
S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 1�8. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSTHE GRIDWAY FRAMEWORK FOR ADAPTIVE SCHEDULING AND EXECUTION ONGRIDS∗EDUARDO HUEDO† , RUBÉN S. MONTERO‡ , AND IGNACIO M. LLORENTE§Abstra
t.Many resear
h and engineering �elds, like Bioinformati
s or Parti
le Physi
s, are 
on�dent about the development of Gridte
hnologies to provide the huge amounts of 
omputational and storage resour
es they require. Although several proje
ts areworking on 
reating a reliable infrastru
ture 
onsisting of persistent resour
es and servi
es, the truth is that the Grid will be amore and more dynami
 entity as it grows. In this paper, we present a new tool that hides the 
omplexity and dynami
ity of theGrid from developers and users, allowing the resolution of large 
omputational experiments in a Grid environment by adapting thes
heduling and exe
ution of jobs to the 
hanging Grid 
onditions and appli
ation dynami
 demands.Key words. grid te
hnology, bioinformati
s, adaptive s
heduling, adaptive exe
ution.1. Introdu
tion. Grid environments inherently present the following 
hara
teristi
s [6℄: multiple admin-istration domains, heterogeneity, s
alability, and dynami
ity or adaptability. These 
hara
teristi
s 
ompletelydetermine the way s
heduling and exe
ution on Grids have to be done. For example, s
alability and multipleadministration domains prevent the deployment of 
entralized resour
e brokers, with total 
ontrol over 
lientrequests and resour
e status. On the other hand, the dynami
 resour
e 
hara
teristi
s in terms of availability,
apa
ity and 
ost, make essential the ability to adapt job exe
ution to these 
onditions.Moreover, the emerging of Grid te
hnology has led to a new generation of appli
ations that relies onits own ability to adapt its exe
ution to 
hanging 
onditions [5℄. These new self-adapting appli
ations takede
isions about resour
e sele
tion as their exe
ution evolves, and provide their own performan
e a
tivity todete
t performan
e slowdown. Therefore self-adapting appli
ations 
an guide their own s
heduling.To deal with the dynami
ity of the Grid and the adaptability of the appli
ations two te
hniques has beenproposed in the literature, namely:1. Adaptive s
heduling, to allo
ate pending jobs to grid resour
es 
onsidering the available resour
es, their
urrent status, and the already submitted jobs.2. Adaptive exe
ution, to migrate running jobs to more suitable resour
es based on events dynami
allygenerated by both the Grid and the appli
ation.The AppLeS [9℄ proje
t has previously dealt with the 
on
ept of adaptive s
heduling. AppLeS is 
urrentlyfo
used on de�ning templates for 
hara
teristi
 appli
ations, like APST for parameter sweep and AMWAT formaster/worker appli
ations. Also, the Nimrod/G [10℄ resour
e broker dynami
ally optimizes the s
hedule tomeet user-de�ned deadline and budget 
onstraints. On the other hand, the need of a nomadi
 migration [14℄approa
h for adaptive exe
ution on a Grid environment has been previously dis
ussed in the 
ontext of theGrADS [8℄ proje
t.In the following se
tions, we �rst explain the need for an adaptive s
heduling and exe
ution of jobs due to thedynami
ity of both the Grid and the appli
ation demands. Then, in Se
tion 3, we show a Grid-aware appli
ationmodel. In Se
tion 4, we present how the GridW ay framework provides support for adaptive s
heduling andexe
ution. In Se
tion 5, we show some results obtained in the UCM-CAB resear
h testbed with a Bioinformati
sappli
ation. Finally, in Se
tion 6, we provide some 
on
lusions and hints about our future work.2. Adaptive S
heduling and Exe
ution. Grid s
heduling or supers
heduling [11℄, has been de�ned inthe literature as the pro
ess of s
heduling resour
es over multiple administrative domains based upon a de�nedpoli
y in terms of job requirements, system throughput, appli
ation performan
e, budget 
onstraints, deadlines,
∗This resear
h was supported by Ministerio de Cien
ia y Te
nología (resear
h grant TIC 2003-01321) and Instituto Na
ional deTé
ni
a Aeroespa
ial (INTA).
† Laboratorio de Computa
ión Avanzada, Centro de Astrobiología (CSIC-INTA), 28850 Torrejón de Ardoz, Spain(huedo
e�inta.es).
‡ Departamento de Arquite
tura de Computadores y Automáti
a, Universidad Complutense, 28040 Madrid, Spain(rubensm�da
ya.u
m.es).
§ Departamento de Arquite
tura de Computadores y Automáti
a, Universidad Complutense, 28040 Madrid, Spain(llorente�da
ya.u
m.es) & Laboratorio de Computa
ión Avanzada, Centro de Astrobiología (CSIC-INTA), 28850 Torrejón deArdoz, Spain (martinli�inta.es). 1



