
S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 33�43. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSRUN-TIME ADAPTATION OF GRID DATA PLACEMENT JOBSG. KOLA∗, T. KOSAR∗ & M. LIVNY∗Abstra
t. Grid presents a
ontinuously
hanging environment. It also introdu
es a new set of failures. The data grid initiativehas made it possible to run data-intensive appli
ations on the grid. Data-intensive grid appli
ations
onsist of two parts: a datapla
ement part and a
omputation part. The data pla
ement part is responsible for transferring the input data to the
omputenode and the result of the
omputation to the appropriate storage system. While work has been done on making
omputationadapt to
hanging
onditions, little work has been done on making the data pla
ement adapt to
hanging
onditions. In this work,we have developed an infrastru
ture whi
h observes the environment and enables run-time adaptation of data pla
ement jobs. Wehave enabled Stork, a s
heduler for data pla
ement jobs in heterogeneous environments like the grid, to use this infrastru
tureand adapt the data pla
ement job to the environment just before exe
ution. We have also added dynami
 proto
ol sele
tion andalternate proto
ol fall-ba
k
apability to Stork to provide superior performan
e and fault toleran
e.Key words. Grid, data pla
ement, run-time adaptation, s
heduling, data intensive appli
ations, dynami
 proto
ol sele
tion,stork,
ondor.1. Introdu
tion. The grid [10℄ [11℄ [19℄ presents a
ontinuously
hanging environment. The data gridinitiative has in
reased the underlying network
apa
ity and enabled running of data-intensive appli
ations onthe grid. Data-intensive appli
ations
onsist of two parts: a data pla
ement part and a
omputation part.The data pla
ement part is responsible for transferring the input data to the
ompute node and the result ofthe
omputation to the appropriate storage system. Data pla
ement en
ompasses all data movement relateda
tivities su
h as transfer, staging, repli
ation, data positioning, spa
e allo
ation and deallo
ation. While workhas been done on making
omputation adapt to
hanging
onditions, little work has been done on making thedata pla
ement adapt to
hanging
onditions.Sophisti
ated proto
ols developed for grid data transfers like GridFTP [1℄ allow tuning depending on theenvironment to a
hieve the best performan
e. While tuning by itself is di�
ult, it is further
ompli
ated bythe
hanging environment. The parameters whi
h are optimal at the time of job submission, may no longer beoptimal at the time of exe
ution. The best time to tune the parameters is just before exe
ution of the datapla
ement job. Determining the environment
hara
teristi
s and performing tuning for ea
h job may imposea signi�
ant overhead. Ideally, we need an infrastru
ture that dete
ts environmental
hanges and performsappropriate tuning and uses the tuned parameters for subsequent data pla
ement jobs.Many times, we have the ability to use di�erent proto
ols for data transfers, with ea
h having di�erentnetwork, CPU and disk
hara
teristi
s. The new fast proto
ols do not work all the time. The main reason is thepresen
e of bugs in the implementation of the new proto
ols. The more robust proto
ols work for most of thetime but do not perform as well. This presents a dilemma to the users who submit data pla
ement jobs to datapla
ement s
hedulers. If they
hoose the fast proto
ol, some of their transfers may never
omplete and if they
hoose the slower proto
ol, their transfer would take a very long time. Ideally users would want to use the fasterproto
ol when it works and swit
h to the slower more reliable proto
ol when the fast one fails. Unfortunately,when the fast proto
ol would fail is not known apriori. The de
ision on whi
h proto
ol to use is best done justbefore starting the transfer.Some users simply want data transferred and do not
are about the proto
ol being used. Others have somepreferen
e su
h as: as fast as possible, as low a CPU load as possible, as minimal memory usage as possible. Thema
hines where the jobs are being exe
uted may have some
hara
teristi
s whi
h might favor some proto
ol.Further the ma
hine
hara
teristi
s may
hange over time due to hardware and software upgrades. Most usersdo not understand the performan
e
hara
teristi
s of the di�erent proto
ols and inevitably end up using aproto
ol that is known to work. In
ase of failures, they just wait for the failure to be �xed, even though otherproto
ols may be working.An ideal system is one that allows normal users to spe
ify their preferen
e and
hooses the appropriate pro-to
ol based on their preferen
e and ma
hine
hara
teristi
s. It should also swit
h to the next most appropriateproto
ol in
ase the
urrent one stops working. It should also allow sophisti
ated users to spe
ify the proto
olto use and the alternate proto
ols in
ase of failure. Su
h a system would not only redu
e the
omplexity of
∗Department of Computer S
ien
es, University of Wis
onsin-Madison, 1210 W. Dayton St. Madison, WI 53706, USA. ({kola,kosart, miron}�
s.wis
.edu). 33

