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OPTIMIZING HADOOP DATA LOCALITY: PERFORMANCE ENHANCEMENT
STRATEGIES IN HETEROGENEOUS COMPUTING ENVIRONMENTS

SI-YEONG KIM*AND TAI-HOON KIM'

Abstract. As organizations increasingly harness big data for analytics and decision-making, the efficient processing of mas-
sive datasets becomes paramount. Hadoop, a widely adopted distributed computing framework, excels in processing large-scale
data. However, its performance is contingent on effective data locality, which becomes challenging in heterogeneous computing
environments comprising diverse hardware resources. This research addresses the imperative of enhancing Hadoop’s data locality
performance in heterogeneous computing environments. The study explores strategies to optimize data placement and task schedul-
ing, considering the diverse characteristics of nodes within the infrastructure. Through a comprehensive analysis of Hadoop’s data
locality algorithms and their impact on performance, this work proposes novel approaches to mitigate challenges associated with
disparate hardware capabilities. Weighted Extreme Learning Machine Technique (Weighted ELM) with the Firefly Algorithm
(WELM-FF) is used in the proposed work. The integration of Weighted Extreme Learning Machine (WELM) with the Firefly
Algorithm holds promise for enhancing machine learning models in the context of large-scale data processing. The research employs
a combination of theoretical analysis and practical experiments to evaluate the effectiveness of the proposed enhancements. Factors
such as network latency, disk I/O, and CPU capabilities are taken into account to develop a holistic framework for improving
data locality and, consequently, overall Hadoop performance. The findings presented in this study contribute valuable insights to
the field of distributed computing, offering practical recommendations for organizations seeking to maximize the efficiency of their
Hadoop deployments in heterogeneous computing environments. By addressing the intricacies of data locality, this research strives
to enhance the scalability and performance of Hadoop clusters, thereby facilitating more effective utilization of big data resources.

Key words: Hadoop; Data Locality; Performance Enhancement; Heterogeneous Computing; Distributed Computing; Big
Data.

1. Introduction. In the era of big data, the efficient processing and analysis of massive datasets have
become critical for organizations across various domains. Hadoop, a widely adopted distributed computing
framework, has emerged as a powerful tool for handling large-scale data processing tasks. One of the key factors
influencing Hadoop’s performance is the effective utilization of data locality, ensuring that computation occurs
close to where the data resides as shown in Figure 1.1. However, in heterogeneous computing environments
encompassing diverse hardware resources, optimizing data locality presents significant challenges. This research
focuses on addressing these challenges and enhancing the performance of Hadoop in such environments. By
exploring strategies to optimize data placement and task scheduling, considering the distinct characteristics
of nodes within the infrastructure, this study aims to provide practical insights for organizations seeking to
maximize the efficiency of their Hadoop deployments in diverse computing environments [1].

The proliferation of heterogeneous computing environments, comprising a mix of hardware architectures and
capabilities, adds a layer of complexity to the already intricate landscape of big data processing. The diverse
performance characteristics of nodes within such environments impact data processing efficiency, making it
imperative to devise strategies that not only adapt to this heterogeneity but also enhance Hadoop’s data locality
performance. This research delves into the intricacies of Hadoop’s data [2] locality algorithms, scrutinizing
their efficacy in heterogeneous settings. By addressing challenges related to network latency, disk I/0, and
varying CPU capabilities, the study aims to propose novel approaches for optimizing data placement and
task scheduling. Through a blend of theoretical analysis and practical experiments, the research seeks to
contribute valuable insights that can guide organizations in tailoring their Hadoop deployments for optimal
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performance [3] in heterogeneous computing environments. Ultimately, the goal is to empower enterprises to
extract maximum value from their big data resources while navigating the complexities introduced by diverse
hardware configurations.

In the vast landscape of distributed databases, characterized by a superabundance of data from diverse
fields, managing the manifold, intricate, dissimilar, and autonomous nature of occurrences poses a significant
challenge [4]. The sheer volume of data, often rife with excessive and extraneous features, necessitates the
application of a suitable filtering model to address noise in features or occurrences. Effectively dealing with
this substantial number of characteristics requires the implementation of an efficient attribute selection model
to choose ranked features for classification or clustering.

A notable contribution by [5] involved the application of a concise set of rules using a feature selection
model within rough set theory. Despite these advancements, the classification algorithms encounter a crucial
challenge in the form of error rates and class imbalances.

Handling high-dimensional document spaces, especially in the context of large document sets, presents
inherent difficulties in preprocessing and classifying. To enhance the learning of classification algorithms, a
considerable number of samples [6] need to be learned based on their dimensions. Conceptually, this document
space can be viewed as a low-dimensional sub-space enveloped within an ambient space. In response to the
dimensionality issue, numerous dimension reduction methods have been developed, aiming to decrease document
dimensions and improve performance and efficiency.

The application of these methods becomes particularly crucial in addressing the challenges posed by online
medical databases. Arithmetic computing procedures, data accessing, semantics, and domain knowledge are
fundamental challenges in dealing [7] with these databases, exacerbated by the complexities, continuous fluc-
tuations, and noise inherent in the growing data landscape. As research endeavors continue, finding effective
solutions to these challenges becomes paramount for leveraging the full potential of online medical databases
in various applications [8].

