
S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 19�32. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSSATIN: SIMPLE AND EFFICIENT JAVA-BASED GRID PROGRAMMINGROB V. VAN NIEUWPOORT, JASON MAASSEN, THILO KIELMANN, HENRI E. BAL∗Abstra
t. Grid programming environments need to be both portable and e�
ient to exploit the
omputational power ofdynami
ally available resour
es. In previous work, we have presented the divide-and-
onquer based Satin model for parallel
omputing on
lustered wide-area systems. In this paper, we present the Satin implementation on top of our new Ibis platform whi
h
ombines Java's write on
e, run everywhere with e�
ient
ommuni
ation between JVMs. We evaluate Satin/Ibis on the testbedof the EU-funded GridLab proje
t, showing that Satin's load-balan
ing algorithm automati
ally adapts both to heterogeneouspro
essor speeds and varying network performan
e, resulting in e�
ient utilization of the
omputing resour
es. Our results showthat when the wide-area links su�er from
ongestion, Satin's load-balan
ing algorithm
an still a
hieve around 80% e�
ien
y, whilean algorithm that is not grid aware drops to 26% or less.Key words. Satin, Ibis, divide-and-
onquer, load balan
ing, distributed super
omputing.1. Introdu
tion. In
omputational grids, appli
ations need to simultaneously tap the
omputationalpower of multiple, dynami
ally available sites. The
rux of designing grid programming environments stems ex-a
tly from the dynami
 availability of
ompute
y
les: grid programming environments need to be both portableto run on as many sites as possible, and they need to be �exible to
ope with di�erent network proto
ols anddynami
ally
hanging groups of heterogeneous
ompute nodes.Existing programming environments are either portable and �exible (Jini, Java RMI), or they are highlye�
ient (MPI). The Global Grid Forum also has investigated possible grid programming models [19℄. Re
ently,GridRPC has been proposed as a grid programming model [30℄. GridRPC allows writing grid appli
ationsbased on the manager/worker paradigm.Unlike manager/worker programs, divide-and-
onquer algorithms operate by re
ursively dividing a probleminto smaller subproblems. This re
ursive subdivision goes on until the remaining subproblem be
omes trivial tosolve. After solving subproblems, their results are re
ursively re
ombined until the �nal solution is assembled.By allowing subproblems to be divided re
ursively, the
lass of divide-and-
onquer algorithms subsumes themanager/worker algorithms, thus enlarging the set of possible grid appli
ations.Of
ourse, there are many kinds of appli
ations that do not lend themselves well to a divide-and-
onqueralgorithm. However, we (and others) believe the
lass of divide-and-
onquer algorithms to be su�
iently large tojustify its deployment for hierar
hi
al wide-area systems. Computations that use the divide-and-
onquer modelin
lude geometry pro
edures, sorting methods, sear
h algorithms, data
lassi�
ation
odes, n-body simulationsand data-parallel numeri
al programs [33℄.Divide-and-
onquer appli
ations may be parallelized by letting di�erent pro
essors solve di�erent subprob-lems. These subproblems are often
alled jobs in this
ontext. Generated jobs are transferred between pro
essorsto balan
e the load in the
omputation. The divide-and-
onquer model lends itself well to hierar
hi
ally-stru
tured systems be
ause tasks are
reated by re
ursive subdivision. This leads to a task graph that ishierar
hi
ally stru
tured, and whi
h
an be exe
uted with ex
ellent
ommuni
ation lo
ality, espe
ially on hier-ar
hi
al platforms.In previous work [26℄, we presented our Satin system for divide-and-
onquer programming on grid platforms.Satin implements a very e�
ient load balan
ing algorithm for
lustered, wide-area platforms. So far, we
ouldonly evaluate Satin based on simulations in whi
h all jobs have been exe
uted on one single, homogeneous
luster. In this work, we evaluate Satin on a real grid testbed [2℄,
onsisting of various heterogeneous systems,
onne
ted by the Internet.In Se
tion 2, we brie�y present Satin's programming model and some simulator-based results that indi
atethe suitability of Satin as a grid programming environment. In Se
tion 3, we present Ibis, our new Java-basedgrid programming platform that
ombines Java's �run everywhere� paradigm with highly e�
ient yet �exible
ommuni
ation me
hanisms. In Se
tion 4, we evaluate the performan
e of Satin on top of Ibis in the GridLabtestbed, spanning several sites in Europe. Se
tion 5 dis
usses related work, and in Se
tion 6 we draw
on
lusions.
∗Dept. of Computer S
ien
e, Vrije Universiteit, Amsterdam, The Netherlands, {rob,jason,kielmann,bal}�
s.vu.nlhttp://www.
s.vu.nl/ibis 19

20 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal2. Divide-and Conquer in Satin. Satin's programming model is an extension of the single-threadedJava model. To a
hieve parallel exe
ution, Satin programs do not have to use Java's threads or RemoteMethod Invo
ations (RMI). Instead, they use mu
h simpler divide-and-
onquer primitives. Satin does allowthe
ombination of its divide-and-
onquer primitives with Java threads and RMIs. Additionally, Satin providesshared obje
ts via RepMI. In this paper, however, we fo
us on pure divide-and-
onquer programs.interfa
e FibInte r extends s a t i n . Spawnable {publi
 long f i b (long n) ;}
lass Fib extends s a t i n . Sat inObje
timplements FibInte r {publi
 long f i b (long n) {i f (n < 2) return n ;long x = f i b (n−1); // spawnedlong y = f i b (n−2); // spawnedsyn
 () ;return x + y ;}publi
 stat i
 void main (St r ing [℄ a rg s) {Fib f = new Fib () ;long r e s = f . f i b (1 0) ;f . syn
 () ;System . out . p r i n t l n ("Fib 10 = " + re s) ;}} Fig. 2.1. Fib: an example divide-and-
onquer program in Satin.Satin expresses divide-and-
onquer parallelism entirely in the Java language itself, without requiring anynew language
onstru
ts. Satin uses so-
alledmarker interfa
es to indi
ate that
ertain method invo
ations needto be
onsidered for potentially parallel (so
alled spawned) exe
ution, rather than being exe
uted syn
hronouslylike normal methods. Furthermore, a me
hanism is needed to syn
hronize with (wait for the results of) spawnedmethod invo
ations. With Satin, this
an be expressed using a spe
ial interfa
e, satin.Spawnable, and the
lasssatin.SatinObje
t. This is shown in Fig. 2.1, using the example of a
lass Fib for
omputing the Fibona

