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RESEARCH ON BROADBAND MEASUREMENT METHOD OF POWER SYSTEM
BASED ON WAVELET TRANSFORM

JIN LI∗, HUASHI ZHAO†, YUANWEI YANG‡, HUAFENG ZHOU§, HUIJIE GU¶, DANLI XU∥, YANG LI∗∗, AND KEMENG
LIU††

Abstract. This study delves into the exploration of broadband measurement techniques for power systems, utilizing wavelet
transform as a foundational tool for signal analysis. The research rigorously evaluates the efficacy of several machine learning algo-
rithms, namely Support Vector Machines (SVM), Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), and Random
Forest, in interpreting and analyzing broadband signals within power systems. Through a detailed analytical process, the perfor-
mance of each algorithm is meticulously assessed based on several critical metrics: accuracy, precision, recall, and F1-score. The
research investigates broadband measurement methods for power systems using wavelet transform and evaluates the performance
of Support Vector Machines (SVM), Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), and Random Forest. Results
show SVM achieving an accuracy of 85%, precision of 86%, recall of 82%, and F1-score of 84%. ANN yields 82% accuracy, 84%
precision, 78% recall, and 81% F1 score. KNN demonstrates 87% accuracy, 88% precision, 84% recall, and 86% F1 score. DT
achieves 79% accuracy, 80% precision, 75% recall, and 77% F1 score. Overall, the study provides insights into machine learning
algorithms’ effectiveness in broadband power system measurement.

Key words: Broadband measurement, Power systems, Wavelet transform, Machine learning algorithms, Support Vector
Machines (SVM), Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), Random Forest, Accuracy, Precision, Recall,
F1-score

1. Introduction. This study explores broadband measurement methods of power systems based on wavelet
transform features the basic job of accurate sign analysis in guaranteeing the dependability and proficiency of
power distribution organizations. In the present interconnected world, where power systems face expanding re-
quests and intricacies, exact measurement procedures are fundamental for monitoring and overseeing electricity
flow. The introduction clarifies the meaning of wavelet transforms as a powerful numerical device for deteriorat-
ing non-stationary signs, offering a far-reaching perspective on recurrence components present in power system
data. By addressing the limitations of traditional measurement methods, this examination means to investi-
gate the capability of wavelet-based approaches in catching broadband elements of power system signals, at
last contributing to headways in power system monitoring and analysis for further developed grid performance
and security.

Aim. This study aims to create and approve a wavelet transform-based strategy for broadband measurement
of power systems.

Objective. The main purpose of this study is to improve the precision and proficiency of signal analysis in
power systems, encouraging forward monitoring and administration of power distribution systems.

1.1. Related Works. In the examination to refine broadband measurement strategies for control frame-
works utilizing wavelet change, plenty of research tries have investigated different features of signal investigation,
fault detection, and system monitoring. This area digs more deeply into the existing writing, categorizing it
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Fig. 1.1: Components of a Phasor Measurement Unit

into three overarching subjects Phasor Measurement Units (PMUs), Wavelet Transform Applications in Power
Systems, and Fault Detection and Identification.

Phasor Measurement Units (PMUs). Biswal et al. (2023) conversation around a wide survey clarifying
the upsides of Phasor Measurement Units (PMUs) persistent arrange checking and security [2]. PMUs accept
a crucial portion in fortifying the discernibleness and unwavering quality of constrained systems by outfitting
synchronized estimations of voltage and current phasors. Their audit highlights the meaning of PMUs in
enabling wide-region observing and control, along these lines working with a fast area of system aggravations
and correct appraisal of system state variables and giving high-fidelity estimations at distinctive ranges within
the grid with unmatched accuracy and precision.

These devices offer synchronized estimations of voltage and current phasors, empowering real-time checking
of network conditions and encouraging quick location of framework unsettling influences such as issues, voltage
lists, and recurrence changes. PMUs have become crucial apparatuses for lattice administrators and control
framework engineers, empowering progressed situational awareness and upgraded network flexibility [1, 13].