The aim of the proposed work is to address the challenges associated with the superabundance of data in
distributed databases [9], particularly focusing on the manifold, intricate, dissimilar, and autonomous nature
of occurrences across diverse fields. The primary goal is to develop and implement effective filtering models
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to handle noisy features and occurrences within the substantial dataset [10]. Additionally, the research aims
to tackle the issues related to high-dimensional document spaces, where preprocessing and classifying large
document sets prove to be challenging.

To achieve these objectives, the proposed work seeks to employ advanced attribute selection models, in-
spired by rough set theory and other relevant methodologies, to effectively manage the extensive characteristics
inherent in the data [11]. The utilization of dimension reduction methods is a key aspect of the research,
with the aim of enhancing the learning process of classification algorithms by decreasing document dimensions
and improving overall performance and efficiency. Furthermore, the proposed work aims to contribute to the
field by addressing challenges in online medical databases, focusing on arithmetic computing procedures, data
accessing, semantics, and domain knowledge. The ultimate objective is to develop solutions that navigate the
complexities, continuous fluctuations, and noise within the growing data of medical databases, ensuring their
effective utilization in various applications.

The proposed work aims to advance the understanding and methodologies for managing vast and complex
datasets, with a specific focus on distributed databases and high-dimensional document spaces. The overarching
goal is to contribute to the development of robust models and techniques that can enhance the efficiency,
accuracy, and applicability of classification algorithms and data processing in challenging environments.

The integration of Weighted Extreme Learning Machine (Weighted ELM) with the Firefly Algorithm
presents a potent approach for optimizing machine learning models efficiently. Weighted ELM, an extension
of the Extreme Learning Machine algorithm, is known for its computational efficiency and rapid training. By
incorporating the Firefly Algorithm, a nature-inspired optimization technique, the model’s parameters can be
fine-tuned to enhance generalization performance. This synergy benefits from the Firefly Algorithm’s ability
to efficiently explore and converge to optimal solutions in complex optimization spaces. When applied in the
context of Hadoop, a distributed computing framework, the proposed work emphasizes the crucial aspect of
data locality. Leveraging Hadoop’s parallel processing capabilities, the distributed nature of the Weighted
ELM with Firefly Algorithm ensures that computation occurs in close proximity to the data, minimizing data
transfer across the nodes of the Hadoop cluster. This strategic use of data locality optimizes the training and
optimization processes, facilitating the effective handling of large-scale datasets in a distributed computing
environment.

The outline of the paper looks like this: Previous studies are reviewed in Section 2, the methodology for
the current study is laid out in Section 3, the experimental data and their analysis are presented and discussed
in Section 4, and finally, ideas for future studies are provided in Section 5.

2. Literature Survey. Numerous studies have explored the utility of Data Placement (DP) in the context
of MapReduce jobs within Hadoop clusters, addressing challenges in managing distributed databases and high-
dimensional document spaces. Noteworthy contributions include a solution to duplicate data files during staged
predictive inspection, employing a probability hypoproposed work for replication. Al-Khateeb and Masud
introduced a method using rough set theory, enhancing both convenience and safety compared to conventional
approaches [12].

The Data-Grouping-AWare (DRAW) technology, developed by another group, focuses on increasing the
effectiveness of data-intensive applications in concentrated user interest areas. DRAW optimizes information
retrieval from framework log data, achieving maximal parallelism without compromising load balancing. Exper-
imental results demonstrate improved throughput for local map tasks, enhancing overall execution performance
compared to Hadoop’s default random placement [13].

The Snakelike Data Placement method (SLDP) introduces a technique considering heterogeneity, redis-
tributing information blocks across nodes while addressing data heat. SLDP shows potential to increase
MapReduce performance, utilizing less space and energy according to experiments with real-world datasets
[14].

Dynamic Replica Strategy (DRS) and Hierarchical Replica Placement Strategy (HRPS) in Hadoop Dis-
tributed File System (HDFS) ensure data integrity and accessibility. The Markov model informs the develop-
ment of a Secure HDFS (Sahds) that adapts the SFAS section designation mechanism. Sahds distributes file
contents over similar nodes, maintaining replications and addressing data replication issues [15, 16].

Hybrid mechanisms in HDFS incorporate Solid-State Disks and conventional hard discs to enhance per-
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formance without increased energy usage, showing a significant reduction in energy consumption compared to
hybrid configurations [17].

A security-aware information placement method for scientific operations in the cloud is proposed, guaran-
teeing data privacy, integrity, and authentication access. The method calculates the cost of data center security
services using a security model and dynamically selects the best data centers with an Ant Colony Optimization
(ACO) based approach [18].

Hybrid clouds present challenges in retrieving data while protecting user anonymity. Last-HDFS addresses
data placement issues, enabling location-aware cloud storage and file loading based on policy compliance [19].

Clustering methods for organizing data, including K-means and bio-inspired algorithms, have been explored
for their simplicity and optimization capabilities. Various bio-inspired algorithms, such as Genetic Algorithm
(GA), Differential Evolution (DE), and Particle Swarm Optimization (PSO), address optimization challenges
in clustering. A novel approach using GA clustering, DE, and ACO demonstrates potential improvements in
cluster centroids’ search capability [20].

