
S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 45�55. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSJUXMEM: AN ADAPTIVE SUPPORTIVE PLATFORM FOR DATA SHARING ON THEGRIDG. ANTONIU∗, L. BOUGÉ† , AND M. JAN∗Abstra
t. We address the 
hallenge of managing large amounts of numeri
al data within 
omputing grids 
onsisting of afederation of 
lusters. We 
laim that storing, a

essing, updating and sharing su
h data should be 
onsidered by appli
ations asan external servi
e. We propose a hierar
hi
al ar
hite
ture for this servi
e, based on a peer-to-peer approa
h. This ar
hite
ture isillustrated through a software platform 
alled JuxMem (for Juxtaposed Memory), whi
h provides transparent a

ess to mutabledata, while enhan
ing data persisten
e in a dynami
 environment. Managing the volatility of storage resour
es is spe
ially empha-sized. As a proof of 
on
ept, we des
ribe a prototype implementation on top of the JXTA peer-to-peer framework, and we reporton a preliminary experimental evaluation.Key words. data sharing, grid, peer-to-peer, hierar
hi
al ar
hite
ture, JXTA.1. Introdu
tion. A major 
ontribution of the grid 
omputing environments developed so far is to havede
oupled 
omputation from deployment. Deployment is then 
onsidered as an external servi
e provided bythe underlying infrastru
ture, outside the appli
ation. This servi
e is in 
harge of lo
ating and intera
tingwith the physi
al resour
es, in order to e�
iently s
hedule and map the 
omputation. In 
ontrast, as of today,no su
h sophisti
ated servi
e exists regarding data management on the grid. Paradoxi
ally enough, 
omplexinfrastru
tures are available for transparent 
omputation s
heduling on distributed sites, whereas the user is stillleft to expli
itly store and transfer the data needed by the 
omputation between these sites. At best, advan
edFTP-like fun
tionalities are proposed by existing environments. Within the 
ontext of a growing number ofappli
ations using large amounts of data, this expli
it data management arises as a major limitation against thee�
ient use of modern 
omputational grids.Like deployment, we 
laim that an adequate approa
h to this problem 
onsists in de
oupling data manage-ment from 
omputation, through an external servi
e tailored to the requirements of s
ienti�
 
omputation. Inthis work, we fo
us on the 
ase of a grid 
onsisting of a federation of distributed 
lusters. Su
h a data sharingservi
e should meet the following two properties.Persisten
e. The data sets used by the grid 
omputing appli
ations may be very large. Their transfer fromone site to another may be 
ostly (in terms of both bandwidth and laten
y), so su
h data movementsshould be 
arefully optimized. Therefore, a data management servi
e should allow data to be storedon the grid infrastru
ture independently of the appli
ations, in order to allow their reuse in an e�
ientway. Su
h a servi
e should also provide data lo
alization information, in order to 
o-operate with the
omputation s
heduling servi
e, and thereby enhan
e the global e�
ien
y.Transparen
y. Su
h a data management servi
e should provide transparent a

ess to data. It should handledata lo
alization and transfer without any help from the programmer. Yet, it should make gooduse of additional information and hints provided by the programmer, if any. The servi
e should alsotransparently use adequate repli
ation strategies and 
onsisten
y proto
ols to ensure data availabilityand 
onsisten
y in a large-s
ale, dynami
 ar
hite
ture. In parti
ular, it should support events su
h as
omputational and storage resour
es joining and leaving, or even unexpe
tedly failing.At the same time, three main 
onstraints need to be addressed:Volatility and dynami
ity. The 
lusters whi
h make up the grid are not guaranteed to remain 
onstantlyavailable. Nodes may leave due to te
hni
al problems or be
ause some resour
es be
ome temporarilyunavailable. This should obviously not result in disabling the data management servi
e. Also, newnodes may dynami
ally join the physi
al infrastru
ture: the servi
e should be able to dynami
ally takeinto a

ount the additional resour
es they provide.S
alability. The algorithms proposed for parallel 
omputing have often been studied on small-s
ale 
on�g-urations. Our target ar
hite
ture is typi
ally made of thousands of 
omputing nodes, say tens ofhundred-node 
lusters. It is well-known that designing low-level, expli
it MPI programs is most di�-
ult at su
h a s
ale. In 
ontrast, high-level, peer-to-peer approa
hes have proved to remain e�e
tive atmu
h larger s
ales.
∗IRISA/INRIA Campus de Beaulieu, 35042 Rennes, FR. ({Gabriel.Antoniu,Mathieu.Jan}�irisa.fr).
†ENS Ca
han/Bretagne Campus de Ker Lann, 35170 Bruz, FR. (Lu
.Bouge�bretagne.ens-
a
han.fr).45