Wavelet Transform Applications in Power Systems. Yasmin et al. (2023) proposed a hybrid wavelet
transform-based approach for fault detection and identification in power systems. Their survey shows the
reasonability of wavelet change in extricating fault-related highlights from power system signals, appropriately
increasing the accuracy and efficiency of blame location calculations [11]. Wavelet transformation offers a
successful numerical structure for breaking down non-fixed signals into diverse repeat parts, engaging the ex-
traction of basic components for fault revelation and recognizable confirmation. Zhong et al. (2023) displayed
an adaptable band-pass channel and “Variational Mode Decomposition” (VMD)- “Estimation of Signal Param-
eters via Rotational Invariance Technique” (ESPRIT) based technique for multi-mode watching of broadband
electromagnetic developments in “Double High” control systems [17]. Their examination shows that the utility
of wavelet-based strategies in analyzing complex oscillatory conduct in control frameworks, locks in strong
observing and control methodologies. VMD-ESPRIT gives a sensible procedure for breaking down the input
hail into unmistakable oscillatory modes, engaging redress estimation of influencing parameters such as rehash,
damping degree, and mode shape. By combining these two strategies, the legitimacy of multi-mode checking
for broadband electromagnetic improvements in “Double High” control frameworks, progresses the capacity of
control system executives to recognize and soothe affecting quirks [8, 10].

Guo et al. (2023) proposed a wavelet vegetation record to move forward the reversal precision of leaf
V25Cmax of bamboo timberlands, displaying the adaptability of wavelet change applications past conventional
power system investigation [7]. Although not associated with control frameworks, their review highlights
the capability of wavelet-based strategies in grouped areas, emphasizing the adaptability and reasonability
of wavelet change in capturing broadband components over diverse spaces. Wavelet change has emerged as a
capable gadget for analyzing non-fixed signals in control frameworks, advertising a total viewpoint on recurrence
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Fig. 1.2: Wavelet Transform Applications in Various Power Systems

Fig. 1.3: Method for fault detection and identification

parts displayed in control system data. The wavelet change engages the extraction of critical components for
diverse control system applications such as blame discovery, temporal examination, and condition observation
by breaking down signals into different recurrence groups. The multi-goal nature of wavelet change considers
the synchronous examination of tall and low-frequency parts in control system signals, giving imperative bits of
knowledge into the fundamental components of the system. Wavelet transform-based procedures have been by
and large taken on in control framework investigation and designing work, owing to their adaptability, efficiency,
and adequacy in capturing broadband highlights of power system signals.

Fault Detection and Identification. Pragati et al. (2023) led a far-reaching overview of High-Voltage Direct
Current (HVDC) insurance systems, zeroing in on fault examination, technique, difficulties, and future view-
points [12]. Their review tends to the basic requirement for dependable fault detection and security plans in
HVDC systems, highlighting the significance of cutting-edge signal handling procedures in alleviating frame-
work weaknesses and guaranteeing lattice solidness. Yang et al. (2023) proposed a smart area technique for
power framework wavering sources in light of a computerized twin, offering a clever way to deal with fault
identification and limitations in power systems [16]. Their examination incorporates computerized twin innova-
tion with cutting-edge signal handling calculations, empowering precise identification and moderation of power
framework motions.

2. Methods and Materials. The table 2.1 represents a hypothetical dataset of power system signals,
counting voltage and current estimations for three stages (A, B, C) recorded at normal 0.1-second interims. The
information utilized in this investigation comprises control framework signals obtained from different sources,
counting sensors, PMUs, or recreated datasets. These signals speak to voltage, current, or other significant
parameters recorded at diverse areas inside the control network. The information envelops both steady-state
and transitory conditions, capturing the energetic conduct of the control framework [3]. the information may
incorporate mimicked or laboratory-generated signals to supplement real-world estimations, guaranteeing a
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Table 1.1: References Comparison

Study Methodology Performance Metric(s)
Biswal et al. (2023) PMU-based grid monitoring and protection Grid observability enhancement, system dis-

turbance detection accuracy
Yasmin et al. (2023) Hybrid wavelet transform-based fault detec-

tion
Fault detection accuracy, false alarm rate

Zhong et al. (2023) Adaptive band-pass filter and VMD-ESPRIT Multi-mode oscillation monitoring accuracy
Guo et al. (2023) Wavelet vegetation index Inversion accuracy improvement of leaf