MapReduce-based methods, including K-means parallelization and parallel K-PSO, are proposed for large-
scale clustering, addressing challenges with PSO algorithm scalability in very big datasets. Scalable MR-CPSO
uses the parallel MapReduce approach to overcome PSO algorithm issues with large datasets.

In conclusion, these studies collectively contribute to the advancement of distributed data processing, data
placement strategies, and clustering methods, with a particular emphasis on enhancing performance, energy
efficiency, and security in diverse computing environments.

3. Proposed Methodology. Hadoop is a free, Java-dependent programming framework which supports
the processing of massive databases in a distributed computing platform. In addition to efficiency and manage-
ment of big data, the Hadoop framework offers numerous features such as high availability (recreation of data
squares across nodes), adaptation to internal failure (the system itself is built to differentiate and cope with
setbacks in the application layer), etc. It is adopted for processing and storing colossal data in distributed envi-
ronments using programming models. Hadoop appears as the persuasive solution for big data issues with some
additional capabilities. Hadoop uses the MapReduce algorithm to run applications. MapReduce is a framework
employed to process the enormous databases parallely. It performs distributed operational programming as
shown in Figure 3.1.

The MapReduce framework allows to specify information transformation logic through exploiting their
own map function and reduce function. MapReduce technology also enhances the monitoring and scheduling
of tasks and simplifies massive computing and handling of colossal data volumes. MapReduce being Hadoop’s
core component, processes massive information in parallel through splitting the job into a cluster of separate
tasks. As MapReduce operates in a data-intensive environment, the important factor that directly affects the
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efficiency is data transmission. Reduction in efficiency causes performance degradation of the system as shown
in Figure 3.2. This methodology aims to improve efficiency of Hadoop MapReduce framework during parallel
data processing and when operating in data-intensive environments. It intends to ameliorate response time
and data throughput of system. It aims to maximize network load in Hadoop MapReduce for boosting the
overall system performance. In this research work, initially data distribution is done, followed by speculative
prefetching.

This research aims to optimize the network load in Hadoop MapReduce. It intends to improve the effi-
ciency of Hadoop MapReduce framework during parallel data processing and when operating in data-intensive
environments and to ameliorate mainly response time and data throughput of desired system.

Step 1: This step involves initialization of a series of entities such as data center, data locality and task scheduler.

Step 2: This step involves data distribution, prefetching and development of MapReduce. Data distribution
is done according to node capacity and for prefetching operation, a speculative prefetching method is
employed.

Step 3: This step involves Hadoop configuration and development of a locality-based scheduler and reduction
of tasks into nodes using WELM-FF.

Step 4: This step involves performance inspection of proposed WELM-FF-Fair share approach and also com-
parison of proposed scheduling approach with benchmarking schemes.

A distributed Hadoop configuration with 20 nodes is employed and then job scheduling is accomplished
fair scheduling scheme. Experiments are conducted on diversified Hadoop cluster with configurations. Further,
heterogeneity within the cluster is quantified by considering several CPU or processor types, disk space and
memory size. Hadoop 2.2.0 version is employed and configured with JDK 1.8 version and 128 MB block size.
For input, a text file generated using java code is used. K-Nearest Neighbour (WELM-FF) based fair scheduler
approach is employed for improving efficacy of Hadoop MapReduce model while parallel information processing
and for enhancing system’s response time and data throughput. In current methodology, performance of
developed WELM-FF-based fair scheduling scheme is evaluated considering performance measures like job
execution duration, throughput, performance rate and execution duration for clustering as shown in Figure 3.3.

In this proposed work, the developed WELM-FF scheduler’s performance is assessed using afore-mentioned
metrics and is compared with popular schedulers like capacity scheduler and default (FIFO) scheduler. Fur-
thermore, performance of proposed WELM-FF scheduler is evaluated against different benchmarks like random
text, sort, word count with regard to job execution time, performance rate, data locality, execution time for
clustering and throughput through comparing WELM-FF scheduler as shown in Figure 3.4 and data locality-
based FIFO scheduler. Also, superiority of proposed WELM-FF based fair scheduling scheme is compared with
default scheduling method with regard to metrics like job execution duration, throughput, performance rate
and execution duration for clustering.