inumbers. First, an interfa
e FibInter is implemented whi
h extends satin.Spawnable. All methods de�ned inthis interfa
e (here �b) are marked to be spawned rather than exe
uted normally. Se
ond, the
lass Fib extendssatin.SatinObje
t and implements FibInter. From satin.SatinObje
t it inherits the syn
 method, from FibInter thespawned �b method. Finally, the invoking method (in this
ase main) simply
alls Fib and uses syn
 to wait forthe result of the parallel
omputation.Satin's byte
ode rewriter generates the ne
essary
ode. Con
eptually, a new thread is started for runninga spawned method upon invo
ation. Satin's implementation, however, eliminates thread
reation altogether. Aspawned method invo
ation is put into a lo
al work queue. From the queue, the method might be transferredto a di�erent CPU where it may run
on
urrently with the method that exe
uted the spawned method. Thesyn
 method waits until all spawned
alls in the
urrent method invo
ation are �nished; the return values ofspawned method invo
ations are unde�ned until a syn
 is rea
hed.Spawned method invo
ations are distributed a
ross the pro
essors of a parallel Satin program by workstealing from the work queues mentioned above. In [26℄, we presented a new work stealing algorithm, Cluster-aware Random Stealing (CRS), spe
i�
ally designed for
luster-based, wide-area (grid
omputing) systems. CRSis based on the traditional Random Stealing (RS) algorithm that has been proven to be optimal for homogeneous(single
luster) systems [8℄. We brie�y des
ribe both algorithms in turn.2.1. Random Stealing (RS). RS attempts to steal a job from a randomly sele
ted peer when a pro
essor�nds its own work queue empty, repeating steal attempts until it su

eeds [8, 33℄. This approa
h minimizes
ommuni
ation overhead at the expense of idle time. No
ommuni
ation is performed until a node be
omesidle, but then it has to wait for a new job to arrive. On a single-
luster system, RS is the best performing

Satin: Simple and E�
ient Java-based Grid Programming 21load-balan
ing algorithm. On wide-area systems, however, this is not the
ase. With C
lusters, on average (C−

1)/C ×100% of all steal requests will go to nodes in remote
lusters,
ausing signi�
ant wide-area
ommuni
ationoverheads.2.2. Cluster-aware Random Stealing (CRS). In CRS, ea
h node
an dire
tly steal jobs from nodesin remote
lusters, but at most one job at a time. Whenever a node be
omes idle, it �rst attempts to stealfrom a node in a remote
luster. This wide-area steal request is sent asyn
hronously: Instead of waiting forthe result, the thief simply sets a �ag and performs additional, syn
hronous steal requests to randomly sele
tednodes within its own
luster, until it �nds a new job. As long as the �ag is set, only lo
al stealing will beperformed. The handler routine for the wide-area reply simply resets the �ag and, if the request was su

essful,puts the new job into the work queue. CRS
ombines the advantages of RS inside a
luster with a very limitedamount of asyn
hronous wide-area
ommuni
ation. Below, we will show that CRS performs almost as good aswith a single, large
luster, even in extreme wide-area network settings.2.3. Simulator-based
omparison of RS and CRS. A detailed des
ription of Satin's wide-area workstealing algorithm
an be found in [26℄. We have extra
ted the
omparison of RS and CRS from that workinto Table 2.1. The run times shown in this table are for parallel runs with 64 CPUs ea
h, either with a single
luster of 64 CPUS, or with 4
lusters of 16 CPUs ea
h.The wide-area network between the virtual
lusters has been simulated with our Panda WAN simulator [17℄.We simulated all
ombinations of 20ms and 200ms roundtrip laten
y with bandwidth
apa
ities of 100KByte/sand 1000KByte/s. The tests had been performed on the prede
essor hardware to our
urrent DAS-2
luster.DAS
onsists of 200MHz Pentium Pro's with a Myrinet network, running the Manta parallel Java system [23℄.Table 2.1Performan
e of RS and CRS with di�erent simulated wide-area links (times in se
onds).single 20 ms 20 ms 200 ms 200 ms
luster 1000 KByte/s 100 KByte/s 1000 KByte/s 100 KByte/sappli
ation time e�. time e�. time e�. time e�. time e�.adaptive integrationRS 71.8 99.6% 78.0 91.8% 79.5 90.1% 109.3 65.5% 112.3 63.7%CRS 71.8 99.7% 71.6 99.9% 71.7 99.8% 73.4 97.5% 73.2 97.7%N-queensRS 157.6 92.5% 160.9 90.6% 168.2 86.6% 184.3 79.1% 197.4 73.8%CRS 156.3 93.2% 158.1 92.2% 156.1 93.3% 158.4 92.0% 158.1 92.2%TSPRS 101.6 90.4% 105.3 87.2% 105.4 87.1% 130.6 70.3% 129.7 70.8%CRS 100.7 91.2% 103.6 88.7% 101.1 90.8% 105.0 87.5% 107.5 85.4%ray tra
erRS 147.8 94.2% 152.1 91.5% 171.6 81.1% 175.8 79.2% 182.6 76.2%CRS 147.2 94.5% 145.0 95.9% 152.6 91.2% 146.5 95.0% 149.3 93.2%In Table 2.1 we
ompare RS and CRS using four parallel appli
ations, with network
onditions degradingfrom the left (single
luster) to the right (high laten
y, low bandwidth). For ea
h
ase, we present the parallelrun time and the
orresponding e�
ien
y (labeled �e�.� in the table). With ts being the sequential run timefor the appli
ation, with the Satin operations ex
luded, (not shown) and tp the parallel run time as shown inthe table, and N = 64 being the number of CPUs, we
ompute the e�
ien
y as follows:
efficiency =

ts
tp · N

∗ 100%Adaptive integration numeri
ally integrates a fun
tion over a given interval. It sends very short messagesand has also very �ne grained jobs. This
ombination makes RS sensitive to high laten
y, in whi
h
ase e�
ien
ydrops to about 65 %. CRS, however, su

essfully hides the high round trip times and a
hieves e�
ien
ies ofmore than 97 % in all
ases.N Queens solves the problem of pla
ing n queens on a n × n
hess board. It sends medium-size messagesand has a very irregular task tree. With e�
ien
y of only 74 %, RS again su�ers from high round trip times asit
an not qui
kly
ompensate load imbalan
e due to the irregular task tree. CRS, however, sustains e�
ien
iesof 92 %.

22 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. BalTSP solves the problem of �nding the shortest path between n
ities. By passing the distan
e table asparameter, is has a somewhat higher parallelization overhead, resulting in slightly lower e�
ien
ies, even witha single
luster. In the wide-area
ases, these longer parameter messages
ontribute to higher round trip timeswhen stealing jobs from remote
lusters. Consequently, RS su�ers more from slower networks (e�
ien
y > 70 %)than CRS whi
h sustains e�
ien
ies of 85 %.Ray Tra
er renders a modeled s
ene to a raster image. It divides a s
reen down to jobs of single pixels. Dueto the nature of ray tra
ing, individual pixels have very irregular rendering times. The appli
ation sends longresult messages
ontaining image fra
tions, making it sensitive to the available bandwidth. This sensitivity isre�e
ted in the e�
ien
y of RS, going down to 76 %, whereas CRS hides most WAN
ommuni
ation overheadand sustains e�
ien
ies of 91 %.To summarize, our simulator-based experiments show the superiority of CRS to RS in
ase of multiple
lusters,
onne
ted by wide-area networks. This superiority is independent of the properties of the appli
ations,as we have shown with both regular and irregular task graphs as well as short and long parameter and resultmessage sizes. In all investigated
ases, the e�
ien
y of CRS never dropped below 85 %.Although we were able to identify the individual e�e
ts of wide-area laten
y and bandwidth, these resultsare limited to homogeneous Intel/Linux
lusters (due to the Manta
ompiler). Furthermore, we only tested
lusters of identi
al size. Finally, the wide area network has been simulated and thus been without possiblydisturbing third-party tra�
.An evaluation on a real grid testbed, with heterogeneous CPUs, JVMs, and networks, be
omes ne
essaryto prove the suitability of Satin as a grid programming platform. In the following, we �rst present Ibis, our newrun everywhere Java environment for grid
omputing. Then we evaluate Satin on top of Ibis on the testbed ofthe EU GridLab proje
t.
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

GMI RepMI SatinRMI

Application

Grid

Monitoring

Ibis Portability Layer (IPL)

Topology

Discovery

NWS, etc. GRAM, etc.TopoMon
etc.

