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FEDERATED DIVERSE SELF-ENSEMBLING LEARNING APPROACH FOR DATA
HETEROGENITY IN DRIVE VISION

M.MANIMARAN ∗AND V.DHILIPKUMAR †

Abstract. Federated learning (FL) has developed as an efficient framework that can be used to train models across isolated
data sources while also protecting the privacy of the data. In FL a common method is to construct local and global models together,
with the global model (server) informing the local models and the local models (clients) updating the global model. Most present
works assume clients have labeled datasets and the server has no data for supervised learning (SL) problems. In reality, clients
lack the competence and drive to identify their data, while the server may host a tiny amount. How to reasonably use server-
labeled and client-unlabeled data is crucial in semi-supervised learning (SSL) and Cclientdata heterogeneity is widespread in FL.
However, inadequate high-quality labels and non-IID client data, especially in autonomous driving, decrease model performance
across domains and interact negatively. To solve this Semi-Supervised Federated Learning (SSFL) problem, we come up with a new
FL algorithm called FedDSL in this work. We use self-ensemble learning and complementary negative learning in our method to
make clients’ unsupervised learning on unlabeled data more accurate and efficient. It also coordinates the model training on both
the server side and the clients’ side. In an important distinction to earlier research that kept some subset of labels at each client,
our method is the first to implement SSFL for clients with 0% labeled non-IID data. Our contributions include the effectiveness
of self-ensemble learning by using confidence score vector for calculating only for the current model performing data filtering and
initiated negative learning by showing the data filtering performance in the beginning rounds. Our approach has been rigorously
validated on two significant autonomous driving datasets, BDD100K and Cityscapes, proving to be highly effective. We have
achieved state-of-the-art results and the metric that is utilized to evaluate the effectiveness of each detection task is mean average
precision (mAP@0.5). Astonishingly FedDSL performs nearly as well as fully-supervised centralized training approaches, despite
the fact that it only uses 25% of the labels in the Global model.
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1. Introduction. Machine Learning (ML)-based services and apps are becoming more and more important
because of the need to protect data safety and security. It can be hard for ML providers to gather and manage
data, follow General Data Protection Regulation (GDPR) rules, and keep personal data from getting lost,
misused, or abused [1]. If you want to do global collaborative learning without sharing the original training
data, Federated Learning (FL) can help. But it’s not totally secret since the model parameters include private
information. FL is a way to learn that a single server manages a group of devices used by many people. The
server delivers the most recent model to clients at every training epoch. After that, the clients modify the
model using their private data sets. [2]. The server takes all of these changes and applies them to the core
model. FL lets you make a whole ML model without disclosing client data or using their computing power,
which makes the server load less. The main elements of the FL concept are as follows:

* Decentralized Training: Gathering all data in one location and by training the model directly on
individual devices, FL ensures that data privacy is preserved.

* Updates: Each device updates its model parameters and sends them to a central server after undergoing
model training with its own data.

* Global Aggregation: The server collects the updated parameters from all devices. Utilizes them to
train a model.

* Model Updates: The improved global model is subsequently sent back to the devices so they can train
it using their data.

∗Department of Computer Science and Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Tech-
nology, Chennai, India. (*drmanimaranm@gmail.com)

†Department of Computer Science and Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Tech-
nology, Chennai, India. (*vdhilipkumar@veltech.edu.in)

4576



Federated Diverse Self-ensembling Learning Approach for Data Heterogenity in Drive Vision 4577

Fig. 1.1: An Overview of FedDSL

In FL applications like keyboard prediction, labelling data isn’t always needed, but it can be pricey to get
big labelled datasets. Currently, most of the research is focused on building ML models from unlabeled data.
However, not many of the current studies try to improve FL [3], which leaves a good area for future research.
FL methods mostly work with supervised learning, which means that all of the data is labelled. But getting
fully labelled data can be hard because it is possible that the participants will lack knowledge or interest in
the subject [4]. This makes the problem of FL out of full labels very important in real-world applications like
autonomous driving.

