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IMPLEMENTING A SECURE CLOUD-BASED SYSTEM TO SAFEGUARD SENSITIVE
MEDICAL DATA FOR HEALTHCARE

NOOR ABDUL KHALEQ ZGHAIR ∗, AMEER MOSA AL-SADI †, AND ALI ABDUL RAZZAQ TARESH ‡

Abstract. In most developed countries, the medical healthcare system is experiencing rapid development from the stage of
clinical information to the stage of information dissemination. In all of these countries, it is undeniable that the Internet of Medical
Things (IoMT) technologies have contributed in order to develop information medical healthcare. In reality, the development of
smart medical healthcare has been hindered by the protection of medical privacy, according to research and acceptance. This is
especially true as telecommunications systems continue to expand and wireless sensor networks (WSN) develop, as well as ways
to penetrate those checks that have become increasingly difficult. In the smart healthcare system, protecting users’ information
remains an outstanding issue. IoMT features and the protection of privacy and security have led to the development of an extended
privacy homomorphism algorithm based on scrambling matrixes, an encryption algorithm enhanced by Modified RSA (mRSA), and
a method of encrypted data compression that ensures data confidentiality. For the above purpose, we built a prototype system on
a demo temporary domain using both hardware and software. According to the results, the proposed scheme protects E-healthcare
from potential threats by providing stakeholders with a secure interface and preventing unauthorized users from accessing the
mCloud, thus ensuring privacy. E-healthcare services based on cloud technology are protected by the proposed scheme because it
is simple and robust.

Key words: Internet of Medical Things (IoMT); Modified RSA (mRSA); Discrete Wavelet Transform (DWT); Wireless Sensor
Networks (WSN); Bit Error Ratio (BErR).

1. Introduction. Medical IoT technology has allowed privacy protection systems for medical data to be
developed, including active surveillance, medical restrictions, smart healthcare, smart homes, and location-
based services [1, 2]. A number of issues have arisen in sensing and obtaining medical data, such as how
private and public information is collected, who asks for it, and who is responsible for overseeing or storing
the data when that private data is leaked [3] Similarly, the rapid growth of populations in developed countries
poses a number of challenges, including monitoring patients with chronic diseases, daily treatments, health care
and rehabilitation, as well as medical restrictions imposed by the population and the methods of preserving
and scheduling them, both of which form the basis of any society’s health care system [4, 5]. In addition to
keeping the privacy of elderly patients as much as possible, how to obtain their real-time physical information
remains an unresolved issue. As a result, algorithms such as the K-Means clustering method and morphological
operations such as erosion, dilation, and so on are used With the emergence of the IoT and traditional health
care systems, this paper explores a privacy-protecting medical health care system based on IoM, ideally suited
to the special demands of social aging management and care in developed countries [6]. The leading causes of
mortality around the globe. It is critical to be able to identify the type of tumour as well as forecast patient
clinical results. Lung cancer sufferers have a lower standard of living than the general population and patients
with other cancers. If lung cancer is detected early, at least 50% of patients will still be alive 5 years later, free
of recurrence.

Below is an organization of the rest of the paper. The literature related works are highlighted in the
2nd Section was organized. The 3rd Section describes the System Methodology. A detailed description about
personal information protection is provided in the 4th Section. Analyzing the security of mRSA cryptosystems
was given in the 5th Section. In the 6th Section, a system model implementation was explained.

∗Computer engineering department, University of technology, Baghdad, Iraq (Noor.A.Zghair@uotechnology.edu.iq),
†Computer engineering department, University of technology, Baghdad, Iraq (Ameer.M.AlSadi@uotechnology.edu.iq)
‡Computer engineering department, University of technology, Baghdad, Iraq (Ali.A.Taresh@uotechnology.edu.iq)

5240



Implementing a Secure Cloud-Based System to Safeguard Sensitive Medical Data for Healthcare 5241

2. Literature Related Works. A review of some works on secure medical data sharing is presented in
this section.

2.1. Data Sharing in a Secure Environment. Private cloud architectures are typically utilized in
medical organizations to deploy IT infrastructure, which provides a trusted authority for secure medical data
sharing [7]. The problem with this paradigm is that it requires a high level of computing and storage investment
and is limited in terms of scaling. Collaboration outside the perimeter of the domain can be inconvenient for
collaborators [8]. Data sharing that is flexible and fine-grained, however, is inefficient when using one-to-one
encryption in a public environment. Multiple ciphertexts are generated in this case in order to encrypt medical
data for each user, resulting in enormous computation and storage overheads.

