation specific part—presented in figure 4.3—are implemented in Vagabond2. They
provide services for adapting applications loaded by Vagabond2 with respect to an optimal distribution. Interface
HostRecommender is responsible for recommending a set of hosts for a certain application by using topological
and resource usage information. It also checks whether an application has optimal distribution. AdaptationPolicy

represents an adaptation policy to be used by the adaptation service. Interface AdaptationService provides
access to objects being responsible for and dealing with application-adaptational issues. It can return a host
recommender, may suggest a policy by taking into account the data of clients, and can adapt an application by
reorganizing its distribution.

We are currently working on adaptation strategies based on statistical information about the nodes and
network. This information is collected by a separate part of the system, called ResourceBroker. We have recently
tested a greedy algorithm that proved that the TCP-based connections between data collectors and data man-
agers should be regarded differently from the RTP/UDP-based connections between the data collectors and
the clients. We are now testing how different weights on different link-properties can improve the adaptation
process of the media server architecture.

88 Goldschmidt, Tusch, Böszörményi

module vagabond2 {
module services {

module management {
module application {

interface ApplicationLocator {
string getApplicationName();
StringSeq getLocations();
AdaptiveApplication getApplicationObject(in string hostAddreess)

raises (NoSuchHostException);
};

interface ApplicationService {
boolean load(in vagabond2::ApplicationInfo ai, in string hostAddress)

raises (ApplicationAlreadyLoadedException, NoSuchHostException);
boolean evacuate(in string appName, in string hostAddress,

in boolean force)
raises (NoSuchApplicationException, ApplicationNotLoadedException,

NoSuchHostException, ApplicationNotIdleException);
StringSeq getApplications(in string hostAddress)

raises (NoSuchHostException);
ApplicationLocator getApplicationLocator(in string appName)

raises (NoSuchApplicationException);
boolean runsOn(in string appName, in string hostAddress)

raises (NoSuchApplicationException, NoSuchHostException);
};

}; // application
}; // management

}; // services
}; // vagabond2

Fig. 4.2. The Application Module of Vagabond2

5. The Architecture of Vagabond2. Vagabond2 is based on Vagabond, a mobile agent system devel-
oped at the Budapest University of Technology and Economics [4]. It is a CORBA-based[13] mobile agent system
written in Java and was originally developed to be used in multimedia database environments [5]. Vagabond2
is also CORBA-based and written in Java. It is able to migrate CORBA objects, and pass their references to
their clients. It keeps track of the available server hosts, the applications they are running and the CORBA
objects that incarnate the applications. These functionalities are hidden behind the interfaces described in §4.

Figure 5.1 illustrates the implementation class hierarchy of Vagabond2. For application/component man-
agement two public interfaces are provided: AppService and AppLoc (“Application” is abbreviated to “App”,
“Locator” to “Loc” in this section). The system consists of server hosts that are able to load and run Java-
CORBA objects, and applications that run on some of the servers. An application therefore consists of several
CORBA objects on different hosts, where the objects can be thought of as ‘incarnations’ of the application.

The two major responsibilities are (1) providing the server hosts that can load Java objects and publish them
as CORBA objects, and (2) maintaining the information of the relations among applications, their incarnations,
and server hosts. The former required a simple modification of the Vagabond system. We defined a new interface
Harbour , which will take care of this responsibility. Concerning the second responsibility it is clear that there
are one-to-many relations between an application and its incarnations, and between a host and the incarnations
running on it. For the sake of efficiency we decided to introduce a set of redundant relations: {application,
hosts}, {application, incarnations}, {host, applications}.

The Harbour CORBA interface defines the methods provided by objects that are able to receive, run, and
evacuate Java objects, and connect them to the ORB. It represents the runtime environment for adaptive server
applications. Every server host must run a Harbour. Recently new extensions were added to this interface.
We have defined several time points when migrating an application: download, local storing, class loading and
object incarnation times. A Vagabond2 client can access these times for every server application loaded on a
Harbour. Furthermore, host profile information can be obtained about the host on which a Harbour is running.

The classes starting with “Host” are responsible for storing the information about available server hosts.
A HostData object stores information about a single host: a reference to an object implementing the Har-

A CORBA-based Middleware For An Adaptive Streaming Server 89

module vagabond2 {
module services {

module management {
module adaptation {

interface HostRecommender {
boolean hasOptimalDistribution(in string appName,

in ClientSeq clients);
StringSeq recommendHosts(in ApplicationInfo ai,

in ClientSeq clients);
};

enum AdaptationPolicy {
MINIMUM STARTUP DELAY,
LOAD BALANCED,
MINIMUM NETWORK CONSUMPTION

};

interface AdaptationService {
HostRecommender getHostRecommender();
AdaptationPolicy getAdaptationPolicy();
AdaptationPolicy suggestPolicy();
StringSeq getAvailableHosts(in ApplicationInfo ai);
void adaptApplication(in string appName)

raises (NoSuchApplicationException);
void releaseApplication(in string appName)

raises (NoSuchApplicationException);
StringSeq getAdaptedApplications();

};
}; // adaptation

}; // management
}; // services

}; // vagabond2

Fig. 4.3. The Adaptation Module of Vagabond2

bour CORBA interface, and the names of the applications currently running on that host. HostStore manages
{hostname, HostData} couples. HostService provides a CORBA interface for updating the HostStore remotely.