TCP, UDP, MPI
Panda, GM, etc.

Information

Service

GIS, etc.

Resource

ManagementCommunication

Serialization &

Fig. 3.1. Design of Ibis. The various modules
an be loaded dynami
ally, using run time
lass loading.3. Ibis, �exible and e�
ient Java-based Grid programming. The Satin runtime system used forthis paper is implemented on top of Ibis [31℄. In this se
tion we will brie�y explain the Ibis philosophy anddesign. The global stru
ture of the Ibis system is shown in Figure 3.1. A
entral part of the system is theIbis Portability Layer (IPL) whi
h
onsists of a number of well-de�ned interfa
es. The IPL
an have di�erentimplementations, that
an be sele
ted and loaded into the appli
ation at run time. The IPL de�nes serializationand
ommuni
ation, but also typi
al grid servi
es su
h as topology dis
overy and monitoring. Although it ispossible to use the IPL dire
tly from an appli
ation, Ibis also provides more high-level programming models.Currently, we have implemented four. Ibis RMI [31℄ provides Remote Method Invo
ation, using the sameinterfa
e as Sun RMI, but with a more e�
ient wire proto
ol. GMI [21℄ provides MPI-like
olle
tive operations,
leanly integrated into Java's obje
t model. RepMI [22℄ extends Java with repli
ated obje
ts. In this paper, wefo
us on the fourth programming model that Ibis implements, Satin.3.1. Ibis Goals. A key problem in making Java suitable for grid programming is how to design a systemthat obtains high
ommuni
ation performan
e while still adhering to Java's �write on
e, run everywhere� model.Current Java implementations are heavily biased to either portability or performan
e, and fail in the other

Satin: Simple and E�
ient Java-based Grid Programming 23aspe
t. (The re
ently added java.nio pa
kage will hopefully at leas partially address this problem). TheIbis strategy to a
hieve both goals simultaneously is to develop reasonably e�
ient solutions using standardte
hniques that work �everywhere�, supplemented with highly optimized but non-standard solutions for in
reasedperforman
e in spe
ial
ases. We apply this strategy to both
omputation and
ommuni
ation. Ibis is designed touse any standard JVM, but if a native, optimizing
ompiler (e.g., Manta [23℄) is available for a target ma
hine,Ibis
an use it instead. Likewise, Ibis
an use standard
ommuni
ation proto
ols, e.g., TCP/IP or UDP, asprovided by the JVM, but it
an also plug in an optimized low-level proto
ol for a high-speed inter
onne
t, likeGM or MPI, if available. The
hallenges for Ibis are:1. how to make the system �exible enough to run seamlessly on a variety of di�erent
ommuni
ationhardware and proto
ols;2. how to make the standard, 100% pure Java
ase e�
ient enough to be useful for grid
omputing;3. study whi
h additional optimizations
an be done to improve performan
e further in spe
ial (high-performan
e)
ases.With Ibis, grid appli
ations
an run simultaneously on a variety of di�erent ma
hines, using optimizedsoftware where possible (e.g., a native
ompiler, the GM Myrinet proto
ol, or MPI), and using standard software(e.g., TCP) when ne
essary. Interoperability is a
hieved by using the TCP proto
ol between multiple Ibisimplementations that use di�erent proto
ols (like GM or MPI) lo
ally. This way, all ma
hines
an be used inone single
omputation. Below, we dis
uss the three aforementioned issues in more detail.3.2. Flexibility. The key
hara
teristi
 of Ibis is its extreme �exibility, whi
h is required to support gridappli
ations. A major design goal is the ability to seamlessly plug in di�erent
ommuni
ation substrates without
hanging the user
ode. For this purpose, the Ibis design uses the IPL. A software layer on top of the IPL
annegotiate with Ibis instantiations through the well-de�ned IPL interfa
e, to sele
t and load the modules it needs.This �exibility is implemented using Java's dynami

lass-loading me
hanism.Many message passing libraries su
h as MPI and GM guarantee reliable message delivery and FIFO messageordering. When appli
ations do not require these properties, a di�erent message passing library might be usedto avoid the overhead that
omes with reliability and message ordering. The IPL supports both reliable andunreliable
ommuni
ation, ordered and unordered messages, impli
it and expli
it re
eipt, using a single, simpleinterfa
e. Using user-de�nable properties (key-value pairs), appli
ations
an
reate exa
tly the
ommuni
ation
hannels they need, without unne
essary overhead.3.3. Optimizing the Common Case. To obtain a

eptable
ommuni
ation performan
e, Ibis imple-ments several optimizations. Most importantly, the overhead of serialization and re�e
tion is avoided by
ompile-time generation of spe
ial methods (in byte
ode) for ea
h obje
t type. These methods
an be usedto
onvert obje
ts to bytes (and vi
e versa), and to
reate new obje
ts on the re
eiving side, without usingexpensive re�e
tion me
hanisms. This way, the overhead of serialization is redu
ed dramati
ally.Furthermore, our
ommuni
ation implementations use an optimized wire proto
ol. The Sun RMI proto
ol,for example, resends type information for ea
h RMI. Our implementation
a
hes this type information per
onne
tion. Using this optimization, our proto
ol sends less data over the wire, but more importantly, savespro
essing time for en
oding and de
oding the type information.3.4. Optimizing Spe
ial Cases. In many
ases, the target ma
hine may have additional fa
ilities thatallow faster
omputation or
ommuni
ation, whi
h are di�
ult to a
hieve with standard Java te
hniques. Oneexample we investigated in previous work [23℄ is using a native, optimizing
ompiler instead of a JVM. This
ompiler (Manta), or any other high performan
e Java implementation,
an simply be used by Ibis. The mostimportant spe
ial
ase for
ommuni
ation is the presen
e of a high-speed lo
al inter
onne
t. Usually, spe
ializeduser-level network software is required for su
h inter
onne
ts, instead of standard proto
ols (TCP, UDP) thatuse the OS kernel. Ibis therefore was designed to allow other proto
ols to be plugged in. So, lower-level
ommuni
ation may be based, for example, on a lo
ally-optimized MPI library. The IPL is designed in su
h away that it is possible to exploit e�
ient hardware multi
ast, when available.Another important feature of the IPL is that it allows a zero-
opy implementation. Implementing zero-
opy(or single-
opy)
ommuni
ation in Java is a non-trivial task, but it is essential to make Java
ompetitive withsystems like MPI for whi
h zero-
opy implementations already exist. The zero-
opy Ibis implementation isdes
ribed in more detail in [31℄. On fast networks like Myrinet, the throughput of Ibis RMI
an be as mu
h as9 times higher than previous, already optimized RMI implementations su
h as KaRMI [28℄.