As a control mechanism for outsourced medical data, Sahai and Waters [9] proposed attribute-based en-
cryption. Users can specify access policies that determine what data they are allowed to read when utilizing
key-policy attribute-based encryption (KP-ABE) [10]. According to the user’s access policy, ciphertext can be
decrypted using the key associated with it. Several studies have used attribute-based encryption primitives to
address practical issues in secure medical data sharing [11], including multi authority [12], light-weighting [13],
and anonymization [14]. In [15] presented a scalable Internet of Things device for heart disease diagnostics.
The detected data from the Internet of Things device was processed using the logistic regression approach. The
vast volume of data acquired from patients was stored and retrieved via cloud services. ROC analysis was used
to assess the efficiency of the regression models in predicting heart disease, The issue of updating user privileges
(revocation or extension) is also a popular research topic since it pertains to data sharing. It is still challenging
to change user access rights without affecting others because attribute-based encryption attributes are shared.

2.2. The Revocation Process in Attribute-Based Encryption . Bethencourt et al. [15], explained
revocation in their ciphertext-policy attribute based encryption scheme, in which each attribute is defined to
expire after a certain period of time. The solution proposed by Piretti et al. [16], was improved by a single
expiration time associated with each secret key. In these schemes, users are required to update their keys
frequently, so revocation cannot be done in a timely manner. Rather than periodic revocation, Attrapadung et
al. [17], proposed revocable attribute-based encryption that supported direct user revocation.

Secret keys are associated with attributes as well as identities in their scheme. An integrated revocation list
protects the ciphertext encrypted under its attributes so that even users with credentials matching those in the
list cannot decrypt it. In a paper published by Liang et al. [18], CP-attribute-based encryption-R schemes were
proposed. During revocation, it uses binary tree and linear secret-sharing techniques to reduce communication
and computation costs. Direct revocation, however, is limited by the predefined revocation list [19, 20, 21].
Revocation schemes that use indirect revocation [22, 23] propose updating the secret keys when revocation
occurs to address this issue. A new encryption should be applied to the old ciphertext, so that revoked users are
unable to read it. As a result, the data owner is burdened with a great deal of computation and communication
costs. Yu et al. [24] introduced an honest proxy server into their revocable attribute-based encryption scheme,
with the proxy server performing the bulk of the ciphertext and key update operations, allowing the authority
to revoke any attribute of any user. Utilizing the second scheme [25], users’ secret keys are outsourced to the
cloud server, and an essential dummy attribute is added to ciphertexts and secret keys. Users’ privacy is not
compromised by the semi-honest cloud server updating ciphertext and secret keys. Encryption/decryption rely
on the dummy attribute, so redundant computations and communications are necessary.

The majority of revocable schemes are concerned with the revocation of the identity of the user rather
than the attributes of the user, so a user who is revoked cannot utilize any of his attributes. It is possible
to decrypt ciphertext with an unrevoked user’s secret key when only a portion of their attributes have been
revoked, therefore the ciphertext can still be decrypted utilizing their secret key. Assigning users two access
trees in KP-attribute-based encryption addresses the problem of single attribute revocation by utilizing two
concrete constructions of attribute revocation. There can, however, only be one revoked attribute determined
per encryption. CP-associate-based encryptions were implemented by Cui et al [27] using key separation and
binary tree data structures to support selective revocation of attributes, and an untrusted server was introduced
to reduce the workload of users during key updates. They do, however, realize attribute-level revocation only
through a periodic key update phase, but not in a timely fashion.
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Fig. 3.1: Overall System Methodology

3. System Methodology. The wearable medical sensor nodes we deploy in nursing homes and commu-
nities for our intelligent medical applications provide benefits to the elderly. A network of gateway nodes will
convert ZigBee signals to TCP/IP simultaneously in the community, and data will be transmitted to hospitals
nearby via routers via distributed WSN. Hospitals can analyze and process feedback results from the web appli-
cation, which allows users to measure physiological items (ECG, EEG, EOG, etc.). A diagram of the network
topology can be found in Fig. 3.1. It is easy for attackers to intercept, modify, or alter physiological data
transmitted online, such as eavesdropping, forgeries, etc. To protect and ensure the privacy and security of
data sent between the source and recipient, three units are proposed:
Module 1: Data is disabled before a server session by creating a confusion matrix.
Module 2: Encryption is utilized for data transmission through WSN.
Module 3: Encrypt medical data sent so that it cannot be hacked, manipulated, or altered. The attacker

cannot translate the compressed and incomprehensible plain text into clear text even if he obtains the
encrypted data. As a result of the proposed algorithm, the feedback data from the server is guaranteed
to be valid without requiring the algorithm to be realized or verified.