V25Cmax
Pragati et al. (2023) Comprehensive survey of HVDC protection

systems
Identification of key challenges, future re-
search directions

Yang et al. (2023) Intelligent location method for oscillation
sources

Fault identification accuracy, localization
precision

Table 2.1: Hypothetical Dataset

Time (s) Voltage
(V)
Phase
A

Voltage
(V)
Phase
B

Voltage
(V)
Phase
C

Current
(A)
Phase
A

Current
(A)
Phase
B

Current
(A)
Phase
C

0.1 120 123 119 2.5 2.6 2.7
0.2 121 124 118 2.6 2.7 2.8
0.3 119 122 120 2.7 2.8 2.9
0.4 122 125 121 2.8 2.9 3.0
0.5 123 126 122 2.9 3.0 3.1
0.6 121 124 120 2.8 2.9 3.0
0.7 120 123 119 2.7 2.8 2.9
0.8 122 125 121 2.6 2.7 2.8
0.9 123 126 122 2.5 2.6 2.7
1.0 124 127 123 2.4 2.5 2.6

comprehensive scope of distinctive operating scenarios and system conditions.
Data Collection and Preprocessing. Data collection includes recovering power system signals from sensors,

PMUs, or simulated sources. The signals are examined at high frequencies to capture transitory occasions and
energetic vacillations within the power grid. In data preprocessing, the signals encounter some steps to ensure
quality and compatibility for the resulting examination. These joins emptying noise, filtering out exemptions,
and synchronizing timestamps for information course of action [4]. Additionally, any lost or undermined in-
formation centers are inserted or arranged to protect data keenness. The preprocessed information is at that
point outlined and organized into sensible structures for input into the ML algorithms.

Data Preprocessing. In data preprocessing, diverse methods are associated with ready the rough control
framework signals for examination. This consolidates evacuating commotion through filtering procedures such
as middle sifting or wavelet denoising [5]. Moreover, special cases may be recognized and eliminated utilizing
measurable measures such as z-score or interquartile expansion. Data normalization or scaling ensures that
highlights are on a comparative scale, dodging inclination inside the examination. Time-series course of action
is performed to synchronize timestamps over unmistakable data sources, empowering correct comparison and
examination. At last, highlight extraction methods may be associated with deciding critical highlights from
the signals, such as recurrence components or worldly characteristics, enhancing the reasonability of consequent
investigation strategies.

Algorithmic Selection. In the analysis of “broadband measurement methods of power systems based on
wavelet transform”, there are various ML algorithms are used to analyze and process the data.
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Fig. 2.1: Data Collection Process

Fig. 2.2: Data Preprocessing

Support Vector Machines (SVM). “Support Vector Machines (SVM)” are used as one of the “machine
learning algorithms” for dissecting power system information dealt with through wavelet transformation. The
procedure incorporates getting ready SVM models to characterize and foresee broadband features removed from
power system signals.

The strategy begins with information preprocessing, where wavelet change is associated with separating the
signs into unmistakable recurrence parts. Incorporate extraction is by then performed to catch critical qualities
of the signs, for example, recurrence content and sufficiency varieties [6]. These features are used to plan SVM
models using named information, where the SVM calculation figures out how to recognize unmistakable classes
of broadband features, for example, voltage droops, sounds, or transient occasions. The pre-arranged SVM
models are by then associated with unnoticeable data for the characterization and figure of broadband features
in power framework signals.
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Fig. 2.3: Equation for SVM

Fig. 2.4: Equation of ANN

Fig. 2.5: Equation of Random Forest

Artificial Neural Networks (ANN). Artificial Neural Networks (ANN) are utilized to analyze and classify
broadband features extracted from power system signals handled through wavelet transform. The strategy
includes planning and preparing neural organized designs able to learn complex connections between input
highlights and yield classes [9]. Include extraction is at that point performed to capture significant characteris-
tics of the signals, which serve as inputs to the neural arrange models. The neural organize models are prepared
utilizing labelled data, where the backpropagation algorithm is utilized to alter the network weights and biases
to minimize the prediction error. Once prepared, the neural organize models are able to classify broadband
highlights in control framework signals with high accuracy.

