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RESEARCH ON THE MARKOV-CHAIN STATE INTERVAL DIVISION BASED ON
PREDICTED DATA CORRECTION

LIXIN PENG∗, XIN ZHANG†, JUNJIE LI‡, WU BO§, FUHAO YANG¶, AND XU GONG∥

Abstract. By 2022, the total length of roads in Tibet Autonomous Region reached 121,447 kilometers. Due to the unique
geological conditions in Tibet, various natural disasters such as earthquakes, mudslides, landslides, avalanches, and strong winds
frequently occur. Along the Sichuan-Tibet Highway alone, over 300 disasters happen each year, significantly impacting the region’s
economic development. This study focuses on the complexity and randomness of natural disaster mechanisms and combines Markov
chain theory to improve the accuracy of prediction data for mudslides, landslides, and earth subsidence etc. The main method is
to modify the state interval of the prediction model parameter-Markov chain based on the distribution of discrete points on the
number axis.

The following state interval division methods are proposed:(1) If the relative error of the predicted value exceeds 50%, adjust
the prediction model. (2) Obtain the lower bound of state E1 by taking the floor value downward. (3) The width of each interval
does not need to be uniform. (4) Arrange continuous, dense, and close points on the number line in the same side in batches,
and represent a state continuously, dividing it into one suitable interval or batches. Using this method, an improved RMSE of
0.28mm and MAPE of 0.87% were obtained for engineering examples, outperforming other models such as GM(1,1), Verhulst,
DGM(2,1) with corresponding RMSE values of 0.86 mm, 0.69 mm, and 1.38 mm, and MAPE values of 2.75%, 2.53%, and 5.99%.
The combined prediction results for five sets of data yielded an RMSE of 0.14 mm and MAPE of 0.56%, which are quite close to the
results obtained using Markov selection correction with an RMSE of 0.37 mm and MAPE of 1.01%. Furthermore, comparing the
four sets of case, the average reduction in RMSE and MAPE is 3.56mm and 1.72%, respectively, demonstrating that this method
can further improve the performance of Markov chain prediction.
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1. Introduction and examples. Forecasting, forecasting and early warning of natural disasters are
important tools for disaster prevention and mitigation agencies and university researchers to combat natural
disasters in a scientific, economic and rational way. The allocation of protection works in the coming years, the
rational arrangement and use of human and material resources, and the promotion of economic development
are of great importance to relevant departments. The prediction of natural disasters in the short and medium
term involves numerous and complex factors, so the lack of a reasonable and scientific correction model can be
fatal to such predictions [1, 2].

There are various prediction models involved in slope displacement prediction, ground settlement prediction,
road disease prediction, rainfall prediction and lake area prediction, such as GM (1,1) [3, 4], deep learning
[5, 6, 7, 8, 9], and neural network [10, 11, 12, 13], which all have their own advantages. GM(1,1) is more effective
for predicting structured sample with less data. Deep learning is more prominent for predicting unstructured
data. Neural network has outstanding regression prediction ability for structured data. For prediction models,
there are advantages and disadvantages, and different models are selected according to different needs. However,
for correction models, it is particularly important to study the commonalities among them [18, 19, 20].

This research employs statistical concepts.Statistical analysis is a crucial step in the five stages of statis-
tical work: statistical design, data collection, sorting and summarization, statistical analysis, and information
feedback.The use of statistical analysis methods in research is a high-level investigative requirement. The
application of statistical analysis methods in scientific research has the following basic characteristics.
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1. Scientific. They are based on mathematics and have a strict structure. Specific procedures and spec-
ifications must be followed, from confirming topic selection and proposing hypotheses to sampling, specific
implementation, analyzing, and interpreting data. Specific procedures and specifications must be followed,
from confirming topic selection and proposing hypotheses to sampling, specific implementation, analyzing, and
interpreting data. Specific procedures and specifications must be followed, from confirming topic selection and
proposing hypotheses to sampling, specific implementation, analyzing, and interpreting data. The conclusions
drawn must meet certain requirements of logic and standards.

2. Appreciation. It is important to appreciate that the real world is complex and diverse, and its essence
and laws are difficult to grasp directly. Statistical analysis methods are used to collect data from real scenes
and quantify them through steps, frequencies, and concise chart representations. Processing this data allows
for research and exploration of the world, leading to insights into the inherent laws of the real world.