34 G. Kola, T. Kosar and M. Livnyprogramming the data transfer but also provide superior failure re
overy strategy. The system may also be ableto improve performan
e be
ause it
an perform on-the-�y optimization.In this work, we have developed a monitoring infrastru
ture whi
h determines the environment
hara
teris-ti
s and dete
ts any subsequent
hange. The environment
hara
teristi
s are used by the tuning infrastru
tureto generate tuned parameters for the various proto
ols. These tuned parameters are fed to a data pla
ements
heduler. The data pla
ement s
heduler uses the tuned parameters while exe
uting the data pla
ement jobssubmitted to it, essentially performing run-time adaptation of data pla
ement jobs. We have also added dy-nami
 proto
ol sele
tion and alternate proto
ol fall-ba
k
apability to our prototype data pla
ement s
heduler.Dynami
 proto
ol sele
tion determines the proto
ols that are available on a parti
ular host and uses an appro-priate proto
ol for data transfer between any two hosts. Alternate proto
ol fall-ba
k allows the data pla
ements
heduler to swit
h to a di�erent proto
ol if the proto
ol being used for a transfer stops working.2. RelatedWork. NetworkWeather Servi
e (NWS) [25℄ is a distributed system whi
h periodi
ally gathersreadings from network and CPU resour
es, and uses numeri
al models to generate fore
asts for a given timeframe. Vazhkudai [24℄ found that the network throughput predi
ted by NWS was mu
h less than the a
tualthroughput a
hieved by GridFTP. He attributed the reason for it being that NWS by default was using 64KBdata transfer probes with normal TCP window size to measure throughput. We wanted our network monitoringinfrastru
ture to be as a

urate as possible and wanted to use it to tune proto
ols like GridFTP.Semke [20℄ introdu
es automati
 TCP bu�er tuning. Here the re
eiver is expe
ted to advertise largeenough windows. Fisk [9℄ points out the problems asso
iated with [20℄ and introdu
es dynami
 right sizingwhi
h
hanges the re
eiver window advertisement a

ording to estimated sender
ongestion window. 16-bit TCPwindow size �eld and 14-bit window s
ale option whi
h needs to be spe
i�ed during
onne
tion setup, introdu
emore
ompli
ations. While a higher value of the window-s
ale option allows a larger window, it in
reases thegranularity of window in
rements and de
rements. While large data transfers bene�t from large window size,web and other tra�
 are adversely a�e
ted by the larger granularity of window-size
hanges.Linux 2.4 kernel used in our ma
hines implements dynami
 right-sizing, but the re
eiver window size needsto be set expli
itly if a window size large than 64 KB is to be used. Autobuf [15℄ attempts to tune TCPwindow size automati
ally by performing bandwidth estimation before the transfer. Unfortunately there isno negotiation of TCP window size between server and
lient whi
h is needed for optimal performan
e. Alsoperforming a bandwidth estimation before every transfer introdu
es too mu
h of an overhead.Fearman et. al [8℄ introdu
e the Adaptive Regression Modeling (ARM) te
hnique to fore
ast data transfertimes for network-bound distributed data-intensive appli
ations. Ogura et. al [17℄ try to a
hieve optimalbandwidth even when the network is under heavy
ontention, by dynami
ally adjusting transfer parametersbetween two
lusters, su
h as the number of so
ket stripes and the number of network nodes involved intransfer.In [5℄, Carter et. al. introdu
e tools to estimate the maximum possible bandwidth along a given path,and to
al
ulate the
urrent
ongestion along a path. Using these tools, they demonstrate how dynami
 serversele
tion
an be performed to a
hieve appli
ation-level
ongestion avoidan
e.Thain et. al. propose the Ethernet approa
h [21℄ to Grid Computing, in whi
h they introdu
e a simples
ripting language whi
h
an handle failures in a manner similar to ex
eptions in some languages. The Ethernetapproa
h is not aware of the semanti
s of the jobs it is running, its duty is retrying any given job for a numberof times in a fault tolerant manner. Kangaroo [22℄ tries to a
hieve high throughput by making opportunisti
use of disk and network resour
es.Appli
ation Level S
hedulers (AppLeS) [4℄ have been developed to a
hieve e�
ient s
heduling by takinginto a

ount both appli
ation-spe
i�
 and dynami
 system information. AppLeS agents use dynami
 systeminformation provided by the NWS.Be
k et. al. introdu
e Logisti
al Networking [2℄ whi
h performs global s
heduling and optimization of datamovement, storage and
omputation based on a model that takes into a

ount all the network's underlyingphysi
al resour
es.3. Methodology. The environment in whi
h data pla
ement jobs exe
ute keeps
hanging all the time.The network bandwidth keeps �u
tuating. The network route
hanges on
e in a while. The opti
 �ber mayget upgraded in
reasing the bandwidth. New disks and raid-arrays may be added to the system. The monitor-ing and tuning infrastru
ture monitors the environment and tunes the di�erent parameters a

ordingly. Thedata pla
ement s
heduler then uses these tuned parameters to intelligently s
hedule and exe
ute the transfers.