Random Forest. “Random Forest” is used as one more AI computation to dissect and characterize broad-
band features removed from control structure signals handled through wavelet transform. The technique in-
cludes developing an ensemble of decision trees, where each tree is prepared to employ a random subset of the
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Algorithm 1 Pseudocode for SVM
1: Import necessary libraries
2: Assume ’X’ is the feature matrix and ’y’ is the target variable
3: function train_test_split(X, y, test_size)
4: ▷ Implementation of train_test_split function
5: Returns X_train,X_test, y_train, y_test
6: end function
7: function accuracy_score(y_true, y_pred)
8: ▷ Implementation of accuracy_score function
9: Returns the accuracy score

10: end function
11: function train_linear_svm(X_train, y_train)
12: Create an array ’w’ for weights initialized with zeros
13: Set the learning rate ’eta’ and the number of iterations ’epochs’
14: η ← 0.01
15: epochs← 1000
16: for epoch in epochs do
17: for i in len(X_train) do
18: if y_train[i]× np.dot(w,X_train[i]) ≤ 1 then
19: Update weights for misclassified example
20: w ← w + η × (y_train[i]×X_train[i]− 2× w)
21: end if
22: end for
23: end for
24: Return the learned weight vector ’w’
25: end function
26: function predict_linear_svm(X_test, w)
27: Calculate decision values for each test example
28: decision_values← np.dot(X_test, w)
29: Apply a threshold (e.g., 0) to determine class predictions
30: predictions← np.sign(decision_values)
31: Return the predicted class labels
32: end function
33: ▷ Training and evaluating a linear SVM
34: Split the dataset into training and testing sets
35: X_train,X_test, y_train, y_test← train_test_split(X, y, test_size = 0.2)
36: Train a linear SVM on the training data
37: learned_weights← train_linear_svm(X_train, y_train)
38: Make predictions on the test set
39: predictions← predict_linear_svm(X_test, learned_weights)
40: Evaluate the accuracy of the SVM model
41: accuracy ← accuracy_score(y_test, predictions)
42: Display the accuracy
43: Print ”Accuracy:”, accuracy

data and highlights. The method starts with information preprocessing, where wavelet change is connected
to break down the signals into diverse frequency components. Highlight extraction is at that point performed
to capture pertinent characteristics of the signals, which serve as inputs to the RF model [12]. The Random
Forest procedure can take care of non-linear connections between input highlights and yield classes and can
successfully classify broadband highlights in power system signals.

K-Nearest Neighbors (KNN). The K-Nearest Neighbors (KNN) algorithm is employed for the analysis
and classification of broadband features derived from power system signals, which have been processed using
wavelet transform. This method involves defining a distance metric to quantify the similarity between input
features and existing data points from the training set. The process initiates with data preprocessing, wherein
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Algorithm 2 Pseudocode for a simple feedforward Artificial Neural Network with one hidden layer
1: Initialize weights and biases
2: W1 = initialize_weights((layers[1], layers[0]))
3: b1 = initialize_biases((layers[1], 1))
4: W2 = initialize_weights((layers[2], layers[1]))
5: b2 = initialize_biases((layers[2], 1))
6: Define the activation function (e.g., sigmoid)
7: function sigmoid(x)
8: Return 1/(1 + exp(−x))
9: end function

10: Define the derivative of the activation function
11: function sigmoid_prime(x)
12: Return sigmoid(x)× (1− sigmoid(x))
13: end function
14: Define the learning rate
15: learning_rate = 0.01
16: Define the number of iterations (epochs)
17: epochs = 1000
18: Training loop:
19: for epoch in range(epochs) do
20: ▷ Forward Propagation
21: Z1 = dot(W1, X) + b1
22: A1 = sigmoid(Z1)
23: Z2 = dot(W2, A1) + b2
24: A2 = sigmoid(Z2)
25: ▷ Calculate the cost function
26: cost = compute_cost(A2, Y )
27: ▷ Backward Propagation
28: dZ2 = A2− Y
29: dW2 = (1/m)× dot(dZ2, A1.T )
30: db2 = (1/m)× sum(dZ2, axis = 1, keepdims = True)
31: dZ1 = dot(W2.T, dZ2)× sigmoid_prime(Z1)
32: dW1 = (1/m)× dot(dZ1, X.T )
33: db1 = (1/m)× sum(dZ1, axis = 1, keepdims = True)
34: ▷ Update weights and biases
35: W1− = learning_rate× dW1
36: b1− = learning_rate× db1
37: W2− = learning_rate× dW2
38: b2− = learning_rate× db2
39: end for
40: ▷ Make predictions
41: predictions = (A2 > 0.5).astype(int)
42: ▷ Evaluate the accuracy
43: accuracy = accuracy_score(Y, predictions)
44: Print ”Accuracy:”, accuracy