In SemiFL [5], clients have data that hasn’t been labelled at all and can train over multiple local epochs
to cut down on connection costs. The server, in contrast, stores some tagged data. However, this system
may become less useful if labelled and unlabeled data are separated, as it becomes more difficult to apply
these methods to FL. While customers only have access to unlabeled data, label-at-server scenarios are more
problematic due to the fact that only the server possesses labelled data. To overcome the information gap
between labelled and unlabeled data in autonomous driving, a new strategy is needed where there is no direct
exchange of data.

With semi-supervised federated learning (SSFL) [6], clients’ unsupervised learning on unnamed data is
made more accurate and efficient by using self-ensemble learning and complementary negative learning. On the
client side as well as the server side, SSFL is responsible for managing the model training. Limited high-quality
IDs and non-IID client data can be a challenge, especially in situations like self-driving cars. As a solution to
these problems, the Semi-Supervised Federated Object Detection (SSFOD) [7] system was designed for cases
where clients have unlabeled data and the server only has labelled data. The fact that SSFOD has never been
used before for clients with zero percent labelled non-IID data is interesting. This is a significant departure
from earlier studies that attached labels to each patient.

There have been the following problems with the aforementioned research:
* primarily using datasets like CIFAR, Fashion MNIST, ImageNet and COCO can be challenging because
to their small size and complexity, but SSFOD poses far larger challenges.

* Following that, we proceeded to investigate difficult FL cases that involved clients who had unlabeled
data from a various category of object than the labelled data that was stored on the server. For example,
when the weather changes, real-life FL scenarios aren’t always identical, so we made this adjustment.
Because client records are so diverse, this approach accounts for that fact.

For the purpose of overcoming these issues of SSFOD that still need to be taken into consideration, we intro-
duce FedDSL (Federated Diverse Self-Ensemble Learning) a personalized multi-stage training technique for the
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SSFOD Framework as shown in Figure 1.1.
We proposed a FedDSL and Negative Learning for a consistency-based regularization scheme and a cost-

based pseudo-label mining algorithm for the SSFOD framework making the predictors more resilient to biased
representations caused by local data heterogeneity.

Our recently added features offer a novel approach to using FL unlabeled data to improve non-IID identi-
fication performance, particularly for dynamic objects, which has been ignored in previous research. We assert
that our methodology and tests set a useful standard for future research in many domains, despite the fact that
SSFOD has received very little attention in the scientific community.

2. Related Works.

2.1. FL: Advancements and Challenges. Recently, FL has caught the attention of the public as a
method that protects users’ privacy while simultaneously maximising the potential of distributed data. Despite
the fact that FL has come a long way, its adaptability and applicability to other real-world problems may
be limited. This is due to the fact that the majority of studies have concentrated on categories of tasks. In
the future, advanced FL approaches will pave the way for collaborative learning from dispersed data sources,
which will be of great benefit to a number of different industries, including autonomous driving, healthcare,
and finance, among others. Future vehicular IoT systems [12], With growing privacy concerns, FL will be
crucial for intelligent transport systems and cooperative autonomous driving to optimise the use of scarce
communication, computation, and storage resources. This publication delves into the latest advancements in
smart healthcare virtual reality [13], including resource-aware, secure, incentive, and personalized FL designs.
Health data management, COVID-19 detection, medical imaging, and remote monitoring are just a few of
the important healthcare domains covered in this analysis. It also examines current FL-based projects and
highlights important lessons learned.

In FL, addressing data heterogeneity is crucial since clients often have data with different distributions,
which can affect the global model’s performance. Adaptive aggregation algorithms and local model fine-tuning
are two of the many approaches suggested by researchers to deal with non-IID data and meet this difficulty.
This paper [14] examines the convergence of federated versions of adaptive optimizers such as Yogi, Adam, and
Adagrad in non-convex scenarios with heterogeneous data. The effects of client heterogeneity on the efficacy of
communication are shown by the results. A generalization of FedAvg, FedProx [15] is a framework that deals
with federated network heterogeneity. It handles statistical and system heterogeneity by ensuring convergence
for learning over non-identical distributions and enabling devices to execute varied tasks. For client-specific
model adaptation, researchers investigate techniques such as model distillation and meta-learning. Quantization,
sparsification, and a supernet are solutions that decrease overhead while retaining model performance, which
is critical in FL for efficient communication.