24 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal4. Satin on the GridLab testbed. In this se
tion, we will present a
ase study to analyze the per-forman
e that Satin/Ibis a
hieves in a real grid environment. We ran the ray tra
er appli
ation introdu
edin Se
tion 2.3 on the European GridLab [2℄ testbed. More pre
isely, we were using a
hara
teristi
 subset ofthe ma
hines on this testbed that was available for our measurements at the time the study was performed.Be
ause simultaneously starting and running a parallel appli
ation on multiple
lusters still is a tedious andtime-
onsuming task, we had to restri
t ourselves to a single test appli
ation. We have
hosen the ray tra
erfor our tests as it is sending the most data of all our appli
ations, making it very sensitive to network issues.The ray tra
er is written in pure Java and generates a high resolution image (4096 × 4096, with 24-bit
olor).It takes approximately 10 minutes to solve this problem on our testbed.This is an interesting experiment for several reasons. Firstly, we use the Ibis implementation on top of TCPfor the measurements in this se
tion. This means that the numbers shown below were measured using a 100%Java implementation. Therefore, they are interesting, giving a
lear indi
ation of the performan
e level that
an be a
hieved in Java with a �run everywhere� implementation, without using any native
ode.Se
ondly, the testbed
ontains ma
hines with several di�erent ar
hite
tures; Intel, SPARC, MIPS, andAlpha pro
essors are used. Some ma
hines are 32 bit, while others are 64 bit. Also, di�erent operating systemsand JVMs are in use. Therefore, this experiment is a good method to investigate whether Java's �write on
e, runeverywhere� feature really works in pra
ti
e. The assumption that this feature su

essfully hides the
omplexityof the di�erent underlying ar
hite
tures and operating systems, was the most important reason for investigatingthe Java-
entri
 solutions presented in this paper. It is thus important to verify the validity of this
laim.

-10

-10

-5

-5

0

0

5

5

10

10

15

15

20

20

25

25

35 35

40 40

45 45

50 50

55 55

60 60

0 200 400

km

Amsterdam
Berlin

Lecce

Cardiff

Brno

Fig. 4.1. Lo
ations of the GridLab testbed sites used for the experiments.

Satin: Simple and E�
ient Java-based Grid Programming 25Thirdly, the ma
hines are
onne
ted by the Internet. The links show typi
al wide-area behavior, as thephysi
al distan
e between the sites is large. For instan
e, the distan
e from Amsterdam to Le

e is roughly2000 kilometers (about 1250 miles). Figure 4.1 shows a map of Europe, annotated with the ma
hine lo
ations.This gives an idea of the distan
es between the sites. We use this experiment to verify Satin's load-balan
ingalgorithms in pra
ti
e, with real non-dedi
ated wide-area links. We have run the ray tra
er both with thestandard random stealing algorithm (RS) and with the new
luster-aware algorithm (CRS) as introdu
ed above.For pra
ti
al reasons, we had to use relatively small
lusters for the measurements in this se
tion. The simulationresults in Se
tion 2.3 show that the performan
e of CRS in
reases when larger
lusters are used, be
ause thereis more opportunity to balan
e the load inside a
luster during wide-area
ommuni
ation.Table 4.1Ma
hines on the GridLab testbed.Operating CPUs / totallo
ation ar
hite
ture System JIT nodes node CPUsVrije Universiteit Intel Red HatAmsterdam Pentium-III Linux IBMThe Netherlands 1 GHz kernel 2.4.18 1.4.0 8 1 8Vrije Universiteit Sun Fire 280R SUNAmsterdam UltraSPARC-III Sun HotSpotThe Netherlands 750 MHz 64 bit Solaris 8 1.4.2 1 2 2ISUFI/High Perf. Compaq Compaq HP 1.4.0Computing Center Alpha Tru64 UNIX based onLe

e, Italy 667 MHz 64 bit V5.1A HotSpot 1 4 4Cardi� Intel Red Hat SUNUniversity Pentium-III Linux 7.1 HotSpotCardi�, Wales, UK 1 GHz kernel 2.4.2 1.4.1 1 2 2Masaryk University, Intel Xeon Debian Linux IBMBrno, Cze
h Republi
 2.4 GHz kernel 2.4.20 1.4.0 4 2 8Konrad-Zuse-Zentrum SGI SGIfür Origin 3000 1.4.1-EAInformationste
hnik MIPS R14000 based onBerlin, Germany 500 MHz IRIX 6.5 HotSpot 1 16 16Some information about the ma
hines we used is shown in Table 4.1. To run the appli
ation, we usedwhi
hever Java JIT (Just-In-Time
ompiler) that was pre-installed on ea
h parti
ular system whenever possible,be
ause this is what most users would probably do in pra
ti
e.Table 4.2Round-trip wide-area laten
y (in millise
onds) and a
hievable bandwidth (in KByte/s) between the GridLab sites.daytime nighttimeto to to toA'dam A'dam to to to to A'dam A'dam to to to tosour
e DAS-2 Sun Le

e Cardi� Brno Berlin DAS-2 Sun Le

e Cardi� Brno Berlinlaten
y fromA'dam DAS-2 � 1 204 16 20 42 � 1 65 15 20 18A'dam Sun 1 � 204 15 19 43 1 � 62 14 19 17Le

e 198 195 � 210 204 178 63 66 � 60 66 64Cardi� 9 9 198 � 28 26 9 9 51 � 27 21Brno 20 20 188 33 � 22 20 19 64 33 � 22Berlin 18 17 185 31 22 � 18 17 59 30 22 �bandwidth fromA'dam DAS-2 � 11338 42 750 3923 2578 � 11442 40 747 4115 2578A'dam Sun 11511 � 22 696 2745 2611 11548 � 46 701 3040 2626Le

e 73 425 � 44 43 75 77 803 � 94 110 82Cardi� 842 791 29 � 767 825 861 818 37 � 817 851Brno 3186 2709 26 588 � 2023 3167 2705 37 612 � 2025Berlin 2555 2633 9 533 2097 � 2611 2659 9 562 2111 �Be
ause the sites are
onne
ted via the Internet, we have no in�uen
e on the amount of tra�
 that �owsover the links. To redu
e the in�uen
e of Internet tra�
 on the measurements, we also performed measurementsafter midnight (CET). However, in pra
ti
e there still is some variability in the link speeds. We measured thelaten
y of the wide-area links by running ping 50 times, while the a
hievable bandwidth is measured withnetperf [25℄, using 32 KByte pa
kets. The measured laten
ies and bandwidths are shown in Table 4.2. All siteshad di�
ulties from time to time while sending tra�
 to Le

e, Italy. For instan
e, from Amsterdam to Le

e,we measured laten
ies from 44 millise
onds up to 3.5 se
onds. Also, we experien
ed pa
ket loss with this link: upto 23% of the pa
kets were dropped along the way. We also performed the same measurement during daytime,to investigate how regular Internet tra�
 in�uen
es the appli
ation performan
e. The measurements show that