3.1. Initialization. The entities like data center, data locality and task scheduler play a vital role in
Hadoop MapReduce framework. The data locality indicates how close the input and compute data are (in
common words, it indicates closeness of input data and computed data). Data locality contains distinct levels
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like rack level, node level, etc. In this methodology, data locality based on nodelevel is exploited. In data
locality based on node-level, compute data and given/input data are coplaced on an alike/same node. In parallel
data systems, data locality corresponds to an imperative element considered by schedulers. Data locality here
indicates locality of input data. The task scheduler is associated with job scheduling in the Hadoop MapReduce
framework. In proposed methodology, firstly these entities (data center, data locality and task scheduler) are
intialized. The two text files generated using java code namely keyval and random text are used as input and
applied to MapReduce job. Given an original matrix V (document term matrix), NMF seeks to approximate
V as the product of two non-negative matrices W (basis matrix) and H (coefficient matrix), i.e.,

V~WH (3.1)
This factorization can be expressed through the optimization problem:

rvrvlilgl | V—WH ||? subjecttoW, H > 0 (3.2)

where || - ||? denotes the Frobenius norm, ensuring non-negativity in the factorization. The resulting matrices W
and H capture the underlying structures and relationships in the data. Reducing the dimension and converting
the document word matrix into smaller ones are the main goals of this strategy, along with gathering alternate
underlying structures within the data. Elements in these reduced matrices must be non-negative. Pattern
recognition, text clustering, and bioinformatics are just a few of the several areas where the NMF method give
the better results. Initially, input data or information is divided into several data blocks as per the node’s
processing potential within the cluster using the proposed scheduler as shown in Figure 3.5. Further, these
information blocks are allotted to distinct nodes within cluster.
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ODB + DS/BS (3.3)

where ODB indicates overall data blocks for input information, DS denotes input data’s data size and BS
denotes block size (default). Processing capacity (NPC) of each x node in the Hadoop cluster is estimated as,

NPC(z) +— P(z) + MTE(z) (3.4)

where NPC(x) indicates 22" node’s processing capacity, MTE (x) denotes mean task execution duration in 22
node and P(x) indicates performance of 2V*6 node.

Within the cluster, NPC of all present nodes is determined through considering a) mean task execution
duration of a specific job in specific node of cluster, b) combining CPU and existing memory of specific node
at normal intervals. The mean task execution duration is determined through executing a specific job’s few
tasks on that node. Here, MTE is added to NPC as the job in distinct nodes is executed at distinct times and
this aids in determining a node’s NPC. Furthermore, percentage of CPU and memory utilization in each node
of a diversified cluster can be determined. The free CPU and memory usage in each node within cluster is
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determined as

FreeMem (z) + ((100 — UtilizedMem (z)) x Mem(z))/100

FreeCPU () < ((100 — UtilizedCPU (2)) x CPU(x))/100 (3.5)

The job tracker handles job scheduling. It allots tasks to idle task trackers in the cluster according to slot
availability. Further task trackers process the reduce tasks and map tasks on a cluster’s corresponding nodes.
The mapper’s job here is to typically process given/input data. This information (given data) is stored within
the HDFS. The input file is further passed to the mapper function line by line. Further, mapper processes
the data and creates several small chunks of data. Reducer’s job here is to mainly process the data which
approaches from mapper. After processing, it produces a new set of output, which will be stored in the HDFS.
Between map and reduce phase shuffling and sorting is done. The information obtained from the map nodes is
copied to the reducers node by shuffle phase. The sort phase sorts the intermediate information by key. where
Mem( x ) represents z°' node’s RAM capacity, UtilizedMem( x ) represents percentage of utilized memory
in 2% node of cluster, CPU(x) represents 25! node’s processing capacity and UtilizedCPU( x ) represents
percentage of utilized CPU in 2 node of eluster. Further, performance of " node is determined through
obtaining free existing memory and CPU from that node using equation (3.6) as

P(z) < FreeMem(z) + FreeCPU (z) (3.6)

FEach time during job execution, the nodes are classified based on the NPC. The overall NPC of all nodes
contained within Hadoop cluster is estimated using equation (3.7).

ONPC + Xn: NPC(z) (3.7)

r=1

where n represents the number of data nodes and ONPC denotes the overall NPC. The amount of data blocks
that are to be allotted for every data node i is estimated as,

NB(z) + ODB x (NPC(z)/ONPC) (3.8)

where NB(x) denotes the number of data blocks allotted for " data node. For " data node, the number of
data blocks will be allotted as per NPC using equation (3.9)

DN(z) + NB(z) (3.9)

where DN(x) represents the 22" node in the Hadoop cluster.

Then the presence of map slots is checked on data nodes. Map tasks are allotted to nodes within the cluster
if the slots are present (or available). In case the slots are unavailable, then the scheduler waits until the slots
become available.

In Hadoop, typically the reduce stage does not begin until the map stage generates all intermediate informa-
tion. It is necessary to wait until completion of all map operations in order to achieve the ultimate job output.
Hence, after completion of execution by map task scheduler, the reduce task scheduler begins its execution. In
reduce stage, the nodes are organized such that they possess reduce function as depicted in equation (3.10).

RN(z) < RN;,RN3,RNs,............ , RN, (3.10)

where RN(x) represents the reducer node or z'" node possessing reduce function, k denotes the number of

nodes possessing the reduce function. Similar to map stage, the availability of reduce slots is checked in reduce
stage. If reduce slots exist, then reduce tasks will be allotted to nodes. If slots are unavailable, then the
scheduler will wait until the slots become available.