2.2. YOLO based Semi Supervied Object Detection Technique . Additionally, a significant amount
of effort has been put into Semi Supervised Object Detection (SSOD), the primary goal of which is to improve
detection performance in general by improving pseudo labels. The primary goal of developing SSL (Semi-
Supervised Learning) methods for object detection is to produce consistent and trustworthy pseudo labels
using pretrained architectures and robust data augmentation strategies. Two-stage detectors usually outperform
their one-stage counterparts, and single-stage detectors, such as YOLO, have a hard time with SSL techniques.
Researchers are coming up with innovative solutions to fix the problem of existing SSL approaches failing with
single-stage detectors.

Epoch Adaptor, Dense Detector, and Pseudo Label Assigner make up the Efficient Teacher Framework [16],
a one-stage SSOD training system. Implementing a baseline model, a pseudo designation process, and Dense
Detector into the framework improves its performance. Dense Detector is able to acquire globally consistent
features and the system prevents bias caused by poor pseudo labels; this makes training independent of the
proportion of labelled data. Author [17] introduced a YOLO based method through the incorporation of domain
adaptation and the compact one-stage stronger detector YOLOv5, the performance of cross-domain detection
will be improved. furthermore, to fix image-level discrepancies, use scene style transfer to cross-generate pseudo
images across domains.
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2.3. Semi-Supervised Federated Learning (SSFL). The SSFL method has recently surfaced as a
potential solution to the issue of minimally labelled data in FL scenarios. Through the collaborative use of
participant-owned labelled and unlabeled data, SSFL aims to enhance FL. Our research has focused on two
main settings: labels-at-client and labels-at-server.

The two most critical cases in SSFL were defined according to the placement of the tagged data. In the first
case, authors assume the common occurrence of clients having both labelled and unlabeled data. The second
case involves a more challenging situation where the tagged data is exclusively accessible on the server. Our novel
strategy to resolve the concerns voiced is known as FedMatch [18], short for Federated Matching. Compared to
inexperienced hybrids of federated and semi-supervised learning approaches, FedMatch outperforms them in a
number of ways, including a novel inter-client consistency loss and a dissection of the parameters for disjoint
learning on labelled and unlabeled data.

Authors use the Semi-Supervised Federated Object Detection (SSFOD) framework when all the data is
labelled on the server and there is no unlabeled data on the client. Thanks to FedSTO [7], a two-pronged
approach, data transfer between servers and clients is handled securely. It uses orthogonality regularisation
to improve visualisation divergence, selective training to prevent overfitting, and local Exponential Moving
Average to assign high-quality pseudo labels (EMA).

2.4. Data Heterogeneity. When it comes to autonomous driving (AD), AutoFed is a FL platform that
takes heterogeneity into account. Authors [24] goal is to make robust AD possible by making full use of
multimodal sensory data on AVs. A client selection mechanism, an autoencoder-based data imputation method,
and a novel model using pseudo-labelling are all part of the framework. The experimental results reveal that
AutoFed outperforms the state-of-the-art methods in terms of precision and recall, and it also shows remarkable
resilience in the face of bad weather. The Authors [25] trains an autonomous vehicle via federated learning.
Data is gathered from an Udacity-based simulated vehicle over two tracks, and a Convolution Neural Network
is used for training. The next step is to upload the modal to a server, where it will be integrated with other
models to generate a new model. The car’s performance is examined through multiple trainings, and the results
show that the accuracy is iteration dependent and that merged models are less accurate.