Run-time Adaptation of Grid Data Pla
ement Jobs 35Figure 3.1 shows the
omponents of the monitoring and tuning infrastru
ture and the intera
tion with the datapla
ement s
heduler.3.1. Monitoring Infrastru
ture. The monitoring infrastru
ture monitors the disk, memory and network
hara
teristi
s. The infrastru
ture takes into a

ount that the disk and memory
hara
teristi
s
hange lessfrequently and the network
hara
teristi
s
hange more frequently. The disk and memory
hara
teristi
s aremeasured on
e after the ma
hine is started. If a new disk is added on the �y (hot-plugin), there is an option toinform the infrastru
ture to determine the
hara
teristi
s of that disk. The network
hara
teristi
s are measuredperiodi
ally. The period is tunable. If the infrastru
ture �nds that the network
hara
teristi
s are
onstant fora
ertain number of measurements, it redu
es the frequen
y of measurement till a spe
i�ed minimum is rea
hed.The obje
tive of this is to keep the overhead of measurement as low as possible.

Fig. 3.1. Monitoring and Tuning Infrastru
ture. This �gure shows an overview of the monitoring and tuning infrastru
ture.The di�erent pro�lers determine the various environment
onditions and the tuning infrastru
ture uses that information to generateoptimal parameter values.The disk and memory
hara
teristi
s are determined by intrusive te
hniques, and the network
hara
teristi
sare determined by a
ombination of intrusive and non-intrusive te
hniques. The memory
hara
teristi
 ofinterest to us is the optimal memory blo
k size to be used for memory-to-memory
opy. The disk
hara
teristi
smeasured in
lude the optimal read and write blo
k sizes and the in
remental blo
k size that
an be added tothe optimal value to get the same performan
e.The network
hara
teristi
s measured are the following: end-to-end bandwidth, end-to-end laten
y, numberof hops, the laten
y of ea
h hop and kernel TCP parameters. Sin
e end-to-end measurement requires two hosts,this measurement is done between every pair of hosts that may transfer data between ea
h other. The end-to-end bandwidth measurement uses both intrusive and non-intrusive te
hniques. The non-intrusive te
hniqueuses pa
ket dispersion te
hnique to measure the bandwidth. The intrusive te
hnique performs a
tual transfers.First, the non-intrusive te
hnique is used and the bandwidth is determined. Then a
tual transfer is performed tomeasure the end-to-end bandwidth. If the numbers widely di�er, the infrastru
ture performs a
ertain number

36 G. Kola, T. Kosar and M. Livnyof both of the network measurements and �nds the
orrelation between the two. After this initial setup, alight-weight network pro�ler is run whi
h uses only non-intrusive measuring te
hnique. While we perform alonger initial measurement for higher a

ura
y, the subsequent periodi
 measurements are very light-weight anddo not perturb the system.3.2. Tuning Infrastru
ture. The tuning infrastru
ture uses the information
olle
ted by monitoringinfrastru
ture and tries to determine the optimal I/O blo
k size, TCP bu�er size and the number of TCPstreams for the data transfer from a given node X to a given node Y. The tuning infrastru
ture has theknowledge to perform proto
ol-spe
i�
 tuning. For instan
e, GridFTP takes as input only a single I/O blo
ksize, but the sour
e and destination ma
hines may have di�erent optimal I/O blo
k sizes. For su
h
ases, thetuning �nds the I/O blo
k size whi
h is optimal for both of them. The in
remental blo
k size measured by thedisk pro�ler is used for this. The tuning infrastru
ture feeds the data transfer parameters to the data pla
ements
heduler.3.3. S
heduling Data Transfers. The data pla
ement s
heduler uses the information provided by thetuning infrastru
ture to make intelligent de
isions for s
heduling and exe
uting the data pla
ement jobs.In our study, we used the Stork [13℄ data pla
ement s
heduler to monitor, manage, and s
hedule thedata transfers over the wide area network. Stork is a spe
ialized s
heduler for data pla
ement a
tivities inheterogeneous environments. Stork
an queue, s
hedule, monitor and manage data pla
ement jobs, and itensures that the jobs
omplete.Stork is aware of the semanti
s of the data pla
ement requests submitted to it, so it
an make intelligents
heduling de
isions with regard to ea
h individual request. For example, if a transfer of a large �le fails, Stork
an transfer only parts of the �le not already transferred. We have made some enhan
ements to Stork that enableit to adaptively s
hedule data transfers at run-time using the information provided by monitoring and tuninginfrastru
ture. These enhan
ements in
lude dynami
 proto
ol sele
tion and run-time proto
ol auto-tuning. Thedetails of these enhan
ements are dis
ussed in se
tion 5.4. Implementation. We have developed a set of tools to determine disk, memory and network
hara
ter-isti
s and using those values determine the optimal parameter values to be used for data transfers. We exe
utedthese tools in a
ertain order and fed the results to Stork data pla
ement s
heduler whi
h then performedrun-time adaptation of the wide-area data pla
ement jobs submitted to it.4.1. Disk and Memory Pro�lers. The disk pro�ler determines the optimal read and write blo
k sizesand the in
rement that
an be added to the optimal blo
k size to get the same performan
e. A list of pathnamesand the average �le size is fed to the disk pro�ler. So, in a multi-disk system, the mount point of the di�erentdisks are passed to the disk pro�ler. In the
ase of a raid-array, the mount point of the raid array is spe
i�ed.For ea
h of the spe
i�ed paths, the disk pro�ler �nds the optimal read and write blo
k size and the optimalin
rement that
an be applied to these blo
k sizes to get the same performan
e. It also lists the read and writedisk bandwidths a
hieved by the optimal blo
k sizes.For determining the optimal write blo
k size, the pro�ler
reates a �le in the spe
i�ed path and writes theaverage �le size of data in blo
k-size
hunks and �ushes the data to disk at the end. It repeats the experiment fordi�erent blo
k sizes and �nds the optimal. For determining the read blo
k size, it uses the same te
hnique ex
eptthat it �ushes the kernel bu�er
a
he to prevent
a
he e�e
ts before repeating the measurement for a di�erentblo
k size. Sin
e normal kernels do not allow easy �ushing of the kernel bu�er
a
he, the mi
ro-ben
hmarkreads in a large dummy �le of size greater than the bu�er
a
he size essentially �ushing it. The memory pro�ler�nds the maximum memory-to-memory
opy bandwidth and the blo
k size to be used to a
hieve it.4.2. Network Pro�ler. The network pro�ler gets the kernel TCP parameters from /pro
. It runsPathrate [7℄ between given pair of nodes and gets the estimated bottlene
k bandwidth and the average round-trip time. It then runs tra
eroute between the nodes to determine the number of hops between the nodes and thehop-to-hop laten
y. The bandwidth estimated by Pathrate is veri�ed by performing a
tual transfers by a datatransfer tool developed as part of the DiskRouter proje
t [12℄. If the two numbers di�er widely, then a spe
i�ednumber of a
tual transfers and Pathrate bandwidth estimations are done to �nd the
orrelation between thetwo. Tools like Iperf [16℄
an also be used instead of the DiskRouter data transfer tool to perform the a
tualtransfer. From experien
e, we found Pathrate to the most reliable of all the network bandwidth estimation toolsthat use pa
ket dispersion te
hnique and we always found a
orrelation between the value returned by Pathrate