2 Eduardo Huedo, Rubén S. Montero and Igna
io M. Llorenteet
. In general, this pro
ess in
ludes the following phases: resour
e dis
overy and sele
tion; and job preparation,submission, monitoring, migration and termination [18℄.Adaptive s
heduling is the �rst step to deal with the dynami
ity of the Grid. The s
hedule is re-evaluatedperiodi
ally based on the available resour
es and their 
urrent 
hara
teristi
s, pending jobs, running jobs andhistory pro�le of 
ompleted jobs. Several proje
ts [9, 10℄ have 
learly demonstrated that periodi
 re-evaluationof the s
hedule in order to adapt it to the 
hanging 
onditions, 
an result in signi�
ant improvements in bothperforman
e and fault toleran
e.In the 
ase of adaptive exe
ution, job migration is the key issue [15℄. In order to obtain a reasonable degreeof both appli
ation performan
e and fault toleran
e, a job must be able to migrate among the Grid resour
esadapting itself to the resour
e availability, load (or 
apa
ity) and 
ost; and to the appli
ation dynami
 demands.Consequently, the following migration 
ir
umstan
es, related to the 
hanging 
onditions and self-adaptingfeatures both dis
ussed in Se
tion 1, should be 
onsidered in a Grid environment:1. Grid-initiated migration:
• A �better� resour
e is dis
overed (opportunisti
 migration [16℄).
• The remote resour
e or its network 
onne
tion fails (failover migration).
• The submitted job is 
an
eled or suspended.2. Appli
ation-initiated migration:
• Performan
e degradation or performan
e 
ontra
t violation is dete
ted in terms of appli
ationintrinsi
 metri
s.
• The resour
e demands of the appli
ation 
hange (self-migration).The fundamental aspe
t of adaptive exe
ution is the re
ognition of 
hanging 
onditions of both Grid re-sour
es and appli
ation demands. In order to a
hieve su
h fun
tionality, we propose a Grid-aware appli
ationmodel, whi
h in
ludes self-adapting fun
tionality, and a submission agent that provides the runtime me
hanismsneeded to adapt the exe
ution of the appli
ation. The appli
ation must be equipped with the fun
tionalityneeded to support the appli
ation-initiated migration 
ir
umstan
es, while the agent is 
ontinuously wat
hingthe o

urren
e of the Grid- and appli
ation-initiated migration 
ir
umstan
es.3. Appli
ation Model for Self-Adapting Appli
ations. The standard appli
ation model requiresmodi�
ations to be Grid-aware. In the following list (see �gure 3.1) we detail the extension of the 
lassi-
al appli
ation paradigm in order to take advantage of the Grid 
apabilities and to be aware of its dynami

onditions:

• A requirement expression is ne
essary to spe
ify the appli
ation requirements that must be met bythe target resour
es. This �le 
an be subsequently updated by the appli
ation to adapt its exe
utionto its dynami
 demands. The appli
ation 
ould de�ne an initial set of requirements and dynami
ally
hange them when more, or even less, resour
es are required.
• A ranking expression is ne
essary to dynami
ally assign a rank to ea
h resour
e, in order to prioritizethe resour
es that ful�ll the requirements a