46 G. Antoniu, L. Bougé and M. JanMutable data. In our target appli
ations, data are generally shared and 
an be modi�ed by multiple partners.A large number of strategies have been proposed for handling data repli
ation and data 
onsisten
y,in the 
ontext of Distributed Shared Memory (DSM) systems. Again, these strategies and proto
olshave been designed with the assumption of a small-s
ale, stati
, homogeneous ar
hite
ture, typi
ally of
lusters of few tens of nodes. A data sharing servi
e for the grid should 
onsider 
onsisten
y proto
olsadapted to a dynami
, large-s
ale, heterogeneous ar
hite
ture.The type of servi
e we propose is similar in some respe
ts to several types of existing data manage-ment systems. However, these systems address only partially the goals and the three 
onstraints mentionedabove.Non-transparent, large-s
ale data management. Currently, the most widely-used approa
h to data man-agement for distributed grid 
omputation relies on expli
it data transfers between 
lients and 
omputingservers. As an example, the Globus [7℄ platform provides data a

ess me
hanisms (Globus A

ess toSe
ondary Storage [3℄) based on the GridFTP proto
ol [1℄. Though this proto
ol provides authen-ti
ation, parallel transfers, 
he
kpoint/restart me
hanisms, et
., it is still a FTP-like proto
ol whi
hrequires expli
it data lo
alization and transfer. Globus also integrates data 
atalogs, where multiple
opies of the same data 
an be re
orded. The management of these 
atalogs is manual: it is the user'sresponsibility to re
ord these 
opies and make sure they are 
onsistent: no 
onsisten
y guarantee isprovided by Globus.Large-s
ale data storage. The IBP Proje
t [2℄ provides a large-s
ale data storage system, 
onsisting of a setof bu�ers distributed over Internet. The user 
an �rent� these storage areas and use them as temporarybu�ers for e�
ient data transfers a
ross a wide-area network. IBP has been used by the Netsolve [18℄
omputing environment to implement a servi
e of persistent data. Transfer management is still at theuser's 
harge. Besides, IBP does not handle dynami
 join/departure of storage nodes and provides no
onsisten
y guarantee for multiple 
opies of the same data.Transparent, small-s
ale data sharing. Distributed Shared Memory (DSM) systems provide transparentdata sharing, via a unique address spa
e a

essible to physi
ally distributed ma
hines. Within this
ontext, a variety of 
onsisten
y models and proto
ols have been de�ned, in order to allow an e�
ientmanagement of repli
ated data. These systems do o�er transparent a

ess to data: all nodes 
an readand write data in a uniform way, using a unique identi�er or a virtual address. It is the responsibilityof the DSM system to lo
alize, transfer, repli
ate data, and guarantee their 
onsisten
y a

ording tosome semanti
s. Nevertheless, existing DSM systems have generally shown satisfa
tory e�
ien
y onlyon small-s
ale 
on�gurations, typi
ally, a few tens of nodes [11℄.Peer-to-peer sharing of immutable data. Re
ently, peer-to-peer (P2P) has proven to be an e�
ient ap-proa
h for large-s
ale data sharing. The peer-to-peer model is 
omplementary to the 
lient-server model:the relations between ma
hines are symmetri
al, ea
h node 
an be 
lient in a transa
tion and server inanother. This paradigm has been made popular by Napster [17℄, Gnutella [10℄, and now KaZaA [16℄.We 
an note that these systems fo
us on sharing immutable �les: the shared data are read-only and
an be repli
ated at ease.Peer-to-peer sharing of mutable data. Re
ently, some me
hanisms for sharing mutable data in a peer-to-peer environment have been proposed by systems like O
eanStore [8℄, Ivy [9℄ and P-Grid [6℄. InO
eanStore, for ea
h data only a small set of primary repli
as, 
alled the inner ring agrees, serializesand applies updates. Updates are then multi
ast down a dissemination tree to all other 
a
hed 
opiesof the data, 
alled se
ondary repli
as. However, O
eanStore uses a versioning me
hanism whi
h has notproven to be e�
ient at large s
ales. Se
ond, despite it provides hooks for managing the 
onsisten
yof data, appli
ations still have to use low-level me
hanisms for ea
h 
onsisten
y model [12℄. Third,published measurements on the performan
e of updates only assume a single writer per data blo
k.Finally, servers making up inner rings are assumed to be highly available. The Ivy system has onemain limitation: appli
ations have to repair 
on�i
ting writes, thus the number of writers per datais very limited. Both O
eanstore and Ivy target general-purpose, persistent �le storage, not datamanagement for high-performan
e, 
omputing grids where for example distributed matri
es have tobe moved using parallel transfers. P-Grid proposes a �ooding-based algorithm for updating data, butassumes no 
on�i
ting writes. Besides, no experimental results have been published so far for thissystem.



JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 47
Cluster A1 Cluster A3

Cluster A2

Wide−Area
Network

Fig. 2.1. Numeri
al simulation for weather fore
ast using a pipeline 
ommuni
ation s
heme with 3 
lusters.2. Designing a data sharing servi
e for the grid.2.1. Motivating s
enarios. Let us 
onsider a distributed federation of 3 
lusters: A1, A2 and A3, whi
h
o-operate together as shown on Figure 2.1. Ea
h 
luster is typi
ally inter
onne
ted through a high-performan
elo
al-area network, whereas they are all 
oupled together through a regular wide-area network. Consider forinstan
e a weather fore
ast simulation. Cluster A1 may 
ompute the fore
ast for a given day, then A2 for thenext day, and �nally A3 for the day after. Thus, A3 uses data produ
ed by A2, whi
h in turn uses data produ
edby A1, as in a pipeline. Alternatively, 
luster A1 may simulate the weather fore
ast in a given 
ountry, while
A2 et A3 simulate it for two neighboring 
ountries.Su
h simulations produ
e large amount of numeri
al data, and data-related a
tions are deeply intri
atedwith 
omputation. The data management systems des
ribed in the previous se
tion do not provide any simplete
hnique to support su
h designs. Consider for instan
e transferring data from A1 to A2: a widely-usedte
hnique 
onsists in expli
itly writing the data on a disk within 
luster A1, then use a �le transfer tool to depositthem on a disk within 
luster A2. The appli
ation is dire
tly involved in this series of a
tions. In 
ontrast,we propose to de
ouple the appli
ation from the data management, by making data storage and lo
alizationtransparent with respe
t to the appli
ation. Cluster A1 should only store the data within the federation-widedata management servi
e, from whi
h 
luster A2 
ould request them as needed. Data lo
alization and transferare then 
ompletely external to the appli
ations.Let us now suppose that our 3 appli
ations no longer 
o-operate a

ording to a pipeline s
heme, but rathera

ording to a multiple-writers s
heme. For instan
e, ea
h appli
ation simulates a single phenomenon part ofthe global weather fore
ast: say, wind, rain and 
louds. In this 
ase, ea
h 
luster needs data from the otherones in order to make progress. A data sharing servi
e 
ould allow the 
on
urrent appli
ations not only to read,but also to write to the globally shared data, while transparently handling data 
onsisten
y. This is similar toDSM systems, but at a mu
h larger s
ale, and in a fully dynami
 
ontext. Also, assume that some nodes fail in
luster A2. Some of the data ne
essary for A3 
ould thus be
ome unavailable. The data sharing servi
e shouldalso provide me
hanisms to tolerate su
h faults, for instan
e, based on redundan
y.2.2. Design prin
iples. We 
onsider two major sour
es of inspiration for the design of a data sharingservi
e for s
ienti�
 grid 
omputing:DSM systems, whi
h propose 
onsisten
y models and proto
ols for e�
ient transparent management of mu-table data, on stati
, small-s
aled 
on�gurations (tens of nodes);P2P systems, whi
h have proven adequate for the management of immutable data on highly dynami
, large-s
ale 
on�gurations (millions of nodes).These two 
lasses of systems have been designed and studied in very di�erent 
ontexts. In DSM systems, thenodes are generally under the 
ontrol of a single administration, and the resour
es are trusted. In 
ontrast,P2P systems aggregate resour
es lo
ated at the edge of the Internet, with no trust guarantee, and loose 
ontrol.Moreover these numerous resour
es are essentially heterogeneous in terms of pro
essors, operating systems andnetwork links, as opposed to DSM systems, where nodes are generally homogeneous. Finally, DSM systemsare typi
ally used to support 
omplex numeri
al simulation appli
ations, where data are a

essed in parallel by



48 G. Antoniu, L. Bougé and M. JanTable 2.1A grid data sharing servi
e as a 
ompromise between DSM and P2P systems.DSM Grid data servi
e P2PS
ale 10
1�10