Run-time Adaptation of Grid Data Pla
ement Jobs 37and that observed by performing a
tual transfer. After the initial network pro�ling, we run a light-weightnetwork pro�ler periodi
ally. The light-weight pro�ler runs only Pathrate and tra
eroute.4.3. Parameter Tuner. The parameter tuner gets the information generated by the di�erent tools and�nds the optimal value of the parameters to be used for data transfer from a node X to a node Y.To determine the optimal number of streams to use, the parameter tuner uses a simple heuristi
. It �ndsthe number of hops between the two nodes that have a laten
y greater than 10 ms. For ea
h su
h hop, it addsan extra stream. Finally, if there are multiple streams and the number of streams is odd, the parameter tunerrounds it to an even number by adding one. The reason for doing this is that some proto
ols do not work wellwith odd number of streams. The parameter tuner
al
ulates the bandwidth-delay produ
t and uses that asthe TCP bu�er size. If it �nds that it has to use more than one stream, it divides the TCP bu�er size bythe number of streams. The reason for adding a stream for every 10 ms hop is as follows: In a high-laten
ymulti-hop network path, ea
h of the hops may experien
e
ongestion independently. If a bulk data transferusing a single TCP stream o

urs over su
h a high-laten
y multi-hop path, ea
h
ongestion event would shrinkthe TCP window size by half. Sin
e this is a high-laten
y path, it would take a long time for the window togrow, with the net result being that a single TCP stream would be unable to utilize the full available bandwidth.Having multiple streams redu
es the bandwidth redu
tion of a single
ongestion event. Most probably only asingle stream would be a�e
ted by the
ongestion event and halving the window size of that stream alone wouldbe su�
ient to eliminate
ongestion. The probability of independent
ongestion events o