ording to the appli
ation runtime needs. A 
ompute-intensive appli
ation would assign a higher rank to those hosts with faster pro
essors and lower load,while a data-intensive appli
ation 
ould bene�t those hosts 
loser to the input data [16℄.
• A performan
e profile is advisable to keep the appli
ation performan
e a
tivity in terms of appli-
ation intrinsi
 metri
s, in order to dete
t performan
e slowdown. For example, it 
ould maintain thetime 
onsumed by the 
ode in the exe
ution of a set of given fragments, in ea
h 
y
le of an iterativemethod or in a set of given input/output operations.Due to the high fault rate and the dynami
 res
heduling, restart files are highly advisable. Migration is
ommonly implemented by restarting the job on the new 
andidate host, so the job should generate restart �lesat regular intervals in order to restart exe
ution from a given point. However, for some appli
ation domainsthe 
ost of generating and transferring restart �les 
ould be greater than the saving in 
ompute time due to
he
kpointing. Hen
e, if the 
he
kpointing �les are not provided the job should be restarted from the beginning.User-level 
he
kpointing managed by the programmer must be implemented be
ause system-level 
he
kpointingis not possible among heterogeneous resour
es.The appli
ation sour
e 
ode does not have to be modi�ed if the appli
ation is not required to be self-adaptive.However, our infrastru
ture requires 
hanging the sour
e 
ode or inserting instrumentation instru
tions in
ompiled 
ode when the appli
ation takes de
isions about resour
e sele
tion and provides its own performan
ea
tivity.



The GridWay Framework for Adaptive S
heduling and Exe
ution on Grids 3
Input Files

Input Files

RESOURCE
SELECTOR

Input Files

Std. Input

Std. Output

Std. Error

Restart File

APPLICATION

Output Files

Performance
Profile

Rank
Expression

Resource
Requirements

PERFORMANCE
DEGRADATION

EVALUATOR

Fig. 3.1. Model for self-adapting appli
ations.With self-adapting 
apabilities, an appli
ation 
ould initially de�ne a minimal set of requirements and, afterit begins to run, it 
an 
hange them to a more restri
ted set. In this way, the appli
ation will have more 
han
esto �nd a resour
e to run on, and on
e running, it will migrate only if the 
andidate resour
e worths it.Note also that if the appli
ation is divided in several phases, ea
h one with di�erent requirements, it 
ould
hange them progressively to be more or less restri
tive. In this way, the appli
ation does not have to imposethe most restri
ted set of requirements at the beginning, sin
e it limits the 
han
e for the appli
ation to beginexe
ution (see Se
tion 5.3.2). Moreover, the appli
ation have the 
hoi
e to make the requirement 
hange optionalor mandatory, i.e. it 
an 
he
k if the 
urrent resour
e meets the new requirements, otherwise it may request a(self-)migration.4. GridW ay Support for Adaptive S
heduling and Exe
ution. GridW ay is a new experimentalframework based on Globus [4℄ that allows an easier and more e�
ient exe
ution of jobs on a dynami
 Gridenvironment in a �submit and forget� fashion. The 
ore of the GridW ay framework [13℄ is a personal submissionagent that performs all the s
heduling stages [18℄ and wat
hes over the 
orre
t and e�
ient exe
ution of jobs.Adaptation to 
hanging 
onditions is a
hieved by dynami
 res
heduling: on
e the job is initially allo
ated, it isres
heduled when a migration 
ir
umstan
e (dis
ussed in Se
tion 2) is dete
ted.Job exe
ution is performed in three stages by the following modules, whi
h 
an be de�ned on a per jobbasis:
• The prolog module, whi
h prepares the remote system and stages the input �les.
• The wrapper module, whi
h exe
utes the a
tual job and returns its exit 
ode.
• The epilog module, whi
h stages the output �les and 
leans up the remote system.Migration is performed by 
ombining the above stages. First, the wrapper is 
an
eled (if it is still running),then the prolog is submitted to the new 
andidate resour
e, preparing it and transferring to it all the needed�les, in
luding the restart files from the old resour
e. After that, the epilog is submitted to the old resour
e(if it is still available), but no output �le staging is performed, it only 
leans up the remote system. Finally, thewrapper is submitted to the new 
andidate resour
e.The submission agent uses the following modules, whi
h also 
an be de�ned on a per job basis, to providethe appli
ation with the support needed for implementing self-adapting fun
tionality:
• The resour
e sele
tor module, whi
h evaluates the requirement and ranking expressions when thejob has to be s
heduled or res
heduled. Di�erent strategies for resour
e sele
tion 
an be implemented,from the simplest one based on a pre-de�ned list of hosts to more advan
ed strategies based on require-ment �ltering, and resour
e ranking in terms of performan
e models.
• The performan
e evaluator module, whi
h periodi
ally evaluates the appli
ation'sperforman
e profile in order to dete
t performan
e slowdown and so request a res
heduling a
tion.