The AppData objects store the {hostname, Object} couples for a given application, where the Object is a
CORBA object that was loaded on the given host. It also stores a reference to the AppInfo object that describes
the given application. AppStore stores {appname, AppData} couples.

The AppService impl implements the AppService CORBA interface, has access to the HostStore and AppStore

objects, and has a list of objects implementing the AppLoc CORBA interface for every loaded application. It
will load and evacuate the objects incarnating an application on Harbours that are registered by HostService. The
load() and evacuate() methods (1) manage the information about newly loaded or removed objects in HostStore

and AppStore; (2) call the load() and evacuate() methods of the Harbour object concerned.

6. Proof of Concept: Measurements. We evaluated the system in a testbed shown in figure 6.1. The
testbed consists of eight servers in two LANs (B-LAN, I-LAN), interconnected via the Internet. The B-LAN
is located in Budapest (Hungary), and the I-LAN in Klagenfurt (Austria). The data collector runs on a client
in the I-LAN. Each performance test consists of five test runs and is repeated 50 times. In each run, a sample
media stream of 12,5 MB size is retrieved from the data manager instances. In test run 0 all data manager
instances are running in the remote B-LAN. In test run 1 the data manager from host 8 is replicated to host 4,
meaning that one data manager has been moved closer to the data collector. In particular both, the component
code and the requested media stream are replicated, since hosts 1—4 are in an idle state initially. In each
further test run one additional data manager is replicated from a host in the B-LAN to a host in the I-LAN.

Figure 6.2 illustrates error plots of the mean retrieval times and throughputs for the test runs in the test
scenario. It clearly shows that the more data managers are replicated to the I-LAN, the shorter the retrieval
times, and the higher the throughput become. Whereas the variations of retrieval times in the B-LAN are quite
high, they get much less in the I-LAN.

An interesting property of data managers can be derived from figure 6.3. It tells the relative gain on

90 Goldschmidt, Tusch, Böszörményi

*

*

*

*

AppLoc

AppService

AppService impl

Harbour HostStore

HostData

appName

appName

hostName

hostName

AppStore AppData

Client

AppLoc impl

AppInfo Object

HostService impl HostService

Fig. 5.1. Implementation Class Hierarchy

Host1 Host2

Host3
Host4

Host5 Host6

Host7 Host8

Client

I-LANB-LAN

Subnet

Subnet

Switch Switch
Internet

Testrun DM Hosts

0 Host5, Host6, Host7, Host8
1 Host5, Host6, Host7, Host4
2 Host5, Host6, Host3, Host4
3 Host5, Host2, Host3, Host4
4 Host1, Host2, Host3, Host4

Fig. 6.1. The Testbed Setup

throughput, if a certain amount of stripe units is replicated from one LAN to another (including the time for
component code replication), based on a simple model1. We can see that as the maximum throughput gain
increases, the elbow of the curves gets closer to the bottom right corner. This means, that if we want to have
a significant increase in relative gain, we have to replicate a high percentage of data managers—usually almost
all of them. Thus, the best choice is to keep them together.

1Let tf and tc be throughputs when all the managers are on the farther LAN, or the closer LAN, respectively. The maximum
gain is the ratio of them, gm = tc/tf . Let tx be the throughput, if x part of the managers are on the closer LAN. The relative

gain is gr = tx/tc. The model states that the relative gain is a function of x and gm: gr(x, gm) = 1
x+(1−x)gm

. In the case of the

measurement, gm was about 20.

A CORBA-based Middleware For An Adaptive Streaming Server 91

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 1 2 3 4

R
et

rie
va

l T
im

e
[m

s]

Testrun

(a) Mean stream retrieval time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1 2 3 4

T
hr

ou
gh

pu
t [

kb
it/

se
c]

Testrun

(b) Mean throughput

Fig. 6.2. Performance of test runs in the test scenario

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
ga

in

Proportion of DMs on closer LAN

gm = 2

gm = 5

gm = 10

gm = 20

gm = 40

gm = 80

measured gain

Fig. 6.3. The results of the model and the measurements

7. Conclusion and Future Work. We addressed the requirements of the adaptive distributed multimedia
streaming server architecture ADMS to its underlying infrastructure Vagabond2 and vice versa, regarding the
management and adaptation of multimedia components. From the point of the server the middleware has to
provide two major classes of services, namely application and adaptation services. On the other hand, for
Vagabond2 performing its tasks of managing applications and recommending hosts, the server has to provide
detailed information on the applications to manage, as well as on the clients requesting services from those
applications (i.e. information on location and request parameters). This set of bilateral requirements resulted in
the specification of a set of CORBA-based interfaces, which all together define the interface between ADMS and
Vagabond2. Using this interfaces Vagabond2 provides means for (1) loading and starting CORBA components
written in Java on any host that runs Vagabond2, (2) evacuating a component, and (3) querying the location
and distribution of components. All of these services can be accessed by CORBA method invocations.