3. Repeatability. Reproducibility is a measurement index of the quality and level of current research.
Research conducted using statistical analysis methods is reproducible. All aspects of the research, from the
number of topics to the design of pollutants, as well as the collection and processing of data, can be repeated
under the same conditions, allowing for verification of the research results.

The fundamental concept of statistics is to solve practical problems by:
1. Identifying practical issues related to statistics; this article addresses the issue of designing reasonable

state interval division standards.
2. Establishing an effective index system; this article uses MAPE and RMSE as evaluation indicators.
3. Collecting data; this article presents 4 representative cases.
4. Selecting or creating effective statistical methods to process and display the characteristics of the

collected data; this article lists them.
5. Make reasonable inferences about the overall characteristics based on the collected data, combined with

qualitative and quantitative knowledge. Provide suggestions for better decision-making based on these
inferences. This article presents a solution based on this approach.This is an idea. There are multiple
ways to approach it. This process is typically referred to as the hypothesis testing method when added
to a hypothetical solution [21-34].

2. Methods.
2.1. A.Principle of Markov Model. Markov forecasting approach, proposed by Russian mathematician

Markov in 1907, regards time series as a random process, in which the probability of a given event occurring
is determined by the previous event, so as to determine the development of future states. If the event has K
states E1 ∼ Ek, only one state can exist at a time, and each state can have K transition directions. The upper
and lower bounds, Ei ∈ [a1i, a2i], i = 1, 2, 3, . . . , k, are determined by relative error for each state.

ai = (Y (i)− Ŷ (i))(Y (i))−1 ∗ 100%, (2.1)

Y (i) is the ith monitoring data, and Ŷ (i) is the ith predicted data. ai represents the relative error corresponding
to the ith data.

Let Pij = mijMi
−1, indicating the probability of the state Ei transitioned to the state Ej by one step,

where mij represents the number of times for the state Ei transitioned to the state Ej by one step, and Mi

represents the number of the Ei occurrences. The matrix P composed of all one-step transition probabilities is
called the state transition matrix, as follows:

P =

P11 · · · P1k

... . . . ...
Pk1 · · · Pkk

 . (2.2)

2.2. Markov-Chain Improvement Model Steps. To begin with, the initial step is to identify the
randomness between the predicted and measured values of the model. It is assumed that these values follow
a random process. The relative error states are then divided through the Markov chain. Based on the theory,
the probability of a given event occurring is determined from the previous event, allowing for the prediction
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of similar states. Corrections are made accordingly to obtain the latest corrected value. The specific steps
involved in this process are as follows:

1. The prediction model is used to get the corresponding predicted value Ŷ (i).
2. The state interval Ei is determined based on the magnitude of the predicted relative error.
3. The next state is predicted from the latest state. If there is a non-unique maximum probability value,

a two-step transition or an n-step transition is performed until a unique state is predicted according to
the maximum probability criterion.

4. According to the state interval, the predicted value is corrected using equation 2.3.
Y (t) = Ŷ (t)[1 + 0.005(a1i + a2i)]. (2.3)

In this equation, Y (t) represents the corrected predicted value, while Ŷ (t) represents the predicted value.
Additionally, a1i and a2i represent the lower and upper bounds of the predicted value, respectively.

5. The data prediction correction process involves replacing the latest predicted data with the set of data
farthest from the predicted data, and then repeating steps 1 ∼ 4 until the correction is completed [14].
(1) Some formulas are:

Bi(t) =
1

2
(⊗1i +⊗2i)− ŷ(t) =

1

2
(Ciup + Cidown). (2.4)

The horse chain characteristics prediction curve is based on a prediction value of ŷ(t) = x̂0(t). The
upper and lower sides of the curve define the state, with each adjacent pair of curves representing the
state. The prediction sequence is divided into intervals and denoted as ⊗1,⊗2i,⊗m. Based on the
determination of the transition state of system , the predicted value of the future moment random
Bi(t) is most likely taken at the midpoint of the interval (⊗1i,⊗2i) [35].
The method’s disadvantage is that it evenly divides the state, which is excellent but requires a significant
amount of computation. In some cases, this level of accuracy may not be necessary. Proportional
revisions are more aligned with the general public.
(2) Some formulas are:

x̂0(k) = ŷ(k) +
Ai +Bi

2
. (2.5)

