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RESEARCH ON THE APPLICATION OF ARTIFICIAL INTELLIGENCE-BASED COST
ESTIMATION AND COST CONTROL METHODS IN GREEN BUILDINGS

YAN ZHANG∗

Abstract. In the research titled Comprehensive AI-Driven Cost Dynamics Model (AICD-CDM) for Sustainable Green Building
Projects, we delve into the burgeoning field of artificial intelligence to revolutionize cost estimation and control in green building
construction. This study introduces AICD-CDM, a novel framework that integrates several advanced machine learning techniques,
including Linear Regression (LR), Artificial Neural Networks (ANN), Random Forest (RF), Extreme Gradient Boosting (XGBoost),
Light Gradient Boosting (LGBoost), and Natural Gradient Boosting (NGBoost), to address the multifaceted challenges of cost
prediction and management in sustainable building projects. By leveraging the distinct strengths of these methods, the AICD-CDM
model offers a multi-dimensional approach to cost estimation, providing not only point predictions but also probabilistic forecasts to
better manage uncertainties inherent in green building projects. The model’s capability to process complex, non-linear relationships
between a multitude of cost-influencing factors makes it exceptionally adept at handling the intricate dynamics of sustainable
construction. Furthermore, the integration of AI techniques ensures enhanced accuracy, adaptability, and computational efficiency,
making the AICD-CDM an invaluable tool for decision-makers in the green building sector. This research not only contributes to the
field of construction management by introducing a sophisticated cost control mechanism but also aligns with global sustainability
goals by promoting efficient resource allocation and cost optimization in green buildings. The findings and methodologies of this
study have the potential to set new benchmarks in the application of AI in sustainable construction management.
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1. Introduction. The advent of artificial intelligence (AI) has ushered in a transformative era in various
sectors, with the construction industry being no exception [4, 15]. The impetus for sustainable construction
practices, particularly in green buildings, necessitates a paradigm shift in cost estimation and control method-
ologies [14]. Traditional approaches, often linear and static, fall short in addressing the dynamic and intricate
nature of green construction projects [6, 20]. This necessitates a foray into more adaptive and sophisticated
techniques, a gap that AI and machine learning (ML) can proficiently bridge. The introduction of AI into green
building projects brings forth the promise of enhanced accuracy, efficiency, and adaptability in cost estimation
and control. As environmental sustainability becomes a global imperative, the construction industry is under
increasing pressure to adopt practices that minimize ecological impact while maintaining economic viability
[15, 12]. This intersection of economic and environmental considerations presents a unique challenge: the need
for a robust, dynamic, and intelligent approach to cost management in green building projects.

Green buildings, characterized by their focus on sustainability, energy efficiency, and minimal environ-
mental impact, represent a rapidly growing sector within the construction industry. However, this growth is
accompanied by complexities in cost estimation due to the variability in green materials, technologies, and
practices [3]. Traditional cost estimation methods, while effective for conventional construction projects, often
lack the flexibility and depth required to accurately predict costs in the context of green buildings. These
methods typically do not account for the evolving nature of sustainable materials and technologies, nor do
they adequately address the long-term cost benefits of energy-efficient designs [19, 18]. This is where AI and
machine learning techniques come into play, offering a dynamic and comprehensive approach to understanding
and predicting the multifaceted cost structures of green building projects. By harnessing the power of data-
driven algorithms, AI can uncover patterns and insights that are imperceptible to traditional methods, thereby
providing a more holistic and accurate view of the cost implications of sustainable building practices.
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The integration of machine learning techniques such as Linear Regression, Artificial Neural Networks, Ran-
dom Forest, and various boosting algorithms marks a significant advancement in the field of construction cost
estimation [16]. Each of these techniques brings a unique strength to the table. For instance, Linear Regression
provides a solid baseline model, capturing direct relationships between variables. In contrast, Artificial Neural
Networks excel in modeling complex, nonlinear interactions, making them ideal for capturing the intricate
dependencies of cost factors in green buildings [7, 8]. Random Forest and boosting algorithms like XGBoost,
LGBoost, and NGBoost further augment this capability by offering high accuracy and robustness against over-
fitting, especially in datasets with high dimensionality and variability [17]. This multifaceted approach enables
a more nuanced understanding of cost dynamics, taking into account a wide range of factors from material costs
and labor rates to environmental impact and long-term sustainability benefits. By combining these techniques,
the proposed AI-driven model transcends the limitations of traditional methods, providing a comprehensive
tool for accurate and efficient cost estimation and control in green building projects.