26 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Balthere
an be more than a fa
tor of two di�eren
e in link speeds during daytime and nighttime, espe
ially thelinks from and to Le

e show a large variability. It is also interesting to see that the link performan
e fromLe

e to the two sites in Amsterdam is di�erent. We veri�ed this with tra
eroute, and found that the tra�
 isindeed routed di�erently as the two ma
hines use di�erent network numbers despite being lo
ated within thesame building. Table 4.3Problems en
ountered in a real grid environment, and their solutions.problem solution�rewalls bind all so
kets to ports in the open rangebuggy JITs upgrade to Java 1.4 JITsmulti-homes ma
hines use a single, externally valid IP addressIbis, Satin and the ray tra
er appli
ation were all
ompiled with the standard Java
ompiler java
 onthe DAS-2 ma
hine in Amsterdam, and then just
opied to the other GridLab sites, without re
ompiling orre
on�guring anything. On most sites, this works �awlessly. However, we did run into several pra
ti
al problems.A summary is given in Table 4.3. Some of the GridLab sites have �rewalls installed, whi
h blo
k Satin's tra�
when no spe
ial measures are taken. Most sites in our testbed have some open port range, whi
h means thattra�
 to ports within this range
an pass through. The solution we use to avoid being blo
ked by �rewalls isstraightforward: all so
kets used for
ommuni
ation in Ibis are bound to a port within the (site-spe
i�
) openport range. We are working on a more general solution that multiplexes all tra�
 over a single port. Anothersolution is to multiplex all tra�
 over a (Globus) ssh
onne
tion, as is done by Kaneda et al. [16℄, or using ame
hanism like SOCKS [20℄.Another problem we en
ountered was that the JITs installed on some sites
ontained bugs. Espe
iallythe
ombination of threads and so
kets presented some di�
ulties. There seems to be a bug in Sun's 1.3 JIT(HotSpot) related to threads and so
ket
ommuni
ation. In some
ir
umstan
es, a blo
king operation on aso
ket would blo
k the whole appli
ation instead of just the thread that does the operation. The solution forthis problem was to upgrade to a Java 1.4 JIT, where the problem is solved.Finally, some ma
hines in the testbed are multi-homed: they have multiple IP addresses. The originalIbis implementation on TCP got
onfused by this, be
ause the InetAddress.getLo
alHost method
an returnan IP address in a private range, or an address for an interfa
e that is not a

essible from the outside. Our
urrent solution is to manually spe
ify whi
h IP address has to be used when multiple
hoi
es are available. Allma
hines in the testbed have a Globus [10℄ installation, so we used GSI-SSH (Globus Se
urity Infrastru
tureSe
ure Shell) [11℄ to login to the GridLab sites. We had to start the appli
ation by hand, as not all siteshave a job manager installed. When a job manager is present, Globus
an be used to start the appli
ationautomati
ally.As shown in Table 4.1, we used 40 pro
essors in total, using 6 ma
hines lo
ated at 5 sites all over Europe,with 4 di�erent pro
essor ar
hite
tures. After solving the aforementioned pra
ti
al problems, Satin on the TCPIbis implementation ran on all sites, in pure Java, without having to re
ompile anything.Table 4.4Relative speeds of the ma
hine and JVM
ombinations in the testbed.run relative relative total % of totalsite ar
hite
ture time (s) node speed speed of
luster systemA'dam DAS-2 1 GHz Intel Pentium-III 233.1 1.000 8.000 32.4A'dam Sun 750 MHz UltraSPARC-III 445.2 0.523 1.046 4.2Le

e 667 MHZ Compaq Alpha 512.7 0.454 1.816 7.4Cardi� 1 GHz Intel Pentium-III 758.9 0.307 0.614 2.5Brno 2.4 GHz Intel Xeon 152.8 1.525 12.200 49.5Berlin 500 MHz MIPS R14000 3701.4 0.062 0.992 4.0total 24.668 100.0As a ben
hmark, we �rst ran the parallel version of the ray tra
er with a smaller problem size (512 × 512,with 24 bit
olor) on a single ma
hine on all
lusters. This way, we
an
ompute the relative speeds of thedi�erent ma
hines and JVMs. The results are presented in Table 4.4. To
al
ulate the relative speed of ea
hma
hine/JVM
ombination, we normalized the run times relative to the run time of the ray tra
er on a node of

Satin: Simple and E�
ient Java-based Grid Programming 27the DAS-2
luster in Amsterdam. It is interesting to note that the quality of the JIT
ompiler
an have a largeimpa
t on the performan
e at the appli
ation level. A node in the DAS-2
luster and the ma
hine in Cardi� areboth 1 GHz Intel Pentium-IIIs, but there is more than a fa
tor of three di�eren
e in appli
ation performan
e.This is
aused by the di�erent JIT
ompilers that were used. On the DAS-2, we used the more e�
ient IBM1.4 JIT, while the SUN 1.4 JIT (HotSpot) was installed on the ma
hine in Cardi�.Furthermore, the results show that, although the
lo
k frequen
y of the ma
hine at Brno is 2.4 times as highas the frequen
y of a DAS-2 node, the speed improvement is only 53%. Both ma
hines use Intel pro
essors, butthe Xeon ma
hine in Brno is based on Pentium-4 pro
essors, whi
h do less work per
y
le than the Pentium-IIICPUs that are used by the DAS-2. We have to
on
lude that it is in general not possible to simply use the
lo
k frequen
ies to
ompare pro
essor speeds.Finally, it is obvious that the Origin ma
hine in Berlin is slow
ompared to the other ma
hines. This ispartly
aused by the ine�
ient JIT, whi
h is based on the SUN HotSpot JVM. Be
ause of the
ombination ofslow pro
essors and the ine�
ient JIT, the 16 nodes of the Origin we used are about as fast as a single 1 GHzPentium-III with the IBM JIT. The Origin thus hardly
ontributes anything to the
omputation. The tableshows that, although we used 40 CPUs in total for the grid run, the relative speed of these pro
essors togetheradds up to 24.668 DAS-2 nodes (1 GHz Pentium-IIIs). The per
entage of the total
ompute power that ea
hindividual
luster delivers is shown in the rightmost
olumn of Table 4.4.Table 4.5Performan
e of the ray tra
er appli
ation on the GridLab testbed.run
ommuni
ation parallelizationalgorithm time (s) time (s) overhead time (s) overhead e�
ien
ynighttimeRS 877.6 198.5 36.1% 121.9 23.5% 62.6%CRS 676.5 35.4 6.4% 83.9 16.6% 81.3%daytimeRS 2083.5 1414.5 257.3% 111.8 21.7% 26.4%CRS 693.0 40.1 7.3% 95.7 18.8% 79.3%single
luster 25RS 579.6 11.3 2.0% 11.0 1.9% 96.1%We also ran the ray tra
er on a single DAS-2 ma
hine, with the large problem size that we will use for thegrid runs. This took 13746 se
onds (almost four hours). The sequential program without the Satin
onstru
tstakes 13564 se
onds, the overhead of the parallel version thus is about 1%. With perfe
t speedup, the run timeof the parallel program on the GridLab testbed would be 13564 divided by 24.668, whi
h is 549.8 se
onds (aboutnine minutes). We
onsider this run time the upper bound on the performan
e that
an be a
hieved on thetestbed, tperfect . We
an use this number to
al
ulate the e�
ien
y that is a
hieved by the real parallel runs.We
all the a
tual run time of the appli
ation on the testbed tgrid . In analogy to Se
tion 2.3, e�
ien
y
an bede�ned as follows:
efficiency =