The system is in state K, where the original state is (⊗1i,⊗2i),⊗1i = ŷ(k) + Ai,⊗2i = ŷ(k) + Bi and
Ai, Bi changes with k.
The addition of the corresponding error mean directly is a simple and crude method. However, it is
important to note that this approach may not be sufficient to meet the logical evaluation criteria.
The Y (t) = Ŷ (t)[1 + 0.005(a1i + a2i)] It is scientific, rational, and objective in its value.

2.3. State Interval Division Conjecture. The effectiveness of state intervals is determined by their
reasonable and scientific division. To achieve this, the following hypothesis is proposed: the final correction
effect is dependent on the division of state intervals.

1. According to equation 2.1, the model should be reconsidered if 100 ai exceeds 50.
2. If the relative errors are similar, they can be expressed as a range.
3. According to equation 2.3, it is recommended to place the upper and lower bounds of the same interval

on the same side of the number axis, and subdivide them as much as possible.
4. According to our criteria, a prediction is considered accurate if the relative error is within 1%. In cases

where at least 50% of the data has a relative error of 1%, we define an interval of [-1%, 1%].
5. The lower bound of the initial state is determined based on the relative error of the corresponding

predicted value. The lower bound is selected using the down-integer operation.
6. The appropriate interval length is determined starting from the lower bound and increasing upwards.

This ensures that there is at least one data point in all state intervals, without the requirement of a
consistent interval width.

Convert to Mathematical Language:
If ∃{[Y (i)− Ŷ (i)](Y (i))−1} ∈ Ei[a1i, a2i] and lim

n→i
(Ŷ (n)− Y (i)) ∼ 0

If and only if {[Y (i)− Ŷ (i)](a1i + a2i)} ≥ 0
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Table 4.1: Case 1 Original data.

Observed
Phase

Measured
Value/mm

MFF Fitted
Value/mm

Error of
Fitting/mm

Relative
Error State

1 30.2 23.904 6.296 20.85 4
2 40.3 32.07 8.23 20.42 4
3 70.3 44.639 25.661 36.5 4
4 80.4 61.097 19.303 24.01 4
5 90.2 80.954 9.246 10.25 4
6 120.4 128.921 -8.521 -7.08 1
7 160.5 184.767 -24.267 -15.12 1
8 200.1 245.09 -44.99 -22.48 1
9 300.3 307.061 -6.761 -2.25 2
10 420.5 427.873 -7.373 -1.75 2
11 500.7 484.161 16.539 3.3 3
12 540.8 536.795 4.005 0.74 3
13 640.6 608.393 32.207 5.03 3
14 690.5 671.237 19.263 2.79 3
15 730.3 725.926 4.374 0.6 3
16 760.3 773.323 -13.023 -1.71 2
17 790.7 814.349 -23.649 -2.99 2

Original paper [14] data.

Table 4.2: Comparison of models and their relative errors.

Observed
Phase

Measured
Value/mm

MFF Fitted
Value/mm

Relative
Error/%

Markov Improved MFF
Predicted Value

Relative
Error/%

18 810.8 849.889 -4.82 828.642 -2.2
19 830.4 880.739 -6.06 858.721 -3.41
20 840.2 907.595 -8.02 884.905 -5.32
21 842.3 931.051 -10.54 800.704 4.94

Original paper [14] data.

3. Accuracy Evaluation Method. The evaluation of prediction accuracy cannot be solely based on a
single predicted value. This study employs root mean square error (RMSE/mm) and mean absolute percentage
error (MAPE/%) as metrics to assess the accuracy.

RMSE =

√∑n
i=1(Y (i)− Ŷ (i))2

n− 1
(3.1)

MAPE =
1

n

n∑
i=1

|Y (i)− Ŷ (i)

Y (i)
| (3.2)

The variable Y (i) represents the measured value, while Ŷ (t) represents the corrected predicted value.