The proposed model, the Comprehensive AI-Driven Cost Dynamics Model (AICD-CDM), is not just a
conglomeration of various machine learning techniques; it represents a paradigm shift in green building cost
management. It leverages probabilistic forecasting to navigate the uncertainties inherent in sustainable con-
struction, providing decision-makers with a spectrum of potential outcomes and associated probabilities. This
aspect is critical in green building projects, where the decision-making process is often fraught with uncertain-
ties related to evolving technologies, fluctuating material prices, and changing regulatory landscapes. Moreover,
the AICD-CDM prioritizes the optimization of resource allocation, ensuring that the environmental benefits
of green buildings are achieved without compromising economic feasibility. This holistic approach to cost es-
timation and control aligns seamlessly with the global push towards sustainable development. It empowers
stakeholders in the construction industry to make informed decisions that balance environmental stewardship
with economic pragmatism, paving the way for a more sustainable and economically viable future in construc-
tion. The AICD-CDM thus stands as a testament to the potential of AI in revolutionizing green building
practices, marking a significant stride towards sustainable construction management.

The main contributions of the paper as follows:
1. Proposed a novel approach of Comprehensive AI-Driven Cost Dynamics Model AICD-CDM for sus-

tainable green building projects.
2. The proposed offers various advanced techniques strengths called Linear Regression, Artificial Neural

Networks, Random Forest, and various boosting algorithms for obtaining better results.
3. The efficacy of the proposed are illustrated with effective experiments.

2. Related Work. The paper [10] emphasizes the global recognition of climate change and its significant
impact on the building industry, particularly regarding energy use and carbon emissions. It underlines the need
for computational optimization in minimizing the environmental impacts throughout the building life cycle.
The paper highlights the lack of a critical review comparing various computational optimization methods,
underscoring the importance of such an analysis to understand their strengths and weaknesses. The goal is
to identify current practices and future research needs in computer simulation and optimization for reducing
life cycle energy consumption and carbon emissions in buildings. The paper [1] proposes Nanotechnology,
Building Information Modeling, and Lean Construction as key concepts supporting AI in buildings. The study’s
significance lies in its examination of AI support systems within the broader context of smart cities, using the
Eko Atlantic project in Lagos as a case study. Recommendations are made for Integrated Project Delivery
and Green Architecture to support sustainable AI development in buildings, aiming to minimize environmental
impacts and global warming. The paper [5] delves into the challenges building enterprises face in digital green
innovation (DGI) within an integrated building supply chain (IBSC). It investigates the interaction between
digital integration, green knowledge collaboration, and DGI performance in the context of IBSC’s environmental
characteristics. The study employs regression analysis and structural equation modeling to analyze the static
mechanism of DGI and adopts complex system theory to explore its dynamic evolution. Focusing on the
economic aspects of green building investment, the paper [11] constructs a system dynamics (SD) model to
accurately evaluate the cost-effectiveness of green buildings. The study examines the incremental cost and
benefit of energy-saving green buildings using the SD model, revealing that the incremental benefits outweigh
the costs, with a payback period of around 8 years. This conclusion provides insights for the further development
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of green buildings, addressing the challenge of their traditionally long payback periods and external economic
impacts. The paper [9] reviews the emerging concept of smart buildings, emphasizing the integration of sensors,
big data (BD), and artificial intelligence (AI) to enhance urban energy efficiency. It examines the application of
AI in smart buildings through building management systems (BMS) and demand response programs (DRPs).
The paper provides an in-depth review of AI-based modeling approaches used in building energy use prediction
and introduces an evaluation framework to assess recent research in this field.

3. Methodology.
3.1. Proposed Overview. The methodology of the AICD-CDM for sustainable green building projects

is a streamlined process that begins with an extensive data collection phase, where a wide range of data specific
to green building projects is gathered, including historical records, current construction data, market trends,
and sustainability metrics. Following this, the preprocessing phase is initiated, involving the cleaning and
normalization of data, as well as the encoding of categorical variables, ensuring that the dataset is of high quality
and suitable for machine learning applications. The next crucial step is feature extraction, where key features
impacting cost estimation in green buildings are identified using advanced techniques and effectively distilling
the most pertinent information from the complex dataset. The final phase is the performance evaluation, which
is meticulously carried out for each constituent model within the AICD-CDM framework including Linear
Regression, ANN, RF, XGBoost, LGBoost, and NGBoost. This evaluation uses metrics such as Mean Squared
Error (MSE), Mean Absolute Error (MAE), and R-squared to assess each model’s predictive accuracy and
efficiency, particularly focusing on their ability to generalize to new, unseen data. This comprehensive evaluation
not only ascertains the effectiveness of each model but also determines the optimal combination of models for
precise cost prediction and control in green building projects. Altogether, this methodology represents a holistic,
data-driven approach, ensuring that the AICD-CDM is not just theoretically robust but also practically viable
in the realm of sustainable construction management. The proposed IC-CDM architecture is illustrated under
Figure 3.1.