In order to identify outliers as shown in Figure 3.6, a boundary must be formed around them by merging
closed contours. All the points within a single contour are grouped together under the same cluster by these
contours, which are called cluster borders. Cluster boundaries of different sizes and shapes may be generated
using this method, and it doesn’t matter how the data is distributed.
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The optimization problem associated with WELM can be expressed as

mm R2 Z & — Z a;

(3.11)

subject to constraints:
N
(3.12)

I é:) —a|P< R*+&, & >0, Y ai=1,4;>0

i=1

where R is the radius of the hypersphere, a represents the center, and &; are slack variables
All of the points on a single contour fall inside the same cluster, which is why these lines are called cluster

borders. By generating cluster boundaries of any shape and size independent of the data side, the suggested
WELM technique surpasses the traditional approaches. The shortcomings of conventional methods may be
remedied with the use of the WELM clustering strategy. There is currently no clear solution to the research
topic of how to properly apply WELM during document clustering. There isn’t a perfect document clustering
strategy that fixes all the problems with the old ways and works better.

3.2. Hadoop based Data partition. The Map-Reduce architecture supports and underpins big databases
with a lot of features, divides them into smaller sets, and then distributes them to different cloud groups for
calculations. As seen in Figure 2, Map-Reduce views data as a key-value pair represented as <Key, Value>.
At now, there is a lot of thought put into data-intensive processing, mostly centred on the Map-Reduce frame-
work for investigating large amounts of data. Over time, it has evolved into a scalable and fault-tolerant data

handling device that can calculate and process massive datasets with just a few of low-end computer cluster
nodes. However, Map-Reduce does have certain inherent issues with its efficiency and implementation as shown

in Figure 3.7.
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The fundamental goal of knowledge mining techniques is to extract valuable information from massive
informational databases, often known as datasets. The information gathered from this procedure is quite
useful for decision-making models. The computational competency and processing time are both negatively
affected by the amount and dimensions of the data set as the intensity rises. Unfortunately, classical method
parallelization is not straightforward, and many current optimization models aren’t very effective at parallel
calculations either.

One of the most important data mining categorization strategies is the decision tree. Experts in decision
tree algorithms now focus on making data processing more efficient. Data sizes grow in direct correlation to
the rate of advancement in system networking and real-time application development. The purpose of using a
distributed decision-tree structure in tandem with the Hadoop framework to handle these massive data sets is
to identify these concerns.

3.3. Biomedical XML document preprocessing. Due to the vast amount of medical document sets,
the biomedical area is home to the most commonly utilised applications of text mining. For open access papers,
the conventional text mining methods rely only on ”sorting and theme” for searching. Articles from open-
access biomedical journals are licenced under the creative commons licence and are available in full text. In the
first stage of the algorithm for extracting documents, it detects about 100GB of articles. For the extraction
model to work properly, clear structured data is required. In most cases, all publications found in the PubMed
repository include unstructured data in addition to XML tags. Articles’ entire texts are pre-processed and
clustered using the document clustering method. This method places a premium on abstractions, as opposed
to previous biomedical text mining algorithms.

The clustering process, mathematically, involves grouping similar XML data, denoted by D;, into clusters
C;. This can be expressed as:

C; =A{D; : similarity (D;,C;) > threshold } (3.13)

where similarity measures the similarity between the XML data D; and a cluster C;, and a threshold is defined
to determine when a document is considered part of a cluster.

When working with big and varied datasets, these clustering approaches are very important for improving
the biomedical domain’s information structure and accessibility. These days, XML is the standard format for
online data exchange. Clustering has been the most popular and widely used method. In this context, clustering
stands for the combination of XML data types and XML clustering applications that are comparable. Among
them are query processing, web mining, document categorization, data integration, and retrieval of information.
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The major issues in XML data preprocessing for clustering are described below:

e Initially, the clustering process calculates the similarity index among numbers of different XML data.
Nevertheless, evaluating the similarity function is a major problem because of the heterogeneity prop-
erty of XML documents.

e Implicit dimensionality has increased to a great extent.

Biomedical documents, phrases, sentences are used in the feature extraction to extract the main features of the
original documents. The graph-based feature extraction generates the feature extraction by mining phrases or
sentences from the set of key peer nodes of the overlay network. Finally, key phrases or sentences are extracted
by computing the ranking scores and then selecting the highest scored phrases or sentences.

3.4. Traditional feature selection models on biomedical databases. In order to categorise the texts
according to MeSH keywords, a new Bayesian Network (BN) method is created. Classification is carried out by
this model based on the entity associations of various MeSH words, and it can readily depict the conditional
independences between MeSH terms and the MeSH ontology. This method is used to depict the MEDLINE
document resources at different levels of abstraction. In order to address these concerns, medical ontologies
are used to discover the medical concept MeSH synonyms. Textual categorization schemes often use machine
learning techniques in an inductive fashion.

Furthermore, a BN classifier based on support vector machines is used to categorise MEDLINE articles.
When analysing the performance of a balancing approach, both BN and SVM-based BN classifiers become
quite sensitive. Text classification and classification models are frequent areas where class-imbalance problems
occur. The classic issue of class imbalance cannot be addressed by these methods. In order to make conventional
categorization procedures more accurate, a lot of new, sophisticated methods have been created. Methods based
on recognition, active learning, sampling, and cost sensitivity are all part of these generalised categorization
systems. By excluding arbitrary data from the dominant class, sampling techniques have helped to address
the issue of class imbalance. The term for these methods is under-sampling approaches. Oversampling occurs
when there are insufficient new randomised data points for the minority class. For instance-specific document
category classification, the cost-sensitive learning technique employs a cost-matrix. In order to learn rules,
recognition-based approaches look at the minority class rather than the majority class’s instances. To address
the challenges posed by unlabeled data, active learning techniques are used.