tperfect
tgrid

∗ 100%We have also measured the time that is spent in
ommuni
ation (tcomm). This in
ludes idle time, be
ause all idletime in the system is
aused by waiting for
ommuni
ation to �nish. We
al
ulate the relative
ommuni
ationoverhead with this formula:
communication overhead =

tcomm

tperfect
∗ 100%Finally, the time that is lost due to parallelization overhead (tpar) is
al
ulated as shown below:

tpar = tgrid − tcomm − tperfect

parallelization overhead =
tpar

tperfect
∗ 100%

28 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. BalTable 4.6Communi
ation statisti
s for the ray tra
er appli
ation on the GridLab testbed.intra
luster inter
lusteralg. messages MByte messages MBytenighttimeRS 3218 41.8 11473 137.3CRS 1353295 131.7 12153 86.0daytimeRS 56686 18.9 149634 154.1CRS 2148348 130.7 10115 82.1single
luster 25RS 45458 155.6 n.a. n.a.The results of the grid runs are shown in Table 4.5. For referen
e, we also provide measurements on asingle
luster, using 25 nodes of the DAS-2 system. The results presented here are the fastest runs out ofthree experiments. During daytime, the performan
e of the ray tra
er with RS showed a large variability, someruns took longer than an hour to
omplete, while the fastest run took about half an hour. Therefore, in thisparti
ular
ase, we took the best result of six runs. This approa
h thus is in favor of RS. With CRS, this e�e
tdoes not o

ur: the di�eren
e between the fastest and the slowest run during daytime was less than 20 se
onds.During night, when there is little Internet tra�
, the appli
ation with CRS is already more than 200 se
ondsfaster (about 23%) than with the RS algorithm. During daytime, when the Internet links are heavily used, CRSoutperforms RS by a fa
tor of three. Regardless of the time of the day, the e�
ien
y of a parallel run with CRSis about 80%.The numbers in Table 4.5 show that the parallelization overhead on the testbed is signi�
antly higher
ompared to a single
luster. Sour
es of this overhead are thread
reation and swit
hing
aused by in
omingsteal requests, and the lo
king of the work queues. The overhead is higher on the testbed, be
ause �ve of thesix ma
hines we use are SMPs (i.e. they have a shared memory ar
hite
ture). In general, this means thatthe CPUs in su
h a system have to share resour
es, making memory a

ess and espe
ially syn
hronizationpotentially more expensive. The latter has a negative e�e
t on the performan
e of the work queues. Also,multiple CPUs share a single network interfa
e, making a

ess to the
ommuni
ation devi
e more expensive.The
urrent implementation of Satin treats SMPs as
lusters (i.e., on a N -way SMP, we start N JVMs).Therefore, Satin pays the pri
e of the SMP overhead, but does not exploit the bene�ts of SMP systems, su
has the available shared memory. An implementation that does utilize shared memory when available is plannedfor the future.Communi
ation statisti
s of the grid runs are shown in Table 4.6. The numbers in the table totals for thewhole run, summed over all CPUs. Again, statisti
s for a single
luster run are in
luded for referen
e. Thenumbers show that almost all of the overhead of RS is in ex
essive wide-area
ommuni
ation. During daytime,for instan
e, it tries to send 154 MByte over the busy Internet links. During the time-
onsuming wide-areatransfers, the sending ma
hine is idle, be
ause the algorithm is syn
hronous. CRS sends only about 82 MBytesover the wide-area links (about half the amount of RS), but more importantly, the transfers are asyn
hronous.With CRS, the ma
hine that initiates the wide-area tra�

on
urrently tries to steal work in the lo
al
luster,and also
on
urrently exe
utes the work that is found.CRS e�e
tively trades less wide-area tra�
 for more lo
al
ommuni
ation. As shown in Table 4.6, the runduring the night sends about 1.4 million lo
al-area messages. During daytime, the CRS algorithm has to domore e�ort to keep the load balan
ed: during the wide-area steals, about 2.1 million lo
al messages are sentwhile trying to �nd work within the lo
al
lusters. This is about 60% more than during the night. Still, only40.1 se
onds are spent
ommuni
ating. With CRS, the run during daytime only takes 16.5 se
onds (about 2.4%)longer than the run at night. The total
ommuni
ation overhead of CRS is at most 7.3%, while with RS, this
an be as mu
h as two thirds of the run time (i.e. the algorithm spends more time on
ommuni
ating than on
al
ulating useful work).Be
ause all idle time is
aused by
ommuni
ation, the time that is spent on the a
tual
omputation
an be
al
ulated by subtra
ting the
ommuni
ation time from the a
tual run time (tgrid). Be
ause we have gatheredthe
ommuni
ation statisti
s per ma
hine (not shown), we
an
al
ulate the total time a whole
luster spends

Satin: Simple and E�
ient Java-based Grid Programming 29

0%

20%

40%

60%

80%

100%

perfect RS night CRS night RS day CRS day

%
o

f
w

o
r
k

c
a

lc
u

la
te

d

Berlin

Brno

Cardiff

Lecce

A'dam Sun

A'dam DAS-2

Fig. 4.2. Distribution of work over the di�erent sites.
omputing the a
tual problem. Given the amount of time a
luster performs useful work and the relative speedof the
luster, we
an
al
ulate what fra
tion of the total work is
al
ulated by ea
h individual
luster. We
an
ompare this workload distribution with the ideal distribution whi
h is represented by the rightmost
olumn ofTable 4.4. The ideal distribution and the results for the four grid runs are shown in Figure 4.2. The di�eren
ebetween the perfe
t distribution and the a
tual distributions of the four grid runs is hardly visible. From the�gure, we
an
on
lude that, although the workload distribution of both RS and CRS is virtually perfe
t, theRS algorithm itself spends a large amount of time on a
hieving this distribution. CRS does not su�er from thisproblem, be
ause wide-area tra�
 is asyn
hronous and is overlapped with useful work that was found lo
ally.Still, it a
hieves an almost optimal distribution.To summarize, the experiment des
ribed in this se
tion shows that the Java-
entri
 approa
h to grid
om-puting, and the Satin/Ibis system in parti
ular, works extremely well in pra
ti
e in a real grid environment. Ittook hardly any e�ort to run Ibis and Satin on a heterogeneous system. Furthermore, the performan
e results
learly show that CRS outperforms RS in a real grid environment, espe
ially when the wide-area links are alsoused for other (Internet) tra�
. With CRS, the system is idle (waiting for
ommuni
ation) during only a smallfra
tion of the total run time. We expe
t even better performan
e when larger
lusters are used, as indi
atedby our simulator results from Se
tion 2.3.5. Related work. We have dis
ussed a Java-
entri
 approa
h to writing wide-area parallel (grid
omput-ing) appli
ations. Most other grid
omputing systems (e.g., Globus [10℄ and Legion [13℄) support a variety oflanguages. GridLab [2℄ is building a toolkit of grid servi
es that
an be a

essed from various programminglanguages. Converse [15℄ is a framework for multi-lingual interoperability. The SuperWeb [1℄, and Bayani-han [29℄ are examples of global
omputing infrastru
tures that support Java. A language-
entri
 approa
hmakes it easier to deal with heterogeneous systems, sin
e the data types that are transferred over the networksare limited to the ones supported in the language (thus obviating the need for a separate interfa
e de�nitionlanguage) [32℄.The AppLeS (short for appli
ation-level s
heduling) proje
t provides a framework for adaptively s
heduling