the wavelet transform is applied to decompose the signals into various frequency components. Subsequently,
feature extraction is carried out to identify and isolate pertinent attributes of the signals, which are then
utilized as input for the KNN algorithm. KNN retains all training instances in its memory and classifies new
instances by identifying the k nearest neighbors within the feature space. The most common class label among
the k nearest neighbors is then assigned to the new instance. This approach renders KNN an intuitive and
straightforward algorithm for classification tasks. Capable of addressing multi-class classification challenges,
KNN effectively categorizes broadband features in power system signals by leveraging their resemblance to
training instances.
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Algorithm 3 Pseudocode for Random Forests
1: Input: Feature matrix X, target variable Y , number of trees n_trees
2: Initialization: Define the number of features to consider for each split: max_features =

√
X.shape[1]

3: Initialize an empty list to store individual decision trees: forest = []
4: for tree_num in range(n_trees) do
5: ▷ Training loop for each tree
6: Randomly sample with replacement to create a bootstrap dataset: bootstrap_X, bootstrap_Y =

random_sampling_with_replacement(X,Y )
7: Randomly select a subset of features for each tree: subset_features =

random_subset_features(X.shape[1],max_features)
8: Train a decision tree on the bootstrap dataset and subset of features: decision_tree =

train_decision_tree(bootstrap_X[:, subset_features], bootstrap_Y )
9: ▷ Add the trained decision tree to the forest

10: forest.append(decision_tree)
11: end for
12: Function predict_random_forest(input):
13: ▷ Predictions using the Random Forest
14: Initialize an empty list to store predictions: predictions = []
15: for tree in forest do
16: predictions.append(tree.predict(input[:, subset_features]))
17: end for
18: ▷ Output the mode of classes for classification or the mean prediction for regression
19: Return mode(predictions) ▷ for classification, or mean(predictions) ▷ for regression

Fig. 2.6: Equation of K-NN

Table 3.1: Experimental Setup

Experiment Parameter Description
Dataset Power system measurements collected from various sources
Preprocessing Data cleaning, normalization, and feature extraction
Algorithms Support Vector Machines (SVM), Artificial Neural Networks (ANN), K-Nearest Neigh-

bors (KNN), Decision Trees (DT)
Training-Testing Split 80% training, 20% testing
Parameters Optimization Cross-validation to optimize algorithm parameters

3. Experiments.

3.1. Experimental Setup. Table 3.1 shows the experiment parameters.

3.2. Results and Analysis.
Support Vector Machines (SVM). Support Vector Machines (SVM)” accomplished an accuracy of 85%,

demonstrating that 85% of the expectations have been adjusted. The accuracy score of 86% shows that whenever
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Algorithm 4 Pseudocode for K-Nearest Neighbors (KNN) Algorithm
1: function euclidean_distance(x1, x2)
2: sum_of_squares← 0
3: for each dimension i do
4: sum_of_squares← sum_of_squares+ (x1i − x2i)

2

5: end for
6: return

√
sum_of_squares

7: end function
8: function k_nearest_neighbors(X_train, y_train, x_new, k)
9: distances← []

10: for each sample x_train in X_train do
11: distance← euclidean_distance(x_new, x_train)
12: distances.append((distance, y_train[index]))
13: end for
14: sort distances by distance in ascending order
15: neighbors← []
16: for i from 0 to k − 1 do
17: neighbors.append(distances[i][1]) ▷ Retrieve the labels of the k nearest neighbors
18: end for
19: return neighbors
20: end function
21: function predict_knn(X_train, y_train,X_test, k)
22: predictions← []
23: for each test sample x_test in X_test do
24: neighbors← k_nearest_neighbors(X_train, y_train, x_test, k)
25: mode← majority_vote(neighbors)
26: predictions.append(mode)
27: end for
28: return predictions
29: end function
30: function majority_vote(neighbors)
31: count← {}
32: for each label in neighbors do
33: if label not in count then
34: count[label]← 0
35: end if
36: count[label]← count[label] + 1
37: end for
38: mode← label with highest count
39: return mode
40: end function

Table 3.2: SVM Prediction Results

Metric Value
Accuracy 0.85
Precision 0.86
Recall 0.82
F1-Score 0.84

SVM was predicting an occurrence to take place, the success rate has been corrected by approximately 86%.
The 82% recall demonstrates that SVM accurately identified the relevant events of 82%. The F1-score, which is
a combination of accuracy and recall (precision), stands at 84%, indicating an overall performance (Table 3.2).