3.2. Proposed AICD-CDM Work flow. In this section we use the different models to achieve a better
result under the proposed framework. These models are adapted from the study [2].

3.2.1. Linear Regression (LR). LR is a fundamental statistical approach in predictive modeling. It
works on the principle of fitting a linear equation to observed data. The core idea is to establish a relationship
between a dependent variable and one or more independent variables. The linear equation in LR is given by

Y − xw + b (3.1)
where Y is the target variable, x represents the input features, w is a vector of coefficients, and bb is the
bias. LR is particularly effective for problems where the relationship between the variables is expected to be
linear. Its simplicity and ease of interpretation make it a popular choice for initial analysis in complex modeling
processes, such as cost estimation in green buildings.

3.2.2. Artificial Neural Network (ANN). ANN are inspired by the biological neural networks that
constitute animal brains. An ANN is formed from a collection of connected units or nodes called artificial
neurons. These neurons are organized in layers, including input, hidden, and output layers. The model’s
equation can be represented as (output layer).

Ŷ = G(ω3F (ω2F (ω1x+ b1) + b2) + b3) (3.2)
where ww and bb are the weights and biases, xx is the input, and ff, gg are activation functions. ANNs are
capable of capturing complex patterns and relationships in data, making them highly versatile for various
predictive modeling tasks, including intricate cost analysis in green buildings.

3.2.3. Random Forest (RF). Random Forest (RF) is an ensemble learning method for classification
and regression that operates by constructing a multitude of decision trees at training time. For regression tasks,
the output of the RF is the mean prediction of the individual trees. The general equation for RF is

ŷ =
1

n

n∑
k=1

hk(x)
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Fig. 3.1: Proposed AICD-CDM Architecture

where hk represents the kth tree and x is the input vector. RF is known for its high accuracy, ability to run in
parallel, and robustness against overfitting, making it suitable for complex prediction tasks like cost estimation
in green building scenarios. Essentially, each tree hk(x)makes its own prediction, and the final output ŷis the
average of these predictions. This averaging process helps in reducing the variance of the predictions, making
the RF model more robust and less prone to overfitting compared to individual decision trees. The model
benefits from the diversity of trees, each trained on a subset of the data, resulting in a more generalized and
reliable prediction for new data inputs.

3.2.4. Extreme Gradient Boosting (XGBoost). Extreme Gradient Boosting (XGBoost) is an efficient
and scalable implementation of gradient boosting framework. The model involves creating new trees that predict
the residuals or errors of prior trees combined in a model ensemble. The XGBoost model can be mathematically
represented as

ŷ = ∅ (x) = 1

n

n∑
k=1

fk(x)

In this equation, ŷrepresents the predicted output, ∅ (x) is the function modeling the relationship between input
x and the output, fk(x)is the prediction made by the kth t individual model (or tree) in the ensemble, and nn
is the total number of models (or trees) in the ensemble. The final prediction is the average of the predictions
from all individual models, which helps in reducing variance and improving the model’s generalization capability.
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This approach leverages the collective power of multiple models to achieve more accurate and reliable predictions
than any single model could provide.

3.2.5. Light Gradient Boosting (LGBoost). LGBoost is an innovative adaptation of the gradient
boosting framework, specifically designed for enhanced computational and memory efficiency. Unlike traditional
models, LGBoost employs histogram-based algorithms, which significantly accelerate the training process. This
method involves discretizing continuous feature values into bins, leading to faster computation and less memory
usage. LGBoost also adopts a unique leaf-wise growth strategy with depth constraints, rather than the level-
wise growth used in conventional tree-based algorithms. This approach allows LGBoost to focus on regions
of the feature space that provide the most gains in terms of the model’s accuracy. Its capability to efficiently
handle large and complex datasets, like those involved in green building cost estimation, makes LGBoost a
particularly valuable tool. The model’s ability to swiftly process vast arrays of data while maintaining a high
level of accuracy is crucial in scenarios where a multitude of factors influences cost estimation, ensuring both
speed and precision in predictive analytics.

3.2.6. Natural Gradient Boosting (NGBoost). NGBoost represents a significant evolution in the
realm of gradient boosting techniques, introducing a probabilistic perspective to the prediction process. Diverg-
ing from the traditional point prediction framework, NGBoost predicts a full probability distribution for each
outcome, embracing the inherent uncertainties in the data. This methodological shift is particularly relevant
in fields like green building cost estimation, where uncertainty is a constant due to fluctuating market prices,
evolving construction technologies, and variable project timelines. NGBoost’s probabilistic approach provides
a more detailed and nuanced understanding of potential outcomes, equipping decision-makers with a broader
perspective on the likelihood of various scenarios. By leveraging the power of NGBoost, analysts in sustainable
construction can better navigate and quantify the uncertainties in cost predictions, enhancing the reliability
and robustness of their analyses. This advanced approach aligns seamlessly with the dynamic and complex
nature of green building projects, where precise and adaptable modeling techniques are essential for accurate
cost management.