30 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Balappli
ations on the grid [5℄. AppLeS fo
uses on sele
ting the best set of resour
es for the appli
ation outof the resour
e pool of the grid. Satin addresses the more low-level problem of load balan
ing the parallel
omputation itself, given some set of grid resour
es. AppLeS provides (amongst others) a template for master-worker appli
ations, whereas Satin provides load balan
ing for the more general
lass of divide-and-
onqueralgorithms.Many divide-and-
onquer systems are based on the C language. Among them, Cilk [7℄ only supports shared-memory ma
hines, CilkNOW [9℄ and DCPAR [12℄ run on lo
al-area, distributed-memory systems. SilkRoad [27℄is a version of Cilk for distributed memory systems that uses a software DSM to provide shared memory to theprogrammer, targeting at small-s
ale, lo
al-area systems.The Java
lasses presented by Lea [18℄
an be used to write divide-and-
onquer programs for shared-memory systems. Satin is a divide-and-
onquer extension of Java that was designed for wide-area systems,without shared memory. Like Satin, Javar [6℄ is
ompiler-based. With Javar, the programmer uses annotationsto indi
ate divide-and-
onquer and other forms of parallelism. The
ompiler then generates multithreadedJava
ode, that runs on any JVM. Therefore, Javar programs run only on shared-memory ma
hines and DSMsystems.Herrmann et al. [14℄ des
ribe a
ompiler-based approa
h to divide-and-
onquer programming that usesskeletons. Their DHC
ompiler supports a purely fun
tional subset of Haskell, and translates sour
e programsinto C and MPI. Alt et al. [3℄ developed a Java-based system, in whi
h skeletons are used to express parallelprograms, one of whi
h for expressing divide-and-
onquer parallelism. Although the programming systemtargets grid platforms, it is not
lear how s
alable the approa
h is: in [3℄, measurements are provided only fora lo
al
luster of 8 ma
hines.Most systems des
ribed above use some form of random stealing (RS). It has been proven [8℄ that RS isoptimal in spa
e, time and
ommuni
ation, at least for relatively tightly
oupled systems like SMPs and
lustersthat have homogeneous
ommuni
ation performan
e. In previous work [26℄, we have shown that this property
annot be extended to wide-area systems. We extended RS to perform asyn
hronous wide-area
ommuni
ationinterleaved with syn
hronous lo
al
ommuni
ation. The resulting randomized algorithm,
alled CRS, doesperform well in loosely-
oupled systems.Another Java-based divide-and-
onquer system is Atlas [4℄. Atlas is a set of Java
lasses that
an be usedto write divide-and-
onquer programs. Javelin 3 [24℄ provides a set of Java
lasses that allow programmersto express bran
h-and-bound
omputations, su
h as the traveling salesperson problem. Like Satin, Atlas andJavelin 3 are designed for wide-area systems. Both Atlas and Javelin 3 use tree-based hierar
hi
al s
hedulingalgorithms. We found that su
h algorithms are ine�
ient for �ne-grained appli
ations and that CRS performsbetter [26℄.6. Con
lusions. Grid programming environments need to be both portable and e�
ient to exploit the
omputational power of dynami
ally available resour
es. Satin makes it possible to write divide-and-
onquerappli
ations in Java, and is targeted at
lustered wide-area systems. The Satin implementation on top of ournew Ibis platform
ombines Java's run everywhere with e�
ient
ommuni
ation between JVMs. The resultingsystem is easy to use in a grid environment. To a
hieve high performan
e, Satin uses a spe
ial grid-aware load-balan
ing algorithm. Previous simulation results suggested that this algorithm is more e�
ient than traditionalalgorithms that are used on tightly-
oupled systems. In this paper, we veri�ed these simulation results in a realgrid environment.We evaluated Satin/Ibis on the highly heterogeneous testbed of the EU-funded GridLab proje
t, showingthat Satin's load-balan
ing algorithm automati
ally adapts both to heterogeneous pro
essor speeds and varyingnetwork performan
e, resulting in e�
ient utilization of the
omputing resour
es. Measurements show thatSatin's CRS algorithm indeed outperforms the widely used RS algorithm by a wide margin. With CRS, Satina
hieves around 80% e�
ien
y, even during daytime when the links between the sites are heavily loaded. In
ontrast, with the traditional RS algorithm, the e�
ien
y drops to about 26% when the wide-area links are
ongested.A
knowledgments. Part of this work has been supported by the European Commission, grant IST-2001-32133 (GridLab). We would also like to thank Olivier Aumage, Rutger Hofman, Ceriel Ja
obs, Maik Nijhuis andGosia Wrzesi«ska for their
ontributions to the Ibis
ode. Kees Verstoep is doing a marvelous job maintainingthe DAS
lusters. Aske Plaat suggested performing an evaluation of Satin on a real grid testbed. John Romein,Matthew Shields and Massimo Cafaro gave valuable feedba
k on this manus
ript.

Satin: Simple and E�
ient Java-based Grid Programming 31REFERENCES[1℄ A. D. Alexandrov, M. Ibel, K. E. S
hauser, and C. J. S
heiman, SuperWeb: Resear
h Issues in Java-Based GlobalComputing, Con
urren
y: Pra
ti
e and Experien
e, 9 (1997), pp. 535�553.[2℄ G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T. Goodale, T. Kielmann, A. Merzky, J. Nabrzyski,J. Puka
ki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Taylor, Enabling Appli
ations on the Grid - AGridLab Overview, nternational Journal of High Performan
e Computing Appli
ations, (2003). a