4. Experimental. The literature [14] divides the state intervals into E1[−23%,−5%], E2[−5%, 0%], E3[0%, 10%]
and E4[10%, 40%] as shown in Table 4.1 and Table 4.2.

Based on the conjecture presented above, the state intervals have been redivided into E1[−23%,−16%),
E2[−16%, −8%), E3[−8%, 0), E4[0, 10%), and E5[10%, 37%]. The initial state transfer matrix P is shown
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below:

P =


0 0 1 0 0
1 0 0 0 0
0 1

5
2
5

1
5

1
5

0 0 1
5

4
5 0

0 0 1
5 0 4

5

 . (4.1)

The 18th phase data is predicted from the 17th phase data. The state of the 17th phase is corrected to E3
and the matrix for the 18th phase data is calculated as [0, 1

5 ,
2
5 ,

1
5 ,

1
5 ]. According to the maximum likelihood

criterion, the corrected value of the 18th phase data is 849.899∗(1+0.005(−8+0)) = 815.903, and the predicted
relative error is -0.63%. The data from phases 2nd to 18th are added to the original data to reset the state
transition matrix P :

P =


0 0 1 0 0
1 0 0 0 0
0 1

6
3
6

1
6

1
6

0 0 1
5

4
5 0

0 0 1
4 0 3

4

 . (4.2)

The process of calculating the 18th phase data is repeated. According to the maximum probability criterion,
the state of the 19th phase data is obtained as E3, with the corrected value 880.739∗(1+0.005(−8+0)) = 845.509
and the predicted relative error -1.8%. The relative error is predicted using the 3rd to 19th phase data to
calculate the state transition matrix P :

P =


0 0 1 0 0
1 0 0 0 0
0 1

7
4
7

1
7

1
7

0 0 1
5

4
5 0

0 0 1
3 0 2

3

 . (4.3)

The data for the 20th phase is 907.595 ∗ (1 + 0.005 ∗ (−8+ 0)) = 871.291, with a predicted relative error of
-3.7%. Similarly, the state transition matrix P for the data from the 4th to 20th phases is shown below:

P =


0 0 1 0 0
1 0 0 0 0
0 1

8
5
8

1
8

1
8

0 0 1
5

4
5 0

0 0 1
2 0 1

2

 . (4.4)

In Table 4.3, the corrected data for the 21st phase in state E3 is 931.051 ∗ (1 + 0.005(−8 + 0)) = 893.809,
with a predicted relative error of -6.1%.

The state intervals, including E1[−10%,−5%), E2[−5%, 0), E3[0.5%) and E4[5%, 10%), have been divided
in the literature [15]. Since the relative error equation ai in the literature [15] and the relative error equation
2.1 defined in this paper are inverse to each other, the opposite number replacement operation is carried out to
replace it with the format in this paper. The revised equation recalculates the 9th phase data according to 2.3,
and the state is predicted as E1 after four transition steps, with the corrected value 14.95∗[1+0.005(−10−5)] =
13.83 and the relative error 5.47%. The 10th phase state is predicted as E1 after two transition steps, with a
corrected value of 16.22 ∗ [1 + 0.005(−10 − 5)] = 15.0 and a relative error of -1.01%. The 11th phase state is
predicted as E4 after two transition steps, with a corrected value of 17.63 ∗ [1 + 0.005(10 + 5)] = 18.95 and a
relative error of -26.76%. The original data are shown in Table 4.4 and Table 4.5.

According to the given conjecture, the state intervals have been redivided into E1[−10%,−0.1%] and
E2[−0.1%, 10%]. The corresponding state transition matrix P , as per the theory, is as follows:

P =

(
1
2

1
2

1
2

1
2

)
. (4.5)
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Table 4.3: Comparison of models and their relative errors.

Observed
Phase

Value1
/mm

Value2
/mm

Relative
Error Value 3 Relative

Error Value 4 Relative
Error

18 810.8 849.889 -4.82 828.642 -2.20 815.903 -0.63
19 830.4 880.739 -6.06 858.721 -3.41 845.509 -1.82
20 840.2 907.595 -8.02 884.905 -5.32 871.291 -3.70
21 842.3 931.051 -10.54 800.704 4.94 893.809 -6.12
RMSE/mm 74.119 40.204 35.936
MAPE/% 7.360 3.968 3.068

Corrected Predicted Value.
Value1, 2, 3, 4 refers to Measured Value, MFF Fitted Value, Markov Improved MFF Pre-
dicted Value and Corrected Predicted Value of State Redivision, respectively.