urring in
reases withthe number of hops. Sin
e only the high-laten
y hops have a signi�
ant impa
t be
ause of the time taken toin
rease the window size, we added a stream for all high-laten
y hops and empiri
ally found that hops withlaten
y greater than 10 ms fell into the high-laten
y
ategory. Note that we set the total TCP bu�er size to beequal to the bandwidth delay produ
t, so in steady state
ase with multiple streams, we would not be
ausing
ongestion.The Parameter Tuner understands kernel TCP limitations. Some ma
hines may have a maximum TCPbu�er size limit less than the optimal needed for the transfer. In su
h a
ase, the parameter tuner uses morestreams so that their aggregate bu�er size is equal to that of the optimal TCP bu�er size.The Parameter Tuner gets the di�erent optimal values and generates overall optimal values. It makes surethat the disk I/O blo
k size is at least equal to the TCP bu�er size. For instan
e, the optimal disk blo
k sizemay be 1024 KB and the in
rement value may be 512 KB (performan
e of optimal + in
rement is same asoptimal) and the optimal TCP bu�er size may be 1536KB. In this
ase, the parameter tuner will make theproto
ol use a disk blo
k size of 1536 KB and a TCP bu�er size of 1536 KB. This is a pla
e where the in
rementvalue generated by the disk pro�ler is useful.The Parameter Tuner understands di�erent proto
ols and performs proto
ol spe
i�
 tuning. For example,globus-url-
opy, a tool used to move data between GridFTP servers, allows users to spe
ify only a single diskblo
k size. The read disk blo
k size of the sour
e ma
hine may be di�erent from the write disk blo
k size of thedestination ma
hine. In this
ase, the parameter tuner understands this and
hooses an optimal value that isoptimal for both the ma
hines.4.4. Coordinating the Monitoring and Tuning Infrastru
ture. The disk, memory and networkpro�lers need to be run on
e at startup and the light-weight network pro�ler needs to be run periodi
ally. Wemay also want to re-run the other pro�lers in
ase a new disk is added or any other hardware or operatingsystem kernel upgrade. We have used the Dire
ted A
y
li
 Graph Manager (DAGMan) [6℄ [23℄ to
oordinatethe monitoring and tuning pro
ess. DAGMan is servi
e for exe
uting multiple jobs with dependen
ies betweenthem. The monitoring tools are run as Condor [14℄ jobs on respe
tive ma
hines. Condor provides a job queuingme
hanism and resour
e monitoring
apabilities for
omputational jobs. It also allows the users to spe
ifys
heduling poli
ies and enfor
e priorities.We exe
uted the Parameter Tuner on the management site. Sin
e the Parameter Tuner is a Condor job,we
an exe
ute it anywhere we have a
omputation resour
e. It pi
ks up the information generated by themonitoring tools using Condor and produ
es the di�erent tuned parameter values for data transfer betweenea
h pair of nodes. For example, if there are two nodes X and Y, then the parameter tuner generates two setsof parameters - one for transfer from node X to node Y and another for data transfer from node Y to node X.This information is fed to Stork whi
h uses it to tune the parameters of data pla
ement jobs submitted to it.The DAG
oordinating the monitoring and tuning infrastru
ture is shown in Figure 4.1.We
an run an instan
e of parameter tuner for every pair of nodes or a
ertain number of pairs of nodes.

38 G. Kola, T. Kosar and M. Livny

Fig. 4.1. The DAG Coordinating the Monitoring and Tuning infrastru
ture. This DAG shows the order in whi
h themonitors(pro�lers) and tuner are run. Initially all the pro�lers are run and the information is logged to persistent storage and alsopassed to the parameter tuner whi
h generates the optimal parameter values. After that, the light-weight network pro�ler andparameter tuner are run periodi
ally. The parameter tuner uses the values of the earlier pro�ler runs and the
urrent light-weightnetwork pro�ler run to generate the optimal parameter values.For every pair of nodes, the data fed to the parameter tuner is in the order of hundreds of bytes. Sin
e all toolsare run as Condor jobs, depending on the number of nodes involved in the transfers, we
an have a
ertainnumber of parameter tuners, and they
an be exe
uted wherever there is available
y
les and this ar
hite
tureis not
entralized with respe
t to the parameter tuner. In our infrastru
ture, we
an also have multiple datapla
ement s
hedulers and have the parameters for data transfers handled by a parti
ular s
heduler fed to it.In a very large system, we would have multiple data pla
ement s
hedulers with ea
h handling data movementbetween a
ertain subset of nodes.4.5. Dynami
 Proto
ol Sele
tion. We have enhan
ed the Stork s
heduler so that it
an de
ide whi
hdata transfer proto
ol to use for ea
h
orresponding transfer dynami
ally and automati
ally at the run-time.Before performing ea
h transfer, Stork makes a qui
k
he
k to identify whi
h proto
ols are available for boththe sour
e and destination hosts involved in the transfer. Stork �rst
he
ks its own host-proto
ol library to seewhether all of the hosts involved the transfer are already in the library or not. If not, Stork tries to
onne
tto those parti
ular hosts using di�erent data transfer proto
ols, to determine the availability of ea
h spe
i�
proto
ol on that parti
ular host. Then Stork
reates the list of proto
ols available on ea
h host, and storesthese lists as a library in ClassAd [18℄ format whi
h is a very �exible and extensible data model that
an beused to represent arbitrary servi
es and
onstraints.[host_name = "quest2.n
sa.uiu
.edu";supported_proto
ols = "diskrouter, gridftp, ftp";℄[host_name = "nostos.
s.wis
.edu";supported_proto
ols = "gridftp, ftp, http";℄

Run-time Adaptation of Grid Data Pla
ement Jobs 39If the proto
ols spe
i�ed in the sour
e and destination URLs of the request fail to perform the transfer,Stork will start trying the proto
ols in its host-proto
ol library to
arry out the transfer. Stork dete
ts avariety of proto
ol failures. In the simple
ase,
onne
tion establishment would fail and the tool would reportan appropriate error
ode and Stork uses the error
ode to dete
t failure. In other
ase where there is a bugin proto
ol implementation, the tool may report su