epted for publi
ation.[3℄ M. Alt, H. Bis
hof, and S. Gorlat
h, Program Development for Computational Grids using Skeletons and Performan
ePredi
tion, Parallel Pro
essing Letters, 12 (2002), pp. 157�174. World S
ienti�
 Publishing Company.[4℄ E. J. Baldes
hwieler, R. Blumofe, and E. Brewer, ATLAS: An Infrastru
ture for Global Computing, in Pro
eedingsof the Seventh ACM SIGOPS European Workshop on System Support for Worldwide Appli
ations, Connemara, Ireland,September 1996, pp. 165�172.[5℄ F. Berman, R. Wolski, S. Figueira, J. S
hopf, and G. Shao, Appli
ation-level S
heduling on Distributed HeterogeneousNetworks, in Pro
eedings of the ACM/IEEE Conferen
e on Super
omputing (SC'96), Pittsburgh, PA, November 1996.Online at http://www.super
omp.org.[6℄ A. Bik, J. Villa
is, and D. Gannon, Javar: A Prototype Java Restru
turing Compiler, Con
urren
y: Pra
ti
e andExperien
e, 9 (1997), pp. 1181�1191.[7℄ R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou., Cilk: An E�
ientMultithreaded Runtime System, in 5th ACM SIGPLAN Symposium on Prin
iples and Pra
ti
e of Parallel Programming(PPoPP'95), Santa Barbara, CA, July 1995, pp. 207�216.[8℄ R. D. Blumofe and C. E. Leiserson, S
heduling Multithreaded Computations by Work Stealing, in 35th Annual Symposiumon Foundations of Computer S
ien
e (FOCS '94), Santa Fe, New Mexi
o, November 1994, pp. 356�368.[9℄ R. D. Blumofe and P. Lisie
ki, Adaptive and Reliable Parallel Computing on Networks of Workstations, in USENIX 1997Annual Te
hni
al Conferen
e on UNIX and Advan
ed Computing Systems, Anaheim, CA, 1997, pp. 133�147.[10℄ I. Foster and C. Kesselman, Globus: A Meta
omputing Infrastru
ture Toolkit, International Journal of Super
omputerAppli
ations, 11 (1997), pp. 115�128.[11℄ I. Foster, C. Kesselman, G. Tsudik, and S. Tue
ke, A se
urity ar
hite
ture for
omputational grids, in 5th ACMConferen
e on Computer and Communi
ation Se
urity, San Fran
is
o, CA, November 1998, pp. 83�92.[12℄ B. Freisleben and T. Kielmann, Automated Transformation of Sequential Divide�and�Conquer Algorithms into ParallelPrograms, Computers and Arti�
ial Intelligen
e, 14 (1995), pp. 579�596.[13℄ A. Grimshaw and W. A. Wulf, The Legion Vision of a Worldwide Virtual Computer, Comm. ACM, 40 (1997), pp. 39�45.[14℄ C. A. Herrmann and C. Lengauer, HDC: A Higher-Order Language for Divide-and-Conquer, Parallel Pro
essing Letters,10 (2000), pp. 239�250.[15℄ L. V. Kalé, M. Bhandarkar, N. Jagathesan, S. Krishnan, and J. Yelon, Converse: An interoperable framework forparallel programming, in Intl. Parallel Pro
essing Symposium, 1996.[16℄ K. Kaneda, K. Taura, and A. Yonezawa, Virtual private grid: A
ommand shell for utilizing hundreds of ma
hinese�
iently, in 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2002), Berlin,Germany, May 2002, pp. 212�219.[17℄ T. Kielmann, H. E. Bal, J. Maassen, R. van Nieuwpoort, L. Eyraud, R. Hofman, and K. Verstoep, ProgrammingEnvironments for High-Performan
e Grid Computing: the Albatross Proje
t, Future Generation Computer Systems, 18(2002), pp. 1113�1125.[18℄ D. Lea, A Java Fork/Join Framework, in Pro
eedings of the ACM 2000 Java Grande Conferen
e, San Fran
is
o, CA, June2000, pp. 36�43.[19℄ C. Lee, S. Matsuoka, D. Talia, A. Sussmann, M. Müller, G. Allen, and J. Saltz, A Grid programming primer.Global Grid Forum, August 2001.[20℄ M. Lee
h, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, RFC 1928: SOCKS proto
ol version 5, April 1996.[21℄ J. Maassen, T. Kielmann, and H. Bal, GMI: Flexible and E�
ient Group Method Invo
ation for Parallel Programming,in In pro
eedings of LCR-02: Sixth Workshop on Languages, Compilers, and Run-time Systems for S
alable Computers,Washington DC, Mar
h 2002, pp. 1�6.[22℄ J. Maassen, T. Kielmann, and H. E. Bal, Parallel Appli
ation Experien
e with Repli
ated Method Invo
ation, Con
ur-ren
y and Computation: Pra
ti
e and Experien
e, 13 (2001), pp. 681�712.[23℄ J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Ja
obs, and R. Hofman, E�
ient JavaRMI for Parallel Programming, ACM Transa
tions on Programming Languages and Systems, 23 (2001), pp. 747�775.[24℄ M. O. Neary and P. Cappello, Advan
ed Eager S
heduling for Java-Based Adaptively Parallel Computing, in Pro
eedingsof the Joint ACM 2002 Java Grande - ISCOPE (International Symposium on Computing in Obje
t-Oriented ParallelEnvironments) Conferen
e, Seattle, November 2002, pp. 56�65.[25℄ Publi
 netperf homepage. www.netperf.org.[26℄ R. V. v. Nieuwpoort, T. Kielmann, and H. E. Bal, E�
ient Load Balan
ing for Wide-area Divide-and-ConquerAppli
ations, in Pro
eedings Eighth ACM SIGPLAN Symposium on Prin
iples and Pra
ti
e of Parallel Programming(PPoPP'01), Snowbird, UT, June 2001, pp. 34�43.[27℄ L. Peng, W. Wong, M. Feng, and C. Yuen, SilkRoad: A Multithreaded Runtime System with Software DistributedShared Memory for SMP Clusters, in IEEE International Conferen
e on Cluster Computing (Cluster2000), Chemnitz,Saxony, Germany, November 2000, pp. 243�249.[28℄ M. Philippsen, B. Hauma
her, and C. Nester, More e�
ient serialization and RMI for Java, Con
urren
y: Pra
ti
eand Experien
e, 12 (2000), pp. 495�518.[29℄ L. F. G. Sarmenta, Volunteer Computing, PhD thesis, Dept. of Ele
tri
al Engineering and Computer S
ien
e, MIT, 2001.[30℄ Y. Tanaka, H. Nakada, S. Sekigu
hi, T. Suzumura, and S. Matsuoka, Ninf-G: A Referen
e Implementation ofRPC-based Programming Middleware for Grid Computing, Journal of Grid Computing, 1 (2003), pp. 41�51.

32 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal[31℄ R. V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann, and H. E. Bal, Ibis: an E�
ient Java-based GridProgramming Environment, in Joint ACM Java Grande - ISCOPE 2002 Conferen
e, Seattle, Washington, USA, November2002, pp. 18�27.[32℄ A. Wollrath, J. Waldo, and R. Riggs, Java-Centri
 Distributed Computing, IEEE Mi
ro, 17 (1997), pp. 44�53.[33℄ I.-C. Wu and H. Kung, Communi
ation Complexity for Parallel Divide-and-Conquer, in 32nd Annual Symposium onFoundations of Computer S
ien
e (FOCS '91), San Juan, Puerto Ri
o, O
t. 1991, pp. 151�162.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 15, 2003.A

epted: September 1, 2003.