In order to discover the hidden learning principles in the minority class examples, which could or might
not employ instances from the majority class, feature selection based learning approaches are used. Automatic
MEDLINE document classification is achieved by the use of Bayesian-based feature selection models, which
provide a probabilistic framework. When a document has a particular MeSH label or is connected to the term’s
grandparents in the hierarchical model, Bayesian models do not work. For example, the words A01.047.025.600,
A01.047.025.25, and A01.047.025.600 may all be used to represent the same document in an index that uses
the terms A01.047.025.600.451. The MEDLINE documents can be better selected using an ontology-based
document feature selection approach according to this assumption.

The suggested random sampling strategy involves selecting components at random and then removing
them from the class that is overrepresented in the majority. This procedure is repeated until the minority
class size and cost-sensitive learning method are equal. Among its components are adjustments to the relative
cost of incorrect positive and negative class classifications. It is necessary to convert every page into a feature
vector before using machine learning techniques for feature extraction. To address the problem that the high-
dimensionality of the features space creates, many feature selection methods have been used. Feature selection
for documents has long made use of several probabilistic and statistical machine learning algorithms. Neural
network, K-nearest neighbour, Bayesian, decision tree, and symbolic rule learning are all part of it.

Scalable Machine Learning techniques and Rule-based reasoning methods provide the basis of feature
learning models. Due to the lack of a prior classified example or restriction pertaining to data pieces having
labels, this procedure falls under the umbrella of unsupervised learning. Ontology (Abox+Tbox) presents the
categorization model. It learns on its own from massive datasets using scalable Machine Learning and Big
Data methods. When it comes to categorization, feature extraction is a crucial step. We can classify all
characteristics into two categories:

e Feature extraction is carried out on the small document sets by making use of noisy attributes and



Optimizing Hadoop Data Locality: Performance Enhancement Strategies in Heterogeneous Computing Environments 4569

@ MapReduceFramework

= map(data)
o reduce(mappedData)

.

(© weLm

o weights

o train(data)
o predict{input)

@ FFAlgorithm

o initializeFireflies()
@ optimizeWeights()

Fig. 3.8: Working of WELM-FF algorithm

contextual information.

In order to reduce the number of dimensions of high-dimensional features, traditional feature extraction
algorithms do away with noisy features. Predicting medical diseases, such as cancer, genes, proteins, etc., has
led to the development of several methods. When it comes to microarray cancer detection and prediction, the
rule mining method is combined with PCA and back propagation. For improved performance, a modular neural
network is designed to detect and assess heart illnesses utilising the Gravitational Search Algorithm (GSA) and
fuzzy logic algorithm..

3.5. Weighted Extreme Learning Machine Technique (Weighted ELM) with the Firefly Algo-
rithm. Incorporating weights into the learning process, the Weighted Extreme Learning Machine (Weighted
ELM) method modifies the classic Extreme Learning Machine (ELM) algorithm. It creates a hybrid strategy
for optimising the Weighted ELM shown in Figure 3.8 has parameters when coupled with the Firefly Technique,
an optimization algorithm that draws inspiration from nature. A few formulae and notations depicting the
Weighted ELM and its integration using the Firefly Algorithm are provided below.

1. Extreme Learning Machine (ELM): The traditional ELM formulates the output weights 5 as:

g=H'T (3.14)

Where:
e H is the hidden layer output matrix.
e T is the target matrix.
e H' is the Moore-Penrose pseudo-inverse of H.
2. Weighted Extreme Learning Machine (Weighted ELM): In Weighted ELM, the objective is to minimize
a weighted objective function:

2

L L
J(B) = 3 Zwi Yi — Zﬁjhj () (3.15)
i=1 =1

Here, w; represents the weights associated with individual training samples.
3. Combining Weighted ELM with Firefly Algorithm
e Optimizing the weights w — éin the Weighted ELM is the goal of the Firefly Algorithm. Using the
attraction between fireflies, the system adjusts the weights repeatedly. The following stages make
up the method, which uses the objective function to assess attractiveness:
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e Start by setting the starting light levels and locations of the fireflies.

e Determine Attraction: Using the distance and light intensity of two firefly, determine the attrac-
tiveness between the two.

e Apply the attractiveness values to the weights and update them.

e Repeat: Continue iterating until you reach convergence or until you reach a predetermined limit.
The precise formulation of the update equation for weights, w — ¢, depends on the particular
specifics of the implementation and the issue environment, although it may be described using
the Firefly Algorithm.

These methods’ inefficient learning stages or coverage of local minimums lead them to be painfully slow.
To further improve learning efficiency and performance, many iterative learning techniques are created. Based
entirely on kernel-based methods, this strategy incorporates neurons in an ascending sequence. Unlike tradi-
tional Feed-Forward Network training, Bayesian ELM does not adjust the hidden layer. To reduce training
error, all hidden layer parameters, including input and output weights and biases, are chosen at random. Slower
network learning rates and less capacity to handle complexity are the main drawbacks of the aforementioned
approaches.