3. Problem Statement. We focus on situations when 100% Unlabeled dataset in client side and 25%
labelled dataset in server side for object identification task that involves a labeled dataset Dl = [xl

i, y
l
i]
Nl

i=1

and unlabeled dataset Du = [xu
i ]

Nu

i=1
where Nu << Nl. x

l as labeled images, yl as annotations, it contains
coordinates and differenet bounding boxes for objects. The dataset {xl, yl} and the model parameterized by
M l are both stored on the server. Presumably, there are C clients, and they all have an unlabeled dataset xu,C ,
Every client model, with parameters Mu,C employs the identical architecture for detecting objects, represented
by f : (x,M) → f(x,M) , where each parameter M and input x are transformed into a collection of bounding
boxes with associated class probabilities.

Heterogenity. Our research focuses on non-IID data that results from various weather conditions, such
as cloudy, gloomy, rainy, and snowy. The three datasets—BDD100K, CityScapes, and SODA10M—display
different class distributions and label densities. A framework for SSFOD that is capable of managing this
diversity while preserving performance in a variety of contexts and with a variety of distributions is what we
intend to create. When every client exhibits a well-balanced distribution of weather conditions, the data is
considered to be a part of the independent and identically distributed (IID).

4. Proposed Methodology – FedDSL. To illustrate, FedDSL is an iterative algorithm that, similar
to all FL algorithms, necessitates the exchange of local and global models between the server and the clients.
Figure 4.1 illustrates this. As an alternative to conventional supervised FL, the server will use its labelled
dataset to actively contribute to the global model’s updates during training. This indicates that the server will
be actively involved in the training process. Each FL round in FedDSL is comprised of four separate steps,
which are as follows:

1. Initial Step: Server-side Supervised Learning
2. Second, have the clients download the global model.
3. Thirdly, client-side unsupervised learning
4. Finally: Submit local models to the Server
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Fig. 4.1: Operation of FedDSL

4.1. Supervised Learning at Server. In this paper, author examines the image classification issue using
an SSFL system, which consists of just one server and some clients.Dl is a labeled training dataset for server.
We use xi for the feature vector (image) and yi for the label (image class) for each instance i ∈ Dl . Index of the
class set M = 1, ..,m and hence, yi ∈ M for each instance i. Let us assume that the server possesses a limited
labelled validation dataset of DV al

l separated from the training dataset. Du is unlabeled training dataset for
individual client M = 1, ..,m. The feature vector xi of each instance i ∈ Du assume the dataset is unlabeled.
At the clients, the total number of instances of unlabeled training data is greater than the number of instances
of labelled training data that are stored on the server alone, which is denoted as Dl <<

∑N

n=1
Du. Our main

objective is to successfully train a model f for classification, with ω serving as the parameter. probability
distribution for predicted class is p(x,ω), x as input for the confidence score vector and model parameter of ω.
pm(x,ω) is the predicted class probability for the input x which belongs to class m under the model parameter ω,
it is a confidence score. By simply using the formula fm(x,ω)=argmaxmpm(x;ω), A predicted hard label can be
easily generated from the confidence score vector. In this work, we will discuss how to evaluate a classification
model’s efficacy using cross-entropy loss, which is a

l(y, f(x;ω)) = −

M∑

m=1

1(y = m)log(pm(x, ω)) (4.1)

where 1(.) is the indicator function.

4.1.1. Global Model Update. During FL round t, server compiles the uploaded local client models from
round t-1. In such case, every client takes part in every training session, Kt ⊑ N represents the sampled clients
for local training in round t. The local client model ωt

k is trained in round t for client k ∈ Kt. Typically, a
global model is created by averaging local client models on the server.

ω−t =
1

|Kt−1|

∑

k∈Kt−1

ωt−1

k (4.2)

In FedDSL, the server trains an average global model on its labeled dataset for the purpose of enhancing
it, instead of merely relaying it to the clients for local training in the current round. The technique of data
augmentation for image can be utilised to increase the size of the dataset as well as its quality. This is possible
because the server only has a limited amount of training data available. The enhanced version of the original
input x is denoted by a(x) if we consider the augmentation process a(.). In FedDSL, for instance, we execute
weak augmentation using basic operations like random image flipping and random image cropping. Be aware
that different learning rounds may provide different augmented images a(x) of the same input x due to the
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random nature of the augmentation. The server loss function (using slightly misleading nomenclature) is defined
as follows when weak augmentation is applied:

Ls(ω) =
1

Di

∑

i∈Dl

l(yi, f(a(xi);ω)) (4.3)

as previously stated, the cross-entropy loss is denoted as l(yi, f(a(xi);ω)). The server continues by running
Bs mini-batch gradient descent epochs Es, which update the global model. Here are the updates made to the
global model for each mini-batch step b:

ωt,b = ωt,b−1 − vs ▽ω Ls(ω)|ω
t,b−1 (4.4)

the server learning rate is denoted as vs, the initial model is ωt,0=ω−t, and the gradient of Ls(ω) assessed at
ωt,b is ▽ωLs(ω)|ω

t,b.
4.1.2. Calculation of Confidence Threshold. Before clients can use the updated global model to filter

input from the unsupervised learning step, m ∈ M is a confidence threshold for each class determined by the
server. Consider the confidence threshold vector τ t = [τ t1....τ

t
m] as an example, where τ tm ∈ [0, 1] represents the

confidence threshold for class m in round t. Here is the formula for determining the value of τ tm.

τ tm =

∑
i=Dval

l
pm(x, ωt)1(f(xi;ω

t) = m)
∑

i∈Dval
l

(yi = m)
(4.5)

When it comes to the validation dataset, the denominator represents the total number of instances of class m,
while the numerator is the sum of the confidence scores of all the data instances that are classified as class
m based on the current model ωt. For a new data instance x with a high probability of classification result,
with the present model ωt, it is categorized as class m (i.e., f(xi;ω

t) = m) and the confidence associated with
this classification, pm(x, ωt), is more than τ tm. Due to the fact that the global model is updated with each
new round, τ t changes across learning rounds. Along with global model at server, clients also download this
confidence threshold vector τ t.

4.1.3. Bootstrapping. Even though clients can begin the process of learning a language with a random
beginning model ω0, our findings indicate that training a robust model on the server labelled dataset and using
it as the initial model is more effective in accelerating the convergence of the learning process and achieving
higher accuracy.

Due to the utilization of self-ensemble learning in the unsupervised learning phase and the creation of
more trustworthy pseudo-labels by means of stronger early rounds models, Bootstrapping has a good influence
on convergence. Therefore, FedDSL relies solely on supervised learning at the server with the label dataset
to create the initial global model ω0. Despite the fact that it does not average the local models, it employs
equations (3) and (4) as its training basis.

4.2. Unsupervised Learning at the Clients. Clients k who are selected to take part in local client-side
training execute unsupervised learning on their unlabeled datasets to create local models ωt

k receiving the global
model ωt. Unsupervised learning at clients is demonstrated in Figure 4.2

4.2.1. Diverse Self-Ensemble Learning. To generate a pseudo-label, also known as a label prediction,
for each instance of unlabeled data using the current model is the objective of effective learning, just as it is
in typical SSL problems. Afterwards, construct a dataset in such a way that the pseudo-label of every data
instance is accurate on a consistent basis. The term ”data filtering” refers to the process of generating a new
dataset by selecting records from an existing dataset. Given that the pseudo-label is assumed to be accurate in
most cases, it is reasonable to assume that training the model on the filtered dataset would result in improved
outcomes.

The dispersed nature of the labeled and unlabeled datasets makes SSFL considerably more difficult in a
decentralized context than in a centralized one. Both supervised and unsupervised learning are performed
concurrently with one another in conventional SSL. In particular, the model is trained using a single loss
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Fig. 4.2: Self-Ensemble Learning Generates the Positive Dataset and Complementary Negative Learning Gen-
erates the Negative Dataset and Local Model Update with both datasets.

function Loss(ω), LossL(ω) for which there is a loss on the data that has been labelled and a loss on the data
that was not labelled is LossU (ω).