4 Eduardo Huedo, Rubén S. Montero and Igna
io M. LlorenteDi�erent strategies 
ould be implemented, from the simplest one based on querying the Grid infor-mation servi
es about system status information to more advan
ed strategies based on dete
tion ofperforman
e 
ontra
t violations.The submission agent also provides the appli
ation with the fault toleran
e 
apabilities needed in su
h afaulty environment:
• The GRAM [1℄ job manager noti�es submission failures as GRAM 
allba
ks. This kind of failuresin
ludes, among others, 
onne
tion, authenti
ation, authorization, RSL parsing, exe
utable or inputstaging, 
redential expiration. . .
• The job manager is probed periodi
ally at ea
h polling interval. If the job manager does not respond,the GRAM gatekeeper is probed. If the gatekeeper responds, a new job manager is started to resumewat
hing over the job. If the gatekeeper fails to respond, a resour
e or network o

urred. This is theapproa
h followed by Condor-G [12℄.
• The standard output of prolog, wrapper and epilog is parsed in order to dete
t failures. In the 
ase ofthe wrapper, this is useful to 
apture the job exit 
ode, whi
h is used to determine whether the job wassu

essfully exe
uted or not. If the job exit 
ode is not set, the job was prematurely terminated, so itfailed or was intentionally 
an
eled.When an unre
overable failure is dete
ted, the submission agent retries the submission of prolog, wrapperor epilog a number of times spe
i�ed by the user and, when no more retries are left, it performs an a
tion 
hosenby the user among two possibilities: stop the job for manually resuming it later, or automati
ally res
hedule it.We have developed both an API (subset of the DRMAA [17℄ standard proposed in the GGF [3℄) and a
ommand line interfa
e to intera
t with the submission agent. They allow s
ientists and engineers to expresstheir 
omputational problems in a Grid environment. The 
apture of the remote exe
ution exit 
ode allow usersto de�ne 
omplex jobs, where ea
h depends on the output and exit 
ode from the previous job. They may eveninvolve bran
hing, looping and spawning of subtasks, allowing the exploitation of the parallelism on the work�ow of 
ertain type of appli
ations.Our framework is not bounded to a spe
i�
 
lass of appli
ations, does not require new servi
es, and doesnot ne
essarily require sour
e 
ode 
hanges. The framework is 
urrently fun
tional on any Grid testbed basedon Globus. We believe that is an important advantage be
ause of so
io-politi
al issues: 
ooperation betweendi�erent organizations, administrators, and users 
an be very di�
ult.5. Experien
es.5.1. The Target Appli
ation. We have tested our tool with a Bioinformati
s appli
ation aimed atpredi
ting the stru
ture and thermodynami
 properties of a target protein from its amino a
id sequen
es.The algorithm, tested in the 5th round of Criti
al Assessment of te
hniques for protein Stru
ture Predi
tion(CASP5), aligns with gaps the target sequen
e with all the 6150 non-redundant stru
tures in the Protein DataBank (PDB), and evaluates the mat
h between sequen
e and stru
ture based on a simpli�ed free energy fun
tionplus a gap penalty term. The lowest s
oring alignment found is regarded as the predi
tion if it satis�es somequality requirements. For ea
h sequen
e-stru
ture pair, the sear
h of the optimal alignment is not exhaustive.A large number of alignments are 
onstru
ted in parallel through a semi-deterministi
 algorithm, whi
h tries tominimize the s
oring fun
tion.To speed up the analysis and redu
e the data needed, the PDB �les are prepro
essed to extra
t the 
onta
tmatri
es, whi
h provide a redu
ed representation of protein stru
tures. The algorithm is then applied twi
e, the�rst time as a fast sear
h, in order to sele
t the 100 best 
andidate stru
tures, the se
ond time with parametersallowing a more a