Table 4.4: Case 2 Original data.

No. Measured Value/mm Predicted Value/mm Relative Error/% State
1 6.33 6.33 0 3
2 8.31 8.35 -0.48 2
3 8.56 9.07 -5.96 1
4 10.95 9.86 9.95 4
5 10.72 10.71 0.09 3
6 10.67 11.64 -9.09 1
7 13.02 13.05 -0.23 2
8 13.74 13.75 -0.07 2

Table 4.5: Comparison between the measured values and the predicted values.

No. Measured
Value/mm

Predicted
Value/mm

Corrected
Value/mm

Relative
Error/%

9 14.63 14.95 13.83 5.47
10 14.85 16.22 15.00 -1.01
11 14.95 17.63 18.95 -26.76

According to the 8th phase data, the initial vector ε0 = [0, 1], the product of the initial vector and the
two-step state transition matrix for the 9th phase data is ε0 = [1, 0]. The 9th phase state is predicted as E1,
with the corrected data 14.95 ∗ [1 + 0.005(−10 − 0.1)] = 14.20 and the relative error 2.94%. Then, we remove
the 1st phase data, and bring the 9th phase state E2 into the 2nd− 9th phases for predicting the state of the
10th phase data. The state transition matrix remains P . After two steps of transition, the state transition
matrix is P1:

P1 =

(
0 1
1 0

)
. (4.6)

Therefore, in Table 4.6, the 10th phase is in state E1 with corrected data of 15.4 (-3.7% relative error) and
the 11th phase data is revised to 16.74 (-11.97% relative error) by repeating the above steps.

Figure4.1 displays the scatter distribution of relative errors calculated based on the original model. The red
scatter points represent the same distribution of relative errors as the original model. The blue horizontal line
represents the new interval selected according to the state interval division standard proposed in this article,
and the green horizontal line represents the state interval divided in the original model. Two adjacent lines of
the same color represent a state interval, while the blue-green dotted line represents a common interval. The
upper and lower limits of the respective status intervals can be found on the left.
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Table 4.6: Comparison between the original prediction model and the state interval redivision.

No. Measured
Value/mm

Corrected
Value/mm

Relative
Error/%

Corrected Value
of Redivision/mm RE1/%

9 14.63 13.83 5.47 14.20 2.94
10 14.85 15.00 -1.01 15.40 -3.70
11 14.95 18.95 -26.76 16.74 -11.97

RMSE/mm 2.886 1.109
MAPE/% 11.080 6.203

1 refers to Relative Error of Corrected Value of State Redivision.

Fig. 4.1: Relative phase distribution scatter diagram and state interval distribution diagram for case 1.

Fig. 4.2: Relative phase distribution scatter diagram and state interval distribution diagram for case 2.

Figure4.2 displays the scatter distribution of relative errors for the second example. The red scatter points
represent the same relative error distribution as the model of the second example. The blue horizontal line
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Table 4.7: Interval sorting.

state 1 3 3 3

Table 4.8: Case 3 Original data.

Initial Data GM(1,1) Verhulst DGM(2,1) Combined Prediction
(Original values and grey predicted values of the 25th-46th phases;) Unit: mm

16.4 15.97 16.304 15.141 -
17.2 16.599 17.015 15.794 -
17.6 17.254 17.768 16.482 -
18.2 17.934 18.564 17.207 18.278
19.0 18.64 19.408 17.972 19.126
19.2 19.375 20.304 18.778 19.152
20.0 20.139 21.255 19.628 20.232
23.0 20.933 22.668 20.525 22.934

Fig. 4.3: Relative phase distribution scatter diagram and state interval distribution diagram for case 3.

represents the new interval selected according to the state interval division standard proposed in this article,
and the green horizontal line represents the state interval divided in the original model. Two adjacent lines of
the same color represent a state interval, while the blue-green dotted line represents a common interval. The
upper and lower limits of the respective status intervals can be found on the left.Figure4.3 and Figure4.4 convey
the same meaning, but with different cases and models.