3.1. Algorithm of an Extended Privacy Homomorphism. The privacy homomorphism of Rivest in
1978 is a way to manipulate encrypted data directly. The main idea of the book can be summarized as follows.

Considering K1 and K2 as encryption and decryption keys respectively, Ek1 and Dk2 stand for encrypted
and decrypted functions, and α and β are operations [28].

α(Ek1(M1), α(Ek1(M2), ..., α(Ek1(Mn)) equal to Ek1(β(M1,M2, ...,Mn))

and

Dk2(α(Ek1(M1), Ek1(M2), ..., Ek1(Mn)) equal to β(M1,M2, ...,Mn))

Hence, the algebraic system (Ek, Dk, α, β) satisfies the privacy homomorphism.
On integers, privacy homomorphism produces the best results with only two operations: addition and

subtraction. Additionally, privacy homomorphism must be extended from integer to real number, and its
operations must be expanded from addition to subtraction, multiplication, and division [29] [21].
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In the first place, fmod stands for real mode operation:

fmod(r, i) equal to

{
mod(r, i), if i ≥ 0

−mod(|r|, i), if i ≤ 0

}
(3.1)

Function fmod’s first parameter r is a real number, while its second parameter i is an integer, and its
mod is a normal mathematical mod function. The math.h head file must contain the fmod function in C ++
because it is utilized in real applications [21, 22].

3.2. Addition of Encrypted Real Numbers with Privacy Homomorphism. Homomorphism en-
cryption need only discuss the addition operation since subtraction can be shown by addition. Following is the
design of the detail encrypted algorithm:
Let a prime number p is equal to a prime number q meaning that n is the product of p and q, we get the

plaintext space.
Zp equal to {x| |x| ≤ pmax} is the set of the plaintext.
Op equal to {+p,−p, xp, ∗p, /p} is the operation set of the plain text, and system of algebra (Zp, plusp,
minusp, ∗p, /p) is creates the plaintext space [25].
Likewise, Zc equal to {x| |x| < cmax} is the set of the ciphertext, the set of the operation of the
ciphertext homomorphic.
Oc equal to {+c,−c, xc, /c}, and a system of algebra (Zc, plusc.minusc, xc, /c) contains the space of
the ciphertext.

Develop the function of the homomorphic encryption ∀x ∈ Zp, is the value of its encryption y equal to E(x) is
computed by the below formula:

y equal to E(x) equal to fmod

((x multiply sign(x) multiply rand() multiply p), n)

srand((unsigned)time NULL));

(3.2)

A signed subsection is represented by sign in the formula above.

sign(x) =

 One....., if x Greator than Zero
Zero...., if x Equal to Zero

MinusOne...., if x Less Than Zero)

 (3.3)

E(x) proves to be a monotonic, odd, and double-reflective homomorphic encrypted function. In addition
to linear transformations and similar compounds, homomorphic functions can also be defined by linear
transformations [24].

Generate Ciphertexts The Ciphertexts is generated by applying two steps. Beginning by converting the plain-
texts into integers, and then adding the two real numbers x1 and x2. The mathematical representation
of the above steps is shown below:
y1 equal to E(x1), y2 equal to E(x2) by applying formula 3.2 [29].

Condition Checking If |x1| minus p{x2| ≥ 0 | then it should ensure the |y1| minus c|y2| ≥ 0 true, else, continue
encrypting any real number until the condition is met by reversing the last step [26].

Sum Calculation Directly compute y equal to y1 plus c multiply y2, and automatically the result is also
encrypted. In reverse, the algorithm of decrypted is easy: x equal to D(y) equal to fmod(y, p).

3.3. A Proposed Modified RSA (mRSA). A public key and a private key are both required in
proposed mRSA cryptography because it makes use of asymmetric keys. A one-way system allows exclusive
use of public/private keys for encryption/ decryption. As a result, cryptographic signing cannot be utilized
for authentication. For the proposed mRSA cryptosystem, the following algorithm is utilized to generate keys
[27, 18].

1. Algorithm of Key Generation Phase:
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(a) Prime numbers are selected at random and independently p, q, r, and s should be made. All prime
numbers should be equal in length.