urate sear
h of the optimal alignment.We have applied the algorithm to the predi
tion of thermodynami
 properties of families of orthologousproteins, i.e. proteins performing the same fun
tion in di�erent organisms. If a representative stru
ture of thisset is known, the algorithm predi
ts it as the 
orre
t stru
ture. The biologi
al results of the 
omparative studyof several proteins are presented elsewhere [19, 7℄.5.2. Experiment Preparation. We have modi�ed the appli
ation to provide a restart file and aperforman
e profile. The ar
hite
ture independent restart file stores the best 
andidate proteins foundto that moment and the next protein in the PDB to analyze. The performan
e profile stores the timespent on ea
h iteration of the algorithm, where an iteration 
onsists in the analysis of a given number ofsequen
es.



The GridWay Framework for Adaptive S
heduling and Exe
ution on Grids 5Table 5.1The UCM-CAB resear
h testbed.Name Ar
hite
ture OS Speed Memory Job mgr. VOursa 1×UltraSPARC-IIe Solaris 500MHz 256MB fork UCMdra
o 1×UltraSPARC-I Solaris 167MHz 128MB fork UCMpegasus 1×Pentium 4 Linux 2.4GHz 1GB fork UCMsolea 2×UltraSPARC-II Solaris 296MHz 256MB fork UCMbabie
a 5×Alpha EV6 Linux 466MHz 256MB PBS CABInitially, the appli
ation does not impose any requirement to the resour
es, so the requirement expressionis null. The ranking expression uses a performan
e model to estimate the job turnaround time as the sumof exe
ution and transfer time, derived from the performan
e and proximity of the 
andidate resour
es [16℄.The resour
e sele
tor 
onsists of a shell s
ript that queries the MDS [2℄ for potential exe
ution hosts.Initially, available 
ompute resour
es are dis
overed by a

essing the GIIS server and those resour
es that donot meet the user-provided requirements are �ltered out. At this step, an authorization test (via GRAM pingrequest) is performed on ea
h dis
overed hosts to guarantee user a

ess. Then, the resour
e is monitored togather its dynami
 status by a

essing its lo
al GRIS server. This information is used to assign a rank toea
h 
andidate resour
e based on user-provided preferen
es. Finally, the resultant prioritized list of 
andidateresour
es is used to dispat
h the jobs.In order to redu
e the information retrieval overhead, the GIIS and GRIS information is lo
ally 
a
hed atthe 
lient host and updated independently in order to separately determine how often the testbed is sear
hedfor new resour
es and the frequen
y of resour
e monitoring. In the following experiments we set the GIIS 
a
hetimeout to 5 minutes and the GRIS 
a
he timeout to 30 se
onds.The performan
e evaluator is another shell s
ript that parses the performan
e profile and dete
ts per-forman
e slowdown when the last iteration time is greater than a given threshold.The whole experiment was submitted as an array job, where ea
h sequen
e was analyzed in a separate taskof the array, spe
ifying all the needed information in a job template �le.The experiment �les 
onsists of: the exe
utable (0.5MB) provided for all the resour
e ar
hite
tures in thetestbed, the PDB �les shared and 
ompressed (12.2MB) to redu
e the transfer time, the parameter �les (1KB),and the �le with the sequen
e to be analyzed (1KB). The �nal �le name of the exe
utable and the �le withthe sequen
e to be analyzed is obtained by resolving the variables GW_ARCH and GW_TASK_ID, respe
tively, atruntime for the 
urrent host and job. Input �les 
an be lo
al or remote (spe
i�ed as a GASS o GridFTP URL),and both 
an be 
ompressed (to be un
ompressed on the sele
ted host) and de
lared as shared (then stored inthe GASS 
a
he and shared by all the jobs submitted to this resour
e).5.3. Results on the UCM-CAB Testbed. We have performed the experiments in the UCM-CABresear
h testbed, whi
h is summarized in table 5.1.5.3.1. Dete
tion of a Performan
e Degradation. Let us �rst 
onsider an experiment 
onsisting in�ve tasks, ea
h of them applies the stru
ture predi
tion algorithm to a di�erent sequen
e of the ATP Synthaseenzyme (epsilon 
hain) present in di�erent organisms. Shortly after submitting the experiment, pegasus wasoverloaded with a 
ompute-intensive appli
ation.Figure 5.1 shows the exe
ution pro�le in this situation, along with the load in pegasus that 
aused theperforman
e degradation, and the progress of job 0, obtained from its performan
e profile. Initially fourtasks are allo
ated to babie
a and one to pegasus. When the performan
e evaluator dete
ts the performan
edegradation, it requests a job migration. Sin
e there is a slot available in babie
a, the job is migrated to italthough it presents lower performan
e. In spite of the overhead indu
ed by job migration, 6% of the totalexe
ution time, job 0 ends before the rest of jobs, be
ause of the better performan
e o�ered by pegasus beforeit be
ame saturated.5.3.2. Mandatory Change in Resour
e Requirements. In the following experiment, we have ap-plied the stru
ture predi
tion algorithm to �ve sequen
es of the Triosephosfate Isomerase enzyme, whi
h is
onsiderably larger than the previous one, present in di�erent organisms.