Based on the above two examples, a preliminary conclusion of conjecture 2 and 3 (as described in Section
2.3) is as follows: If the upper and lower bounds of the same interval are continuously dense and close on
the same side of the number axis, they can be included in a suitable interval or batch, and the continuously
dense and close relative error values can be represented as a continuous state as much as possible, for example
Table 4.7.

According to the data provided in literature [16], Table 4.8 shows Case 3 data.
The above GM(1,1) data is corrected on the basis of the Markov-chain improvement steps. According to

Figure 4.3 and Table 4.9, the theoretically reasonable state intervals are E1[−1%, 0], E2[0, 2%), E3[2%, 4%),
and E4[4%, 9%].
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Table 4.9: case 3 State interval division of prediction model.

Phase Initial Data GM(1,1) Relative Error State
1 16.4 15.97 2.62 3
2 17.2 16.599 3.49 3
3 17.6 17.254 1.97 2
4 18.2 17.934 1.46 2
5 19.0 18.64 1.89 2
6 19.2 19.375 -0.91 1
7 20.0 20.139 -0.69 1
8 23.0 20.933 8.99 4

Table 4.10: Case 3 State interval division of prediction model.

Phase Initial Data GM(1,1) Corrected Value /mm Relative Error/%
1 16.4 15.97 16.449 -0.30
2 17.2 16.599 17.097 0.60
3 17.6 17.254 17.427 0.98
4 18.2 17.934 18.113 0.48
5 19.0 18.64 18.826 0.92
6 19.2 19.375 19.278 -0.41
7 20.0 20.139 20.038 -0.19
8 23.0 20.933 22.294 3.07

Table 4.11: Case 3 Comparison of accuracy of various models.

Initial Data GM(1,1) Verhulst DGM
(2,1)

Combined
Prediction

Markov
Correction

Selected
Comparison

16.4 15.97 16.304 15.141 - 16.449 -
17.2 16.599 17.015 15.794 - 17.097 -
17.6 17.254 17.768 16.482 - 17.427 -
18.2 17.934 18.564 17.207 18.278 18.113 18.113
19.0 18.64 19.408 17.972 19.126 18.826 18.826
19.2 19.375 20.304 18.778 19.152 19.278 19.278
20.0 20.139 21.255 19.628 20.232 20.038 20.038
23.0 20.933 22.668 20.525 22.934 22.294 22.294

RMSE/mm 0.86 0.69 1.38 0.14 0.28 0.37
MAPE/% 2.75 2.53 5.99 0.56 0.87 1.01

The predicted data is revised according to 2.3, with the results as follows Table 4.10.
It can be seen from Table 4.11 that the accuracy of the Markov correction model is higher than that of

other models, indicating that the division of state intervals is very reasonable and successful.
According to the data provided in reference [17] Table 4.12.
According to the division of state intervals conjecture, the original state interval E1[−14.242%,−8.323%), E2[−8.323%,−2.404%), E3[−2.404%, 3.517%]

is divided into E1[−15%,−5%), E2[−5%,−3%), E3[−3%, 0%), E4[0%, 1%), E5[1%, 4%] As shown in the follow-
ing picture Figure 4.4.

According to the hypothesis, the state interval is divided, and the initial state transition matrix from 2011
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Table 4.12: Case 4 Original data.

Year Actual Value Estimated
Value Residual Relative

Residual
2011 80.2 80.2 0 0
2012 103.9 118.6985 -14.7985 -0.14243022
2013 135.2 138.4021 -3.2021 -0.02368417
2014 159.1 165.8975 -6.7975 -0.04272470
2015 198.4 194.3022 4.0978 0.02065423
2016 229.4 232.1136 -2.7136 -0.01182911
2017 280.2 274.1254 6.0746 0.02167951
2018 336.4 324.5689 11.8311 0.035169738
2019 387.5 384.2121 3.2879 0.008484903
2020 436.6 452.5011 -15.9011 -0.03642029

Fig. 4.4: Relative phase distribution scatter diagram and state interval distribution diagram for case 4.

to 2020 is recalculated according to the revised model:

P =


0 0 1 0 0
0 0 0 1

2
1
2

0 1
2 0 0 1

2
1
2

1
2 0 0 0

0 0 1
3

1
3

1
3

 . (4.7)

In 2020, the state is classified as E2, with ε0 = (0, 1, 0, 0, 0). After one transition step, multiplied by
the initial state transition matrix P , it becomes ε1 = (0, 0, 0, 0.5, 0.5). According to the maximum probability
criterion, it is impossible to determine the state in 2021. However, after analyzing and multiplying with the ten-
step state transition matrix, it can be determined that the state in 2021 is E2, with ε9 = (0, 1, 0, 0, 0) Therefore,
the predicted correction value for 2021 is Y (t) = 536.7538 ∗ [1 + 0.005(−5 − 3)] = 515.2836. Using the ’equal
innovations’ model and excluding 2011, re-modeling from 2012 to 2021 yields a predicted value of 622.2154 for
2022. The product of the two-step state transition matrix and the initial state matrix was recalculated to obtain
the 2022 status, which is E3. The corrected value is Y (t) = 622.2154 ∗ [1 + 0.005(−3 − 0)] = 612.8822.The
comparison results are shown in Table 4.13.
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Table 4.13: Case 4 Data comparison.

Years Actual Value The optimal estimated value
of the original model

Re-estimation of
the estimated value.

2021 503.5 525.5426 515.2836
2022 576.4 617.5202 612.8822

RMSE/mm 46.6556 38.3380
MAPE/% 5.76 4.33

Fig. 5.1: Comparison of Numerical Fitting in Different Cases.

5. Discussion. In comparing the above tests to the original optimization model, the MAPE and RMSE
indicators, as well as the level of fitting curves, have all significantly improved. This paper’s rules were used
to classify the results. Researchers in the fields of landslide displacement prediction and ground subsidence
prediction can use this method to divide the state intervals of Markov chains. See Figure 5.1 for a visual
representation. Figure 5.1 displays four distinct case models, each separated by a vertical black line and labeled
with its corresponding case number. The black curve represents the original data, the red curve represents the
curve of the original model data fitting, and the blue curve represents optimization. The final curve should
be as close as possible to the black curve for better prediction accuracy. In the figure, the blue curve closely
resembles the black curve, indicating a good fitting effect. This suggests that the state interval division method
used in this paper is both superior and more scientific.The values of Case 2 and Case 3 correspond to the right
coordinate value, while the values of Case 1 and Case 4 correspond to the left coordinate axis value.

6. Conclusions and Results. This paper addresses the scientific division of Markov chain state intervals
using the hypothesis testing method. In the geological prediction problem, the MAPE and RMSE indicators
are used as references, and this study has significantly optimized the data for these two indicators.

The RMSE for the Markov-MFF model has decreased by 4.268mm, and the MAPE has reduced by 0.9%.
RMSE for the Grey-Markov model has decreased by 1.778 mm, and the MAPE has reduced by 4.877%. RMSE
for the GNN model has decreased by -0.14 mm, and the MAPE has reduced by -0. 31%. RMSE for the GMM
has decreased by 8.3176 mm, and the MAPE has reduced by 1.43%.

No previous scholarly research has been conducted on the reasonable division of state intervals. This
article establishes the foundation for such research and provides the possibility for improved data optimization.
However, the processing of complex relative error scatter distributions for large sample data is time-consuming,
which presents a significant challenge. The future of this study will likely involve a discussion on the appropriate
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Fig. 6.1: Comparison of RMSE and MAPE optimization index results.

mathematical model for solving the problem of scatter distribution classification. The rules presented in this
paper for the division of Markov chain state intervals are adequate. Figure 6.1 displays the results of the case
comparison. Figure 6.1 compares the RMSE and MAPE indicators of four different models before and after
improvement. Smaller values are better for both indicators. In Case1, RMSE0 represents the original model’s
RMSE index, while RMSE1 represents the improved index based on the rules proposed in this paper. Similarly,
MAPE0 represents the original model’s MAPE index, while MAPE1 represents the index after applying the
improved rules proposed in this paper. The remaining values are analogous. Figure 6.1 shows that the method
proposed in this article has significant optimization effects.
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