Loss(ω) = LossL(ω) + α LossU (ω) (4.6)

where the parameter for weight is denoted by α. The filtered dataset can have numerous occurrences with
incorrect pseudo-labels due to the low accuracy of the model in the early stages of training. For the purpose of
lowering the impact of inaccurate pseudo-labels, a minimal initial value is employed to increase reliance on the
trustworthy label dataset during model training. The filtered unlabeled dataset can be given additional weight
with an increasing α as the model improves with time.

In SSFL, though, things are different; to train, the client has access to only the loss function applied to
the unlabeled data. Therefore, it is not possible to influence whether labeled or unlabeled data is prioritized
using this parameter. Consequently, both the local model’s performance and the global model’s performance
after aggregation can be severely impaired because the less-than-ideal global model produced a relatively large
number of false pseudo-labels in the first rounds. False positives will build up and spread across iterations of
the learning process, rendering the process useless.

An issue that develops when the global model uses inaccurate pseudo-labels is its overconfidence in pre-
diction results. One solution to this problem is self-ensemble learning, which takes advantage of many global
models’ worth of past data to generate pseudo-labels. This group’s judgement mitigates the ”stubbornness” of
an individual model since it is derived from the same learning procedure, though from different iterations. By
using this method, we may decrease the likelihood of overconfidence when assigning classes to data that does
not follow a normal distribution and obtain more accurate predictions.

Based on the historical models (ω0,ω1,....,ωt), the client k determines the average score for the confidence
vector for each instance i ∈ Dk in the following way:

p−t(xi) =
1

t

t∑

j=1

p(xi;ω
j) (4.7)

Client k doesn’t have to keep track of every historical model because p−t(xi) can be updated gradually.

p−t(xi) =
t− 1

t
p−t−1(xi) +

1

t
p(xi;ω

t) (4.8)

Additionally, the pseudo label y+i of xi is produced based on

y+i = argmaxm p−t
m (xi) (4.9)
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whose corresponding confidence score is p−ty+i (xi). After the server calculates the confidence threshold vector
τ t, the client uses it to filter its local dataset and creates a filtered dataset:

D
t,+
k = ((xi, y

+

i ); i ∈ Dk and p−t

y
+

i

(xi) ≥ τ t
y
+

i

) (4.10)

In order to exclude occurrences without a high level of confidence, the condition p−t

y
+

i

(xi) ≥ τ t
y
+

i

) is used.

4.2.2. Complementary Negative Learning. Data filtering is improved by self-ensemble learning be-
cause the use of appropriate pseudo-labels increases the likelihood of including instances in the dataset that has
been filtered as Dt,+

k . Early self-ensemble models had low accuracy due to limited historical models, leading to
a significant number of cases with incorrect pseudo-labels being filtered into D

t,+
k . We apply complementary

negative learning to enhance supervised learning for clients, particularly in beginning rounds, as originally pro-
moted for noisy label problems. While classifying instances can be challenging, it is often simpler to eliminate
them from incorrect classes. Providing additional information for the purpose of updating the local model can
be accomplished by assigning complementary labels to instances, such as classes that are not the true class.
Because of this information, the unfavourable impact of incorrect pseudo-labels Dt,+

k can be mitigated, resulting
in improved performance in local training.

In pursuit of this goal, whilst creating D
t,+
k , We also generate a second dataset that has been filtered D

t,−
k ,

which includes data instances with corresponding labels. In this context, the superscript ”+” denotes that the
pseudo-labels should represent the actual class, whereas the ”-” signifies that the complementary labels should
represent any class other than the actual class. Specifically, for every instance i ∈ Dk, according to the results
of the averaging eqn. (8) confidence scores for those classes of client k determined, contain a value that is lower
than a predetermined threshold that is relatively low. Then, unless it’s an empty set, client k randomly selects
one from corresponding label for instance i.

y−i ∈ (m : p−t
m (xi) ≤ θ) (4.11)

Consequently, the complementary data set is

D
t,−
k = ((xi, y

−

i ); i ∈ Dk and ∋ m, s, t. (p−t
m (xi) ≤ θ) and p−t

y
+

i

(xi) ≥ τ t
y
+

i

) (4.12)

The equation p−t

y
+

i

(xi) ≥ τ t
y
+

i

) guarantees that Dt,−
k , does not contain an instance that is already in D

t,+
k .