ess of a transfer, but stork would �nd that sour
e anddestination �les have di�erent sizes. If the same problem repeats, Stork swit
hes to another proto
ol. The usersalso have the option to not spe
ify any parti
ular proto
ol in the request, letting Stork to de
ide whi
h proto
olto use at run-time.[dap_type = "transfer";sr
_url = "any://sli
04.sds
.edu/tmp/foo.dat";dest_url = "any://quest2.n
sa.uiu
.edu/tmp/foo.dat";℄ In the above example, Stork will sele
t any of the available proto
ols on both sour
e and destination hoststo perform the transfer. So, the users do not need to
are about whi
h hosts support whi
h proto
ols. Theyjust send a request to Stork to transfer a �le from one host to another, and Stork will take
are of de
idingwhi
h proto
ol to use.The users
an also provide their preferred list of alternative proto
ols for any transfer. In this
ase, theproto
ols in this list will be used instead of the proto
ols in the host-proto
ol library of Stork.[dap_type = "transfer";sr
_url = "drouter://sli
04.sds
.edu/tmp/foo.dat";dest_url = "drouter://quest2.n
sa.uiu
.edu/tmp/foo.dat";alt_proto
ols = "nest-nest, gsiftp-gsiftp";℄ In this example, the user asks Stork to perform a transfer from sli
04.sds
.edu to quest2.n
sa.uiu
.eduusing the DiskRouter proto
ol primarily. The user also instru
ts Stork to use any of the NeST [3℄ or GridFTPproto
ols in
ase the DiskRouter proto
ol does not work. Stork will try to perform the transfer using theDiskRouter proto
ol �rst. In
ase of a failure, it will drop to the alternative proto
ols and will try to
ompletethe transfer su

essfully. If the primary proto
ol be
omes available again, Stork will swit
h to it again. So,whi
hever proto
ol available will be used to su

essfully
omplete the user's request. In
ase all the proto
olsfail, Stork will keep trying till one of them be
omes available.4.6. Run-time Proto
ol Auto-tuning. Statisti
s for ea
h link involved in the transfers are
olle
tedregularly and written into a �le,
reating a library of network links, proto
ols and auto-tuning parameters.[link = "sli
04.sds
.edu - quest2.n
sa.uiu
.edu";proto
ol = "gsiftp";bs = 1024KB; //blo
k sizet
p_bs = 1024KB; //TCP buffer sizep = 4; //parallelism℄ Before performing every transfer, Stork
he
ks its auto-tuning library to see if there are any entries for theparti
ular hosts involved in this transfer. If there is an entry for the link to be used in this transfer, Stork usesthese optimized parameters for the transfer. Stork
an also be
on�gured to
olle
t performan
e data beforeevery transfer, but this is not re
ommended due to the overhead it will bring to the system.5. Experiments and Results. We have performed two di�erent experiments to evaluate the e�e
tivenessof our dynami
 proto
ol sele
tion and run-time proto
ol tuning me
hanisms. We also
olle
ted performan
edata to show the
ontribution of these me
hanisms to wide area data transfers.5.1. Experiment 1: Testing the Dynami
 Proto
ol Sele
tion. We submitted 500 data trans-fer requests to the Stork server running at University of Wis
onsin (skywalker.
s.wis
.edu). Ea
h re-quest
onsisted of transfer of a 1.1GB image �le (total 550GB) from SDSC (sli
04.sds
.edu) to NCSA(quest2.n
sa.uiu
.edu) using the DiskRouter proto
ol. There was a DiskRouter server installed at Starlight

40 G. Kola, T. Kosar and M. Livny(n
dm13.sl.startap.net) whi
h was responsible for routing DiskRouter transfers. There were also GridFTPservers running on both SDSC and NCSA sites, whi
h enabled us to use third-party GridFTP transfers wheneverne
essary. The experiment setup is shown in Figure 5.1.

Fig. 5.1. Experiment Setup. DiskRouter and GridFTP proto
ols are used to transfer data from SDSC to NCSA. Stork wasrunning at the Management site,a nd making s
heduling de
isions for the transfers.At the beginning of the experiment, both DiskRouter and GridFTP servi
es were available. Stork startedtransferring �les from SDSC to NCSA using the DiskRouter proto
ol as dire
ted by the user. After a while,we killed the DiskRouter server running at Starlight intentionally. This was done to simulate a DiskRouterserver
rash. Stork immediately swit
hed the proto
ols and
ontinued the transfers using GridFTP withoutany interruption. Swit
hing to GridFTP
aused a de
rease in the performan
e of the transfers, as shown inFigure 5.2. The reasons of this de
rease in performan
e is be
ause of the fa
t that GridFTP does not performauto-tuning whereas DiskRouter does. In this experiment, we set the number of parallel streams for GridFTPtransfers to 10, but we did not perform any tuning of disk I/O blo
k size or TCP bu�er size. DiskRouterperforms auto-tuning for the network parameters in
luding the number of TCP-streams in order to fully utilizethe available bandwidth. DiskRouter
an also use sophisti
ated routing to a
hieve better performan
e.After letting Stork use the alternative proto
ol (in this
ase GridFTP) to perform the transfers for a while,we restarted the DiskRouter server at the SDSC site. This time, Stork immediately swit
hed ba
k to usingDiskRouter for the transfers, sin
e it was the preferred proto
ol of the user. Swit
hing ba
k to the faster proto
olresulted in an in
rease in the performan
e. We repeated this a
ouple of more times, and observed that thesystem behaved in the same way every time.This experiment shows that with alternate proto
ol fall-over
apability, grid data pla
ement jobs
an makeuse of the new high performan
e proto
ols while they work and swit
h to more robust lower performan
eproto
ol when the high performan
e one fails.5.2. Experiment 2: Testing the Run-time Proto
ol Auto-tuning. In the se
ond experiment, wesubmitted another 500 data transfer requests to the Stork server. Ea
h request was to transfer a 1.1GB image�le (total 550 GB) using GridFTP as the primary proto
ol. We used third-party globus-url-
opy transferswithout any tuning and without
hanging any of the default parameters.