4. Results and Experiments.

4.1. Simulation Setup. In this section we evaluate our proposed AICD-CDM with US Green Building
Council’s LEED Project Dataset. The Leadership in Energy and Environmental Design (LEED) database. The
dataset is adapted from the study [13]. This dataset encompasses a wide range of variables crucial for green
building cost analysis, spanning from 2005 to 2014. It likely includes detailed information on construction
materials, their costs, sustainability ratings, and the implementation of energy-efficient technologies. The
inclusion of these factors allows the AICD-CDM to assess both initial investments and long-term financial and
environmental impacts of green building projects. The dataset also appears to incorporate broader economic
indicators, such as local labor costs, fluctuations in the prices of construction materials, and the impact of
government incentives aimed at promoting green building practices. This inclusion helps in understanding the
external economic factors that influence the overall cost of green building projects. Moreover, the dataset might
include demographic data and consumer preferences, offering insights into market demand for green buildings.
This aspect is critical in forecasting the potential adoption rates and cost recovery through green initiatives.

4.2. Evaluation Criteria. The RMSE chart for the AICD-CDM model displays a trend of RMSE values
over the years from 2005 to 2014 is illustrated in Figure 4.1. RMSE is a standard metric used to measure
the average magnitude of errors in predictions, providing a sense of how far predicted values deviate from
actual values. Lower RMSE values indicate higher accuracy. In the figure 4.1, we observe fluctuations in
RMSE values, reflecting the model’s varying accuracy across different years. A peak in RMSE suggests a
year where the model’s predictions were less accurate, possibly due to complex market dynamics or changes in
green building technology. Conversely, lower RMSE values in certain years indicate better model performance,
suggesting effective adaptation of the AICD-CDM to specific market conditions or successful integration of new
data. Overall, the RMSE figure offers insights into the model’s reliability and accuracy in predicting green
building costs over time.

The MSE Figure 4.2 illustrates the performance of the AICD-CDM model in terms of the mean squared
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Fig. 4.1: RMSE

Fig. 4.2: MSE

error across the same period. MSE measures the average of the squares of errors, i.e., the average squared
difference between estimated values and actual value. Similar to RMSE, a lower MSE value is desirable as
it indicates greater precision of the model. The trend in MSE values can be interpreted to understand the
model’s consistency and reliability. Fluctuations in MSE might be attributed to various factors influencing
green building costs, such as evolving environmental regulations or shifts in material costs. Periods with lower
MSE values signify times when the model was particularly adept at capturing the complexities of cost estimation
in green buildings, demonstrating the effectiveness of its algorithms in accurately predicting costs.

In the MAE Figure 4.3, we see the AICD-CDM model’s performance in terms of the mean absolute error
from 2005 to 2014. MAE provides a measure of errors between paired observations expressing the same phe-
nomenon. Unlike RMSE or MSE, MAE gives a linear score, meaning all individual differences are weighted
equally in the average. Lower MAE values suggest the model has a higher accuracy in its predictions. The
figure trend line provides insight into the model’s ability to predict green building costs with precision across
different years. Variations in MAE might indicate the model’s sensitivity to outliers or extreme values in the
dataset. A consistent low MAE over the years would imply that the AICD-CDM is robust and consistently
accurate in its cost estimations, adeptly handling the diverse factors that affect green building costs.

5. Conclusion. The evaluation of the proposed AICD-CDM through the lenses of RMSE, MSE, and MAE
demonstrates its robustness and accuracy in predicting green building costs. The analysis of RMSE values over
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Fig. 4.3: Mean Absolute Error

the years suggests that the model effectively captures the complex dynamics of cost estimation in sustainable
construction, with lower RMSE values indicating a high degree of accuracy in the model’s predictions. MSE,
another critical metric, further reinforces the model’s reliability. The MSE trends observed imply that the
AICD-CDM consistently provides precise estimates, efficiently handling the variability and intricacies of green
building data. Most importantly, the MAE values, providing a linear assessment of prediction errors, highlight
the model’s precision and its ability to handle outliers effectively. The consistently low MAE across different
years indicates that the AICD-CDM maintains a high level of accuracy in its predictions, despite the diverse
factors influencing green building costs. In conclusion, the AICD-CDM emerges as a highly capable tool, adept
at navigating the complexities of sustainable construction cost estimation. Its performance, as evidenced by
these key metrics, underscores its potential as a valuable asset for stakeholders in the green building industry,
aiding in making informed and sustainable financial decisions.
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