6 Eduardo Huedo, Rubén S. Montero and Igna
io M. Llorente

Fig. 5.1. Exe
ution pro�le (top), load in pegasus (middle), and progress of job 0 (bottom) when a performan
e degradationis dete
ted.As mentioned in Se
tion 5.1, the target appli
ation is divided in two di�erent phases. First, a fair analysisis performed to get the 100 best 
andidate proteins, and then, a more exhaustive analysis is performed to getthe 20 best 
andidate proteins from the 100 obtained in the �rst phase. As the se
ond phase analysis performsa more a

urate sequen
e alignment and the target sequen
e is quite large, it needs more memory than the �rstphase analysis. Therefore, the appli
ation 
hange its resour
e requirements before starting the se
ond phase toassure that it has enough memory (512MB). The only resour
e that meets the requirements of the se
ond phaseis pegasus.Figure 5.2 shows the exe
ution pro�le in this situation. Job 0 starts exe
ution on pegasus, while jobs 1 to4 start exe
ution on babie
a. When job 0 
ompletes its exe
ution, job 1 dete
ts that pegasus has be
ome freeand migrates to it, sin
e it presents a better rank (opportunisti
 job migration). After that, jobs 2 to 4 requesta self-migration as they have 
hanged their requirements to 
omplete the se
ond phase of the protein analysisand babie
a doesn't meet them. Jobs 0 and 1 also 
hanged their requirements before, but its exe
ution hostin that moment (pegasus) met them, so they 
ould 
ontinue with their exe
ution. As pegasus is busy with job1, jobs 2 to 4 have to wait until it be
omes available. These jobs are submitted 
onse
utively to pegasus (see�gure 5.2) to 
omplete the se
ond phase of the protein analysis.6. Con
lusions. We have shown an e�e
tive way for providing adaptive s
heduling and exe
ution onGrids. The presented framework does not ne
essarily require sour
e 
ode 
hanges in the appli
ations, but withminimal 
hanges, appli
ations 
ould bene�t from the self-adapting features also provided.On the s
ope of the target appli
ation, these promising experiments show the potentiality of the Grid tothe study of large numbers of protein sequen
es, and suggests the possible appli
ation of this methods to thewhole set of proteins in a 
omplete mi
robial genome.