Run-time Adaptation of Grid Data Pla
ement Jobs 41

Fig. 5.2. Dynami
 Proto
ol Sele
tion. The DiskRouter server running on the SDSC ma
hine gets killed twi
e at points (1)and (3), and it gets restarted at points (2) and (4). In both
ases, Stork employed next available proto
ol (GridFTP in this
ase)to
omplete the transfers. Table 5.1Network parameters for gridFTP before and after auto-tuning feature of Stork being turned on.Parameter Before auto-tuning After auto-tuningparallelism 1 TCP stream 4 TCP streamsblo
k size 1 MB 1 MBt
p bu�er size 64 KB 256 KBWe turned o� the auto-tuning feature of Stork at the beginning of the experiment intentionally. The averagedata transfer rate that globus-url-
opy
ould get without any tuning was only 0.5 MB/s. The default networkparameters used by globus-url-
opy are shown in Table 1. After a while, we turned on the auto-tuning featureof Stork. Stork �rst obtained the optimal values for I/O blo
k size, TCP bu�er size and the number of parallelTCP streams from the monitoring and tuning infrastru
ture. Then it applied these values to the subsequenttransfers. Figure 5.3 shows the in
rease in the performan
e after the auto-tuning feature is turned on. We gota speedup of
lose to 20 times
ompared to transfers without tuning.6. Future Work. We are planning to enhan
e the dynami
 proto
ol sele
tion feature of Stork, so thatit will not only sele
t any available proto
ol to perform the transfer, but it will sele
t the best one. Therequirements of `being the best proto
ol' may vary from user to user. Some users may be interested in betterperforman
e, and others in better se
urity or better reliability. Even the de�nition of `better performan
e' mayvary from user to user. We are looking into the semanti
s of how to to de�ne `the best' a

ording to ea
h user'srequirements.We are also planning to add a feature to Stork to dynami
ally sele
t whi
h route to use in the transfers andthen dynami
ally deploy DiskRouters at the nodes on that route. This will enable us to use the optimal routesin the transfers, as well as optimal use of the available bandwidth throughout that route.7. Con
lusion. In this paper, we have shown a method to dynami
ally adapt data pla
ement jobs tothe environment at the exe
ution time. We have developed a set of disk and memory and network pro�ling,monitoring and tuning tools whi
h
an provide optimal values for I/O blo
k size, TCP bu�er size, and thenumber of TCP streams for data transfers. These values are generated dynami
ally and provided to the higherlevel data pla
ement s
heduler, whi
h
an use them in adapting the data transfers at run-time to existing

42 G. Kola, T. Kosar and M. Livny

Fig. 5.3. Run-time Proto
ol Auto-tuning. Stork starts the transfers using the GridFTP proto
ol with auto-tuning turned o�intentionally. Then we turn the auto-tuning on, and the performan
e in
reases drasti
ally.environmental
onditions. We also have provided dynami
 proto
ol sele
tion and alternate proto
ol fall-ba
k
apabilities to provide superior performan
e and fault toleran
e. With two experiments, we have shown thatour method
an be easily applied and it generates better performan
e results by dynami
ally swit
hing toalternative proto
ols in
ase of a failure, and by dynami
ally auto-tuning proto
ol parameters at run-time.A
knowledgements. We would like to thank Robert J. Brunner, Mi
helle Butler and Jason Alt fromNCSA; Philip Papadopoulos, Mason J. Katz and George Kremenek from SDSC for the invaluable help inproviding us a