We proved our concept by evaluating the replication of data managers between two LANs interconnected
by the Internet. The results have shown that it is recommended to keep the data managers as close to each
other, as possible. We are currently working on a support for adaptation using the knowledge gained from the
network topology, the load of links and hosts, and the needs of the clients. This knowledge is used to implement

92 Goldschmidt, Tusch, Böszörményi

different adaptation strategies in the host recommender. Recently a greedy algorithm was tested with promising
results. In this test we realized that a distinction has to be made when considering the TCP-based connections
between data collectors and data managers, and the RTP/UDP-based connections between data collectors and
clients.

A resource broker subsystem is already working and gives the adaptation service the information about
the statistical properties of server nodes and networks. Furthermore, a complete implementation and detailed
evaluation of a distributed adaptive multimedia streaming application based on MPEG4-encoded media streams
is planned, using Vagabond2 as the infrastructure for performing adaptational issues. In particular, it should
be figured out which adaptation strategy performs best under a given set of constraints (e.g. the application
distribution and the request parameters). Moreover, it should be investigated whether Vagabond2 would be
able to perform on the fly migration or replication of server components, and under which restrictions this
would be the case.

REFERENCES

[1] A. Bieszczad, B. Pagurek, and T. White, Mobile Agents for Network Management, IEEE Communication Surveys, 1
(1998), pp. 2–9.

[2] M. Charikar and S. Guha, Improved Combinatorial Algorithms for the Facility Location and k-median Problems, in IEEE
Symposium on Foundations of Computer Science, 1999, pp. 378–388.

[3] R. Friedman, E. Biham, A. Itzkovitz, and A. Schuster, Symphony: An Infrastructure for Managing Virtual Servers,
Cluster Computing, 4 (2001), pp. 221–233.

[4] B. Goldschmidt and Z. László, Vagabond: A CORBA-based Mobile Agent System, in Object-Oriented Technology ECOOP
Workshop Reader, A. Frohner, ed., Springer Verlag, 2001.

[5] B. Goldschmidt, Z. László, M. Döller, and H. Kosch, Mobile Agents in a Distributed Heterogeneous Database System,
in Euromicro Workshop on Parallel, Distributed and Network-based Processing, 2002.

[6] O. Kariv and S. L. Hakimi, An Algorithmic Approach to Network Location Problems. II: The p-medians, SIAM Journal of
Applied Mathematics, 37 (1979), pp. 539–560.

[7] J. Y. Lee, Parallel Video Servers: A Tutorial, IEEE Multimedia, 5 (1998), pp. 20–28.
[8] B. Li and K. Nahrstedt, A Control-based Middleware Framework for Quality of Service Adaptations, IEEE Journal of

Selected Areas in Communications, (1999), pp. 17(9):1632–1650.
[9] Moving Pictures Experts Group, ISO/IEC JTC1/SC29/WG11 N4668: Overview of the MPEG-4 Standard, 2002.

http://mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm

[10] , ISO/IEC JTC1/SC29/WG11 N4980: MPEG-7 Overview, 2002.
http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm

[11] , ISO/IEC JTC1/SC29/WG11 N5231: MPEG-21 Overview, 2002.
http://mpeg.telecomitalialab.com/standards/mpeg-21/mpeg-21.htm

[12] , ISO/IEC JTC 1/SC 29 N 5204: Text of ISO/IEC 21000-7 CD - Part 7: Digital Item Adaptation, 2003.
http://www.itscj.ipsj.or.jp/sc29/open/29view/29n5204c.htm

[13] Object Management Group, The Common Object Request Broker: Architecture and Specification, 2.6 ed., December 2001.
[14] J. Rolia, S. Singhal, and R. Friedrich, Adaptive Internet Data Centers, SSGRR’00, (2000).
[15] R. Tusch, Towards an Adaptive Distributed Multimedia Streaming Server Architecture Based on Service-oriented Compo-

nents, Tech. Report TR/ITEC/03/2.02, Institute of Information Technology, Klagenfurt University, Klagenfurt, Austria,
February 2003. Paper submitted to the Joint Modular Languages Conference (JMLC) 2003.

[16] R. Tusch, L. Böszörményi, B. Goldschmidt, H. Hellwagner, and P. Schojer, Offensive and Defensive Adaptation
in Distributed Multimedia Systems, Tech. Report TR/ITEC/03/2.03, Institute of Information Technology, Klagenfurt
University, Klagenfurt, Austria, February 2003. Paper submitted to the Journal of Systems and Software, Special Issue
on Multimedia Adaptation.

[17] J. Waldo, The Jini Architecture for Network-centric Computing, Communications of the ACM, 42 (1999), pp. 76–82.

Edited by: Zsolt Nemeth, Dieter Kranzlmuller, Peter Kacsuk, Jens Volkert
Received: March 24, 2003
Accepted: June 5, 2003