(b) Calculate n equal to p multiply q, m equal to r multiply s,
ϕ equal to (p minus 1) multiply (q minus 1) and
λ equal to (r minus 1) multiply (s minus 1). Select e integer, when e greator than one and less
than ϕ, gcd(e, ϕ) equal to one

(c) Calculate the exponent of the secret d, when d greater than one and less than ϕ, e x d mod ϕ equal to 1.
(d) Choose g integer, wheng equal m pluse one.
(e) Calculate the inverse of the modular multiplicative: µ equal to λ−1 mod m.
(f) Key (encryption) for public utilize: (n,m, g, e).
(g) Key (decryption) for private utilize is (d, λ, µ) [9].

2. Phase of Encryption:
(a) Let m be a message to be encrypted where mesg greator than Zero and less than n.
(b) Choose a random r where r less then m.
(c) Calculate ciphertext as: c equal to g(mesgemode n) x rm mod m2 [29].

3. Phase of Decryption:
(a) Calculate message:

m = ((
cλ mod m2 minus 1

m
) multiply µ mod m)d mod n (3.4)

3.4. Discrete Wavelet Transform (DWT) for Data Compression. In order to overcome the weak-
nesses of Discrete Cosine Transform (DCT)-based techniques, DWT are utilized [21]. DWT is mostly related
to 1D/2D DWT. In the first step, DWT can be implemented row-wise utilizing 1D-DWT). As a second option,
1D-DWT can provide four sub-bands such as Low Low (LL), Low High (LH), High Low (HL), and High High
(HH) by applying it column-wise. There are four sub-bands within each of these four bands. A number of
wavelet-based schemes have been proposed by researchers and are discussed below. Signal decomposition is
studied with the DWT. Fast Fourier Transform (FFT) differs from this because it utilizes coefficients such
as ’details’ and ’approximation’ [22]. A novel CAD method for early lung nodule detection. The volumetric
variations in the detected lesion over time are used to calculate the growth rate of the identified lung nodule.
Finding the threshold level that gives the best results requires a Graphical User Interface (GUI). Right now,
the global threshold is being utilized instead of a threshold by level, which is the most accurate method. How-
ever, due to its complexity, the global threshold is being utilized for the time being. Signal types are chosen
according to their complexity based on 1D data [23]. Hence, we will analyze which method works best with
certain signals based on the criteria listed above. All the signals (length 1024) will be compared by the Mean
Square Error (MSE), Root-Mean-Square Error (RMSE), and compression ratio. The complexity of 2D data
will determine how many images are considered [24]. There is a fixed size (resolution) for all 2D data (image).
Finally, real-life data (such as medical images) will be analyzed through a case study.

4. Personal Information Protection. Wireless sensor networks (WSNs) collect, aggregate and trans-
port physical information. The purpose of this is to maintain data confidentiality and invisibility against
hackers by utilizing privacy homeomorphisms and an mRSA-based lightweight encryption algorithm [25].

4.1. Algorithm Analysis. Compared to algorithms of a symmetric encryption RC5 and RC6, the pro-
posed encryption algorithm is more efficient. The speed of the system is demonstrated through several ex-
periments. The proposed algorithm, additionally RC6, and RC5, are utilized to encrypt 100 messages, and
costs of their time are respectively [26]. The proposed algorithm is also resistant to a variety of attacks. Due
to the ROL operation, linear and differential cryptanalysis are less effective than exhaustive attacks for our
proposal. According to the proposed algorithm, RC5 and RC6 are no more secure than each other [27]. An
exhaustive attack will be estimated in terms of computation costs. Cryptography algorithms RC5 and RC6
utilize 64-bit main keys. Hence, the key space consists of 264 elements. In practice, this is exaggerated, but
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Fig. 4.1: Encryption Algorithm Comparisons

we can assume that the attackers’ computer runs 109 instructions each minute. In other words, it will take
264/109/3600/365=14038 years to crack the plaintext of the message, exceeding the validity period of the data
[23, 28].

5. A System Model Implementation. Nodes for medical sensors are deployed on multiple wearable
devices for nursing home monitoring.