ess to their resour
es, support and feedba
k.REFERENCES[1℄ B. All
o
k, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D.Quesnel and S. Tue
ke, Se
ure, E�
ient Data Transport and Repli
a Management for High-Performan
e Data-Intensive Computing, in Pro
eedings of IEEE Mass Storage Conferen
e", April 2001, San Diego, California.[2℄ M. Be
k, T. Moore, J. Plank and M. Swany, Logisti
al Networking, A
tive Middleware Servi
es, S. Hariri and C. Leeand C. Raghavendra, editors. Kluwer A
ademi
 Publishers, 2000.[3℄ J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. C. Arpa
i-Dusseau, R. H. Arpa
i-Dusseau andM. Livny, Flexibility, Manageability, and Performan
e in a Grid Storage Applian
e, in Pro
eedings of the EleventhIEEE Symposium on High Performan
e Distributed Computing (HPDC11),July 2002, Edinburgh, S
otland.[4℄ F. Berman, R. Wolski, S. Figueira, J. S
hopf and G. Shao, Appli
ation Level S
heduling on Distributed HeterogeneousNetworks, in Pro
eedings of Super
omputing'96, Pittsburgh, Pennsylvenia.[5℄ R. L. Carter and M. E. Crovella, Dynami
 Server Sele
tion Using Bandwidth Probing in Wide-Area Networks, Te
hni
alREport TR-96-007, Computer S
ien
e Department, Boston University, 1996.[6℄ Condor, The Dire
ted A
y
li
 Graph Manager, http://www.
s.wis
.edu/
ondor/dagman, 2003.[7℄ C. Dovrolis, P. Ramanathan and D. Moore, What do pa
ket dispersion te
hniques measure?, in Pro
eedings of INFO-COMM, 2001.[8℄ M. Faerman, A. Su, R. Wolski and F. Berman, Adaptive Performan
e Predi
tion for Distributed Data-Intensive Appli-
ations, in Pro
eedings of the IEE/ACM Conferen
e on High Performan
e Networking and Computing, November 1999,Portland, Oregon.[9℄ M. Fisk and W. Weng, Dynami
 Right-Sizing in TCP, in Pro
eedings of ICCCN, 2001.[10℄ I. Foster, C. Kesselman and S. Tue
ke, The Anatomy of the Grid: Enabling S
alable Virtual Organizations, InternationalJournal of Super
omputing Appli
ations, 2001.

Run-time Adaptation of Grid Data Pla
ement Jobs 43[11℄ D. Koester, em Demonstrating the TeraGrid - A Distributed Super
omputer Ma
hine Room, The Edge, The MITREAdvan
ed Te
hnology Newsletter, (2) 2002.[12℄ G. Kola and M. Livny, DiskRouter: A Flexible Infrastru
ture for High Performan
e Large S
ale Data Transfers, Te
hni
alReport CS-TR-2003-1484, University of Wis
onsin, Computer S
ien
es Department, 2003.[13℄ T. Kosar and M. Livny, S
heduling Data Pla
ement A
tivities in the Grid, Te
hni
al Report CS-TR-2003-1483, Universityof Wis
onsin, Computer S
ien
es Department, 2003.[14℄ M. J. Litzkow, M. Livny and M. W. Mutka, Condor - A Hunter of Idle Workstations, in Pro
eedings of the 8thInternational Conferen
e of Distributed Computing Systems, (1988), pp. 104�111.[15℄ NLANR/DAST, Auto Tuning Enabled FTP Client And Server: Autobuf, http://dast.nlanr.net/Proje
ts/Autobuf, 2003.[16℄ NLANR/DAST, Iperf: The TCP/UDP Bandwidth Measurement Tool, http://dast.nlanr.net/Proje
ts/Iperf/, 2003.[17℄ S. Ogura, H. Nakada and S. Matsuoka, Evaluation of the inter-
luster data transfer on Grid environment, in Pro
eedingsof the Third IEEE/ACM Symposium on Cluster Computing and the Grid (CCGrid), May 2003, Tokyo, Japan.[18℄ R. Raman, M. Livny and M. Solomon,Mat
hmaking: Distributed Resour
e Management for High Throughput Computing,in Pro
eedings of the Seventh IEEE International Symposium on High Performan
e Distributed Computing (HPDC7),July 1998, Chi
ago, Illinois.[19℄ B. Sagal, Grid Computing: The European DataGrid Proje
t, in Pro
eedings of IEEE Nu
lear S
ien
e Symposium andMedi
al Imaging Conferen
e, O
tober 2000, Lyon, Fran
e.[20℄ J. Semke, J. Mahdavi and M. Mathis, Automati
 TCP Bu�er Tuning, in Pro
eedings of SIGCOMM, pp. 315�323,1998.[21℄ D. Thain and and M. Livny, The Ethernet Approa
h to Grid Computing, in Pro
eedings of the Twelfth IEEE Symposiumon High Performan
e Distributed Computing (HPDC12), June 2003, Seattle, Washington.[22℄ D. Thain, J. Basney and S. Son and M. Livny, The Kangaroo Approa
h to Data Movement on the Grid, in Pro
eedingsof the Tenth IEEE Symposium on High Performan
e Distributed Computing (HPDC10), August 2001, San Fran
is
o,California.[23℄ D. Thain, T. Tannenbaum and M. Livny, Condor and the Grid, Grid Computing: Making the Global Infrastru
ture aReality., Fran Berman and Geo�rey Fox and Tony Hey, editors. John Wiley and Sons In
., 2002.[24℄ S. Vazhkudai, J. S
hopf and I. Foster, Predi
ting the Performan
e of Wide Area Data Transfers, in Pro
eedings of the16th Int'l Parallel and Distributed Pro
essing Symposium (IPDPS), 2002.[25℄ R. Wolski, Dynami
ally Fore
asting Network Performan
e to Support Dynami
 S
heduling Using the Network WeatherServi
e, in Pro
eedings of the Sixth IEEE Symposium on High Performan
e Distributed Computing (HPDC6), August1996, Portland, Oregon.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 9, 2003.A

epted: September 1, 2003.