From Figure 3.9, The two main steps of the WELM-FF (F-ELM) method are training and prediction.
A three-tiered design is suggested for the training phase. In the training phase, scaling parameters in the
hidden layer and weights in both the hidden and output layers are repeatedly generated, much like the WELM
technique. Therefore, F-operations WELM’s are comparable to those of the fuzzy inference system. To make
predictions, a trained F-WELM algorithm takes an input feature vector and uses it to assess the outputs.

Using nodes and edges, decision trees may be shown as directed graphs. Always representing tests are
the root and intermediate nodes, with outgoing edges representing node conditions. Additionally, various class
labels, represented by leaf nodes, are accountable for uncovering latent patterns in massive datasets. The
decision tree’s decision patterns are predicted by these. The quantity of data lost during decision tree creation
grows in direct proportion to the size of the k-trees. At each level, these models determine the decision criteria
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Table 4.1: Amazon EC2 Setup Configurations

General purpose current generation | Linux/UNIX Usage (per Hour) | Windows Usage (per Hour)
m3.medium 0.0086 0.0591
m3.large 0.0162 0.1171
m3.xlarge 0.036 0.2201
m3.2xlarge 0.1539 0.4391
m1.small 0.0081 0.0261
ml.medium 0.0102 0.0531
m1l.large 0.0175 0.1061
ml.xlarge 0.034 0.2111

by running an algorithm that is based on the hierarchical selection of characteristics. These are the main
problems with this attribute selection method: 1) The amount of time and space needed for calculation also
grows as the noise of characteristics in single and multi-leveled space increases. 2) Entropy measurements on
the homogeneity of the information distribution are used by this model.

Figure 3.9 shows the results of using an WELM-based decision tree with a logistic regression function to
identify infrequent decision rules; in this case, a new occurrence is arranged by climbing the tree from its root
node to its leaf node, and a decision on the attribute is made based on the class attribute value of the leaf node
through regression analysis.

If the database has a lot of dimensions, then can’t use the WELM decision tree to build incremental trees.
Also, using the Map-Reduce framework with mixed attribute types is not supported by this strategy.

Limitations

e Hadoop nodes are used and the memory limitations affect the tree’s performance.

e Achieving greater performance on the part of the intermediate mappers requires fixing the static re-
strictions of the minimal class instances.

e Building the static classification and static parameters is a must during the training phase of a Map-
Reduce system.

4. Performance Evaluation. For experimental evaluation, Hadoop with hardware configuration of 4 GB
RAM, 250 GB hard disk and above 2 GHz processor is employed. Experiments are conducted on diversified
Hadoop cluster with configurations as depicted in Table 1. The employed test-bed consists of one master node
(job tracker and Name node) and twenty slave nodes (task tracker and data node). The heterogeneity within
the cluster is quantified by considering several CPU or processor types, disk space and memory size on each
node. Here, all nodes within cluster are connected using an ethernet switch. For execution, Linux operating
system is employed. In proposed experiments, Hadoop 2.2.0 version is employed and configured with JDK 1.8
version and 128 MB block size. For input, a text file generated using java code is used. The master.txt file is
used to declare master node name and workers.txt file to declare slave nodes’ name. The file yarn-site.xml is
employed to write node property and node values. Scheduler is controlled using xml files.

4.1. Implementation Setup . Amazon Elastic Compute Cloud (EC2) has three distinct storage tiers—
small, medium, and large—each of which offers access to a unique set of cloud resources. You may access these
instances and services across several time zones and countries. The pricelist for micro to big instance types for
Windows Usage machines and LINUX/UNIX is shown in Table 4.1 for the Asia Instance servers.

The cloud’s capacity to handle computations of varying sizes is made possible by Amazon Elastic Compute
Cloud (EC2). For developers, EC2 means quick and simple web-scale compute. With no effort, you may
configure the hardware capacity to your exact specifications using the accessible user-friendly interface. Instance
addition and deletion are handled using the aforementioned interface. Customers may choose which EC2
instances to make public or private when they deploy these services to cloud storage servers. A pre-configured
AMI, network permissions and security, and the uploading of a completed web application are prerequisites
for implementing an Amazon Elastic Compute Cloud instance. Based on their computing demands, customers
must choose the beginning and finishing points of the instance. The amount of AMI has to be present in several
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Table 4.2: Memory Optimized - Current Generation

r3.large 0.0175 | 0.1741
r3.xlarge | 0.0478 | 0.2821
r3.2xlarge | 0.1785 | 0.4442
r3.4xlarge 0.48 0.6744
r3.8xlarge | 0.8791 | 0.9583
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Fig. 4.1: Results of FF-RR’s execution on 10 nodes in a Hadoop cluster

occurrences. The next phase involves configuring additional application services by monitoring the activity of
newly formed instances. Both incoming and outgoing network traffic may be managed with the use of security
groups and ACLs.