4.2.3. Local Model Update. To update the local client model, we consider a client loss function with
positive and negative components.

Lk(ω) = λ L+

k (ω) + L−

k (ω) (4.13)

where

L+

k (ω) =
1

|Dt,+
k |

∑

i∈D
t,+

k

l(y+i , f(A(xi);ω)) (4.14)

L−

k (ω) =
1

|Dt,−
k |

∑

i∈D
t,−

k

l(y−i , 1− f(xi;ω)) (4.15)

The weight parameter is denoted by the expression λ > 0. To achieve combine the consistency regularization
and pseudo-labeling, making sure to take note of considering that positive loss component L+

k (ω) is calculated
with the use of strong data augmentation and pseudo-labels A(.) on the input data. In FedDSL, we use
a technique known as RandAugment [19], which is a powerful data augmentation method. The weight λ is
chosen to be minimal in order to limit the risk that is caused by wrong pseudo labeling. This is because, during
the initial rounds, the correct rate for complementary labelling is much higher than that of pseudo labelling.
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Table 5.1: Algorithm 1: FedDSL

Server trains the initial model ω0 based on its labeled dataset
for each FL round t do
Step 1: Server Training
Model averaging to obtain ω−t

Update global model ωt

Calculate confidence threshold vector τ t

Step 2: Model Download
All clients download global model ωt and confidence threshold vector τ t from the federated central server
Step 3: Client Training
Sample client subset Kt

⊑ N
for each client k do
Construct filtered positive dataset D

t,+

k

Construct filtered negative dataset D
t,−
k

Update client local model ωt,+

k according to D
t,+

k and D
t,−
k

end for
Step 4: Upload the Updated Model Upload local client models ωt

k, ∀ k ∈ Kt to the server
end for

In subsequent rounds, as the historical ensemble creates the pseudo-labels at a higher correct rate, the value
λ gradually increases, causing the client loss function to place a greater focus on the positive loss component
during those rounds. By carrying out a series of Ec epochs of mini-batch gradient descent with a mini-batch
size of Bc, client k is able to update its local model using the client k loss function that was created before.
Each mini-batch update is executed by Step b:

ωt,b = ω
t,b−1

k − vc ▽ω Lk(ω)|ω
t,b
k (4.16)

▽ωLk(ω)|ω
t,b
k is the gradient of Lk(ω) assessed at ωt,b

k , vc is the client learning rate, and the initial model ωt,0
k

is the received global model ωt. One round of SSFL is completed by uploading the obtained local model ωt
k to

the server. Algorithm.1 summarizes the entire FedDSL algorithm.

5. Experiments and Result.

5.1. Experiment Setup. The BDD100K [8] dataset, which contains 100K driving films captured in
diverse United States locations and different weather conditions, was used to assess the efficacy of our approach.
The movies are 40 seconds long and recorded at 720p and 30 frames per second. They contain GPS and inertial
measurement unit data that can be used to plot driving routes. Cloudy, wet, overcast, and snowy weather were
the four conditions from which we selected 25K data points for our studies. Our study focuses on five primary
categories of objects: humans, cars, buses, trucks, and traffic signs. The dataset is divided up according to
different weather conditions in order to model clients with data that is heterogeneous. The testing of our
framework in real-world scenarios allows us to study the effects of data heterogeneity on its resilience.

Cityscape [9] can run more experiments with the Cityscapes dataset, which contains street scenes from
50 cities. This dataset lacks precise weather information for each annotation, so clients receive it uniformly
randomly. This is our investigation package. It includes 3,525 dummy-annotated test images and 3,475 fine-
annotated training and validation images. We also included the second package with 19,998 8-bit images for
learning.

Table 5.2 shows our method’s performance against baselines and state-of-the-art approaches on BDD100K [8].