5.1. Medical Device Sensor Nodes. Sensors are used to collect patient information (ECG, EEG, pulse,
blood oxygen levels, temperatures, etc.). Various types of medical sensors can be used for a variety of applica-
tions, as described below:
Temperature probes: Temperature measurement is performed using this device.
Force sensors: A kidney dialysis machine uses this material.
Airflow sensors: Laparoscopic systems, heat pumps, etc., operate on airflow.
Pressure sensors: Sleep apnea and infusion pumps use them. Embedded systems usually integrate pressure

sensors.
Implantable pacemaker: Maintains proper cardiac rhythm with synchronized rhythmic electric pulses.
Oximeter: Measures the ratio of hemoglobin saturation to hemoglobin count.
Glucometer: Glucose concentration is approximated by this device.
Magnetometer: Determines the direction of the user by examining the earth’s magnetic field.
Heart electrical activity: is measured by an electrocardiogram sensor. ECG sensors are used for ECGs.
Heart rate sensor: Minutely heartbeats are counted.
Electroencephalogram sensor: Measures brain activity.
Electromyogram sensor: Measures muscle electrical activity.
Respiration rate sensor: Measures the number of chest rises per minute.

5.2. Node for Gateways. The ZigBee signals are converted to TCP/IP at gateway nodes in the commu-
nication, and data is sent to nearby hospitals via routers [11].

5.3. A System Testing. Sensors such as blood oxygen sensors, pulse sensors with variable speed triggers,
and temperature sensors are utilized to collect physiological data. Additionally, it ensures data transmission
accuracy and reliability. Our sensor nodes were tested in a general environment in order to prove that they are
capable of collecting accurate data. Temperature, oxygen saturation, and pulse are measured by sensor nodes.
As a comparison, hospitals utilize standard instruments. The results of this study suggest that all sensors can
be highly accurate. In order to get close to true value, we rely on a reliable data source.

Statistical analysis of the success rate and BErR of package transport is conducted in two more experiments.
According to the proposed system’s results, its success rate of transmissions (more than 0.899) and BErR (less
than 0.049) are high. Communication with nodes and gateways ensures high reliability by conveying valid
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Fig. 5.1: BErR and Success Ration of Transmission Analysis

Fig. 5.2: Data Files Encryption Runtime

Fig. 5.3: Data Files Decryption Runtime

physiological data of patients. The sampled data were divided into sixty percent for training, twenty percent
for validation, and twenty percent for testing, as shown in Figure 5.1.

By using our system interface, it is possible to compare both plaintext and ciphertext data. When an
attacker eavesdrops on the information channel, he or she can only gain cipher information, unable to crack
further due to the lack of a key. Obtaining the plaintext is possible if the attacker obtains the secret keys of
decryption through accessing memory information. Homomorphic encryption prevents attackers from gaining
any useful information about physiological data since they only obtain a confusing matrix.
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Table 5.1: Encryption runtime of data files

File(MB) RC5 (in sec) RSA (in sec)
0.2 1.6 1.1
0.6 1.9 1.6
0.85 4.3 3.6
1.1 4.9 4.1

Average time 12.7 10.4
Throughput(MB/sec) 1.6 2

Table 5.2: Decryption runtime of data file

File(MB) RC5 (in sec) RSA (in sec)
0.2 1.6 1.1
0.6 2.1 1.6
0.85 2.6 2.1
1.1 3.6 3.1

Average time 9.9 7.9
Throughput(MB/sec) 1.6 2

Table 5.3: CR and PRD for 1D data and 2D data

Thresholding
1D Data 2D Data

CR PRD
1st Tier 2nd Tier 3rd Tier 1st Tier 2nd Tier 3rd Tier

10.87 52.27 79.42 1.576 3.11 16.45

Table 5.1 shows the encryption runtime of data files.
Table 5.2 shows the decryption runtime of data files.
Table 5.3 shows the CR and PRD for 1D data and 2D data.

6. Conclusion. Due to the rapid development of IoMT and WSNs, as well as our focus on privacy
protection, we can expect that our medical healthcare scheme will have a wide scope of applications. A
prototype system that proved it to be functional was created, where an encryption algorithm using a Modified
RSA (mRSA), a compression technique using DWT, and a homomorphic strategy for data security and privacy
protection have been proposed based on a scrambling matrix. Through values readings of compression ration
and accuracy) (CR=79.42, and PRD=1.576) they are proving to be a more efficient algorithm. The proposed
mRSA cannot be broken by guessing only the private key The LIDC dataset is obtained, pre-processed, and
segmented to train and choose pre-trained deep learning models. As a result, we can conclude that mRSA is
more secure in terms of brute force attacks, where the findings mention that the proposed mRSA algorithm
becomes more secure against mathematical attacks due to improvements in security. Despite the abundance of
sensor nodes, some problems remain unresolved, such as the lack of secure key management. These issues will
be taken into consideration in the future.
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