Various biomedical documents in XML format are subjected to experimental outcomes. The document
types seen in the MEDLINE Repository vary among the various data sets. Table 4.2 is a visual representation
of the results of the feature selection process’s performance study utilising the Hadoop framework. In this case,
we learn how long the Mapper and Reducer phases took to operate in the Hadoop environment by including
the Rough-set approach and a Random Forest tree.

Visual representation of the feature selection process performance analysis utilising the Hadoop framework
is shown in Figure 4.1. In this case, we learn how long the Mapper and Reducer phases took to operate in
the Hadoop environment by including the Rough-set approach and a Random Forest tree. The chart clearly
shows that, in comparison to other classification strategies that do not use a rough-set method, the Rough set
with Random forest model’s Mapper and Reducer stages have a less time-complex nature. Figure 4.1, clearly
shows that in comparison to other classification strategies that do not use a rough-set method, the Rough set
with Random forest model’s Mapper and Reducer stages have a less time-complex nature. Analyses of the
order models’ performance are shown in Table 4.3 and Figure 4.2. When compared to other traditional Hadoop
classification algorithms, Random Forest trees with roughsets have a far higher real positive order rate for
biological datasets. The number of positive occurrences that represent assaults, as compared to negative ones,
is shown by the true positive rate. The number of instances that were incorrectly categorised is shown by the
error (percent). Also calculated are the outliers, expressed as a percentage, which show how many occurrences
are unrelated to the present assault behaviour. Table 4.4 shows the classification models with True Positive
and Error Rates metrics.

Figure 4.3 shows the performance metrics of Hadoop Models.In the first experiment, a regular Hadoop clus-
ter (SHC) showed a 120-minute processing time, 500 records/minute throughput, and 95% accuracy. Reducing
execution time by 80 minutes, increasing throughput by 750 records per minute, and improving accuracy by 98%
were all outcomes of Experiment 2, which included adding further nodes to the cluster (ECWAN). Even though
the execution time went up to 100 minutes in Experiment 3, which focused on Hadoop with Improved Data
Compression (HWIDC) data compression approaches, the throughput remained competitive at 600 records
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Table 4.3: Classification models for feature selection using Rough-set

Algorithm Mapper Time (mins) | Reducer Time (mins)
GA_FSA 15.35 4.57
Neural Network 21.53 5.75
WELM-Tree 14.65 5.36
WELM with firefly 12.43 4.567

Table 4.4: Classification models with True Positive and Error Rates metrics

AModel True Positive (%) | Error (%) | Outlier (%)
GA_FSA 81.45 25.67 12.54
Neural Network 83.157 21.56 15.37
WELM-Tree 84.26 27.89 16.24
WELM with firefly 89.45 19.4 11.15
100
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Fig. 4.2: Performance metrics for classification models

per minute and the accuracy rate stayed at 96%. These findings demonstrate how important it is to optimise
Hadoop-based systems using data processing methods and cluster design. Improving performance was a direct
result of the tweaked cluster design, and investigating data compression methods revealed promising new ways
to strike a balance between the execution time and accuracy trade-offs. Improved distributed data processing
using the Hadoop architecture may be possible with more research and development.

5. Conclusion. The proposed work differs from existing solutions in that it does not require learning
the classification accuracy for certain types of information attributes earlier, which is not always possible
in practise. Instead, it takes an exponentially decreasing size of distributed databases, data pre-processing,
and the classification true positive rate. The distribution noise or anomaly problem, mining sparse, scaling
up for high-dimensional space, and static optimization are the main challenges with standard data mining
algorithms when applied to massive data. This chapter details the application of a new decision tree model
based on the toughest criteria to biomedical datasets using the Hadoop framework, with the goal of improving
the computation error and true positive rate. Lastly, a potential strategy for improving ML models is the
proposed Weighted Extreme Learning Machine (Weighted ELM) in conjunction with the Firefly Algorithm. To
make the classic Extreme Learning Machine even more sophisticated and adaptable, the Weighted ELM adds
weights to it. The compatibility of the hybrid model with the Firefly Algorithm, a method of optimization
that draws inspiration from natural behaviours, allows for more efficient parameter tuning. The capacity to
account for the significance of individual training samples by using weights is the main benefit of the Weighted
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ELM. This makes the model more flexible and resistant to data distribution issues, which is especially helpful
when certain samples are more important than others for learning. By mimicking the characteristics that
make fireflies appealing, the Firefly Algorithm improves the Weighted ELM’s optimization. Improving the
model’s convergence and overall performance, this optimization technique helps locate ideal weight combinations.
Nevertheless, there are a number of variables that affect how well this hybrid strategy works, such as the
parameters used, issue specifics, and dataset characteristics. To get the best outcomes for particular applications,
it is vital to conduct thorough experiments and fine-tune. Addressing complicated issues where flexibility,
efficiency, and resilience are vital, the Weighted ELM with Firefly Algorithm shows promise in practical terms.
The method’s competitiveness across a larger variety of applications may be determined by future work that
investigates hyperparameter tweaking, experiments with varied datasets, and compares with other state-of-
the-art approaches. When combined, Weighted ELM and the Firefly Algorithm provide new possibilities for
improving machine learning models and expanding their use in many fields.
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