5.2. Result. Our trials use one server and multiple clients, depending on the experiment. Each cycle, the
server and clients use one local epoch. FedDSL initial conditions include a decay rate of 0.995, local momentum
of 0.9, and a complementary threshold θ for negative learning of 0.05. A 0.9 confidence score threshold and
0.001 server learning rate are set. The above parameters are being considered to evaluate test accuracy for
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Table 5.2: Our method’s performance against baselines and state-of-the-art approaches

Table 5.3: FedDSL’s prominence on the Cityscapes [9] datase

IID and non-IID scenarios. Table 5.2 shows test accuracy for IID and non-IID scenarios for various methods.
For labelling client instances, Fully Supervised Learning has the highest accuracy and performance limit. the
efficiency with which FedDSL uses client unlabeled data. FedDSL outperforms competitors in all weather
and data distribution scenarios (IID and Non-IID). A lot of unlabeled data may have incorrect pseudo labels.
Raising the confidence score threshold reduces unlabeled data but improves pseudo-labeling accuracy.

Our FedDSL method always outperforms other Semi-Supervised FL methods. Its better results in difficult
Non-IID situations demonstrate its resilience to data distribution changes. Our method performs well under IID
conditions, producing results comparable to a fully supervised centralised approach. These studies demonstrate
that FedDSL maximises FL’s benefits while minimising its drawbacks. Our approach’s good performance in
different weather and data distributions suggests real-world use.

Table 5.3 showcases FedDSL’s prominence on the Cityscapes [9] dataset across different object types.
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Fig. 5.1: Evaluation of different approaches on BDD100k [8] Dataset

Fig. 5.2: Efficiency in diverse aspects using Cityscapes [9] dataset labelled and unlabeled data

5.3. Evaluation with mAP@0.50. FedDSL’s effectiveness is demonstrated by the mAP@0.50 algorithm
when applied to the BDD100K[8] dataset (Table 5.2). The Fully Supervised Centralized approach has an average
measure of performance (mAP) of 0.605 in Non-IID scenarios, whereas the FedDSL approach has a mAP of
0.598. Under IID conditions, the mAP of FedDSL is 0.613, which is comparable to the mAP of SSFL, which is
0.614. Based on the findings, it appears that FedDSL is capable of detecting objects just like other systems. A
comparison of our method and others’ performance on the BDD100K[8] Dataset is presented in Figure 5.1.

Table 5.3 displays the results of applying the mAP@0.50 method to the Cityscapes dataset, this demon-
strates that the FedDSL technique is effective. Results from the two approaches is similar, in Labeled situations,
the Fully Supervised Centralized method achieves an average mAP of 0.537 while FedDSL recorded 0.453. Mean-
while, under Unlabeled conditions, FedDSL finds a mAP of 0.466, which is quite close to the value of 0.467
found by FSL(Fully Supervised Learning). It appears from the results that FedDSL can detect objects just as
well as other systems. Figure 5.2 represents the performance across different object types on the Cityscapes[9]
Dataset.

6. Conclusion. As a machine learning framework, FL shows a lot of potential in addressing data privacy
and decentralised datasets. The novel Semi-Supervised Federated Learning framework, with its distinctive
ensemble learning technique called FedDSL, is introduced in this research. Using self-ensemble learning and
negative learning with personalized pseudo labelling, FedDSL is built to tackle the difficulties of federated
learning with diverse unlabeled data. It may coordinate server-side supervised learning with client-side unsu-
pervised learning. These methods improve object detection capabilities in many different settings and data
distributions by enabling powerful, diverse feature learning. FedDSL has been found to beat previous Semi-
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Supervised Federated Learning techniques by a significant margin, thus indicating that it is possible to use
unlabeled data to enhance learning even in the Federated Learning scenario. Extensive experimental validation
confirmed that BDD100K dataset has an average mAP of mAP of FedDSL is 0.613 and in Cityscapes dataset
under Unlabeled conditions, FedDSL finds a mAP of 0.466 which is quite close to FSL. Significant progress
toward more efficient and privacy-conscious learning in real-world Federated Learning contexts has been made
with this accomplishment. It is our sincere wish that this paper’s findings will encourage more investigation
into this promising area.
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