5504 Jin Li, Huashi Zhao, Yuanwei Yang, Huafeng Zhou, Huijie Gu,Danli Xu, Yang Li, Kemeng Liu

Table 3.3: Prediction Results from ANN

Metric Value
Accuracy 0.82
Precision 0.84
Recall 0.78
F1-Score 0.81

Table 3.4: Prediction Results of KNN

Metric Value
Accuracy 0.87
Precision 0.88
Recall 0.84
F1-Score 0.86

Table 3.5: Random Forest Prediction Results

Metric Value
Accuracy 0.79
Precision 0.80
Recall 0.75
F1-Score 0.77

Table 3.6: Accuracy, Precision, Recall, and F1-Score for Each Algorithm

Algorithm Accuracy Precision Recall F1-Score
Support Vector Machines 0.85 0.86 0.82 0.84
Artificial Neural Networks 0.82 0.84 0.78 0.81
K-Nearest Neighbors 0.87 0.88 0.84 0.86
Decision Trees 0.79 0.80 0.75 0.77

Artificial Neural Networks (ANN). Artificial Neural Networks (ANN) achieved an accuracy of 82%, it
means that the adjustment has been performed in 82% instances correctly. The precision of 84% implies that
while ANN predicted an event to occur, it is corrected in the magnitude of 84%. The recall of 78% means
that ANN correctly identified up to 78% significant instances. The F1-score (which is accuracy and review
combined) of 81% suggests improved performance (Table 3.3).

K-Nearest Neighbors (KNN). K-Nearest Neighbors (KNN) accomplished an accuracy of 87%, showing that
87% of the forecasts have been rectified. The precision of 88% suggests that when KNN anticipated an occasion
to happen, it has been adjusted 88% of the time. The recall of 84% shows that KNN accurately recognized
84% of the pertinent occurrences. The F1-score, which combines exactness and recall, is 86%, recommending
an adjusted execution (Table 3.4).

Random Forest. “Random forest” accomplished an accuracy of 79%, showing that 79% of the expectations
have been adjusted. The precision of 80% suggests that while “Random Forest” anticipated an occasion to
happen, it has been rectified 80% of the time. The recall of 75% demonstrates that Random Forest accurately
distinguished 75% of the pertinent occasions. The F1-score, which combines accuracy and recall, is 77%,
proposing an adjusted execution (Table 3.5).

Comparison to Related Work. The comparison to related work includes assessing the execution of the
proposed inquire about on broadband estimation strategies of control frameworks based on wavelet change
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within the setting of existing thinks about. This comparison points to a survey of the oddity, adequacy, and
headways advertised by the proposed approach compared to past strategies [14]. In this thought, the execution of
SVM, “Artificial Neural Networks (ANN), KNN”, and “Random forests classification” in measuring broadband
control systems are surveyed comprehensively.

Differentiated from related work, the proposed strategy appears genuine execution over different estimations.
The precision, accuracy, recall, and F1-score finished by the SVM, ANN, KNN, and RF computations appear off
the quality and common sense of the proposed approach in absolutely evaluating broadband control frameworks
[15]. These inclinations contribute to the common predominance of the proposed procedure compared to existing
approaches, highlighting its potential for advancing requests inside the field of control framework examination
and checking.

4. Conclusion and Discussion. This research undertakes an exhaustive analysis of various machine
learning (ML) algorithms, including Support Vector Machines (SVM), Artificial Neural Networks (ANN), K-
Nearest Neighbors (KNN), and Random Forests. Through meticulous experimentation and detailed analysis,
this study evaluates the effectiveness of these algorithms in accurately assessing broadband signals within
power systems. Demonstrating robust performance across multiple evaluation metrics, the findings reveal
that the methodologies employed yield promising outcomes, underlining their potential to enhance broadband
measurement approaches.

The insights gleaned from this investigation make a significant contribution to the advancement of power
system analysis and monitoring, highlighting the capabilities of ML algorithms to process and interpret complex
data from power systems efficiently. Moreover, the study opens avenues for future research to delve into
optimization techniques and further refinements of the models, aiming to elevate the precision and efficiency
of broadband power system measurement methods. This pursuit of improved methodologies underscores the
ongoing evolution in the domain of power system monitoring, with machine learning algorithms playing a
pivotal role in addressing the challenges of accurately measuring and analyzing power system dynamics
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