The GridWay Framework for Adaptive S
heduling and Exe
ution on Grids 7

Fig. 5.2. Exe
ution pro�le when a mandatory 
hange in resour
e requirements o

urs.We are 
urrently working on a storage resour
e sele
tor module to provide support for repli
a �les, spe
i�edas a logi
al �le or as a �le belonging to a logi
al 
olle
tion. In this way the PDB �les holding the proteinstru
tures, will be s
attered on the Grid testbed. The dis
overy pro
ess is performed by a

essing the GlobusRepli
a Catalog. The resour
e sele
tion is based on the proximity between the sele
ted 
ompute resour
e andthe 
andidate storage resour
es, along with the values gathered from the MDS GRIS.A
knowledgments. We would like to thank Ugo Bastolla, sta� s
ientist at the Centro de Astrobiologíaand developer of the Bioinformati
s appli
ation used in the experiments, for his support on understanding andmodifying the appli
ation. REFERENCES[1℄ Globus Resour
e Allo
ation Manager. http://www.globus.org/gram.[2℄ Monitoring and Dis
overy Servi
e. http://www.globus.org/mds.[3℄ The Global Grid Forum. http://www.gridforum.org.[4℄ The Globus Proje
t. http://www.globus.org.[5℄ G. Allen, E. Seidel, and J. Shalf, S
ienti�
 Computing on the Grid, Byte, Spring 2002 (2002), pp. 24�32.[6℄ M. Baker, R. Buyya, and D. Laforenza, Grids and Grid Te
hnologies for Wide-Area Distributed Computing, Intl. J. ofSoftware: Pra
ti
e and Experien
e (SPE), 32 (2002), pp. 1437�1466.[7℄ U. Bastolla et al., Redu
ed Protein Folding E�
ien
y, Genome Redu
tion and AT Bias in Obligatory Intra
ellularBa
teria: An Integrated View, (2003). (preprint).[8℄ F. Berman et al., The GrADS Proje
t: Software Support for High-Level Grid Appli
ation Development, Intl. J. of HighPerforman
e Computing Appli
ations, 15 (2001), pp. 327�34.[9℄ , Adaptive Computing on the Grid Using AppLeS, IEEE Transa
tions on Parallel and Distributed Systems, 14 (2003),pp. 369�382.[10℄ R. Buyya, D.Abramson, and J. Giddy, A Computational E
onomy for Grid Computing and its Implementation in theNimrod-G Resour
e Broker, Future Generation Computer Systems, 18 (2002), pp. 1061�1074.[11℄ I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastru
ture, Morgan-Kaufman, 1999.[12℄ J. Frey et al., Condor/G: A Computation Management Agent for Multi-Institutional Grids, in Pro
. of the 10th Symp.on High Performan
e Distributed Computing (HPDC10), 2001.[13℄ E. Huedo, R. S. Montero, and I. M. Llorente, A Framework for Adaptive Exe
ution on Grids, Intl. J. of Software �Pra
ti
e and Experien
e, (2004). (in press).[14℄ G. Lanfermann et al., Nomadi
 Migration: A New Tool for Dynami
 Grid Computing, in Pro
. of the 10th Symp. onHigh Performan
e Distributed Computing (HPDC10), 2001.[15℄ R. S. Montero, E. Huedo, and I. M. Llorente, Experien
es about Job Migration on a Dynami
 Grid Environment, inPro
. of Intl. Conf. on Parallel Computing (ParCo 2003), September 2003.[16℄ , Grid Resour
e Sele
tion for Opportunisti
 Job Migration, in Pro
. of Intl. Conf. on Parallel and Distributed Computing(Euro-Par 2003), vol. 2790 of Le
ture Notes on Computer S
ien
e, August 2003, pp. 366�373.



8 Eduardo Huedo, Rubén S. Montero and Igna
io M. Llorente[17℄ H. Raji
 et al., Distributed Resour
e Management Appli
ation API Spe
i�
ation 1.0, te
h. rep., The Global Grid Forum,2003. DRMAA Working Group.[18℄ J. M. S
hopf, Ten A
tions when Supers
heduling, Te
h. Rep. GFD-I.4, The Global Grid Forum: S
heduling Working Group,2001.[19℄ R. van Ham et al., Redu
tive Genome Evolution in bu
hnera aphidi
ola, Pro
. Natl. A
ad. S
i. USA, 100 (2003), pp. 581�586.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 3, 2003.A

epted: September 1, 2003.