2
10

3�10
4

10
5�10

6Resour
e 
ontroland trust degree High Medium NullDynami
ity Null Medium HighResour
ehomogeneity Homogeneous(
lusters) Rather heterogeneous(
lusters of 
lusters) Heterogeneous(Internet)Data type Mutable Mutable ImmutableAppli
ation
omplexity Complex Complex SimpleTypi
alappli
ations S
ienti�

omputation S
ienti�
 
omputation anddata storage File sharing andstoragemultiple nodes. In 
ontrast, P2P systems generally serve as a support for storing and sharing immutable �les.These antagonist features are summarized in the �rst and third 
olumns of Table 2.1.Our data sharing servi
e targets physi
al ar
hite
tures with features intermediate between DSM and P2Psystems. We address s
ales of the order of thousands of nodes, organized as a federation of 
lusters, say tens ofhundred-node 
lusters. At a global level, the resour
es are thus rather heterogeneous, while they 
an probablybe 
onsidered as homogeneous within the individual 
lusters. The 
ontrol degree and the trust degree are alsointermediate, sin
e the 
lusters may belong to di�erent administrations, whi
h set up agreements on the sharingproto
ol. Finally, we target numeri
al appli
ations like heavy simulations, made by 
oupling individual 
odes.These simulations pro
ess large amounts of data, with signi�
ant requirements in terms of data storage andsharing. These intermediate features are illustrated in the se
ond 
olumn of Table 2.1.The 
ontribution of this paper is namely to propose an ar
hite
ture for su
h a data sharing servi
e, whi
haddresses the problem of managing mutable data on dynami
, large-s
ale 
on�gurations. Our approa
h aimsat taking bene�t of both DSM systems (transparent a

ess to data, 
onsisten
y proto
ols) and P2P systems(s
alability, support for resour
e volatility and dynami
ity).2.3. The JXTA implementation framework. Our proposal is partly inspired by the P2P approa
h. It
an usefully bene�t from a platform providing basi
 me
hanisms for peer-to-peer intera
tion. To our knowledge,the most advan
ed implementation platform in this area is JXTA [14℄. The name JXTA stands for juxtaposed,in order to suggest the juxtaposition rather than the opposition of the P2P and 
lient-server models. JXTA isa proje
t originally initiated by Sun Mi
rosystems.JXTA is an open-sour
e framework, whi
h spe
i�es a set of language- and platform-independent XML-basedproto
ols [15℄. JXTA provides a ri
h set of building blo
ks for the management of peer-to-peer systems: resour
edis
overy, peer group management, peer-to-peer 
ommuni
ation, et
.Peers. The basi
 entity in JXTA is the peer. Peers are organized in networks. They are uniquely identi�ed byIDs. An ID is a logi
al address independent of the lo
ation of the peer in the physi
al network. JXTAintrodu
es several types of peers. The most relevant as far as we are 
on
erned are the edge peers andrendezvous peers. Edge peers are able to 
ommuni
ate with other peers in the JXTA virtual network.They 
an also store advertisements of resour
es they dis
over in the network. Rendezvous peers havethe extra ability of forwarding the requests they re
eive to other rendezvous peers. They 
an also o�era storage area for advertisements that have been published by edge peers. Finally, they are internallymanaged by JXTA using a distributed hash table (DHT) and are making up the frame of JXTA. They
an thus be dynami
ally lo
ated in an e�
ient way. Joining, leaving, and even unexpe
ted failing ofrendezvous peers are supported by the JXTA proto
ols.Peer groups. Peers 
an be members of one or several peer groups. A peer group is made up of several peersthat share a 
ommon set of interests, e.g., peers that have the same a

ess rights to some resour
es.The main motivation for 
reating peer groups is to build servi
es 
olle
tively delivered by peer groups,instead of individual peers. Indeed, su
h servi
es 
an then tolerate the loss of peers within the group,as its internal management is not visible to the 
lients.



JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 49Pipes. Communi
ation between peers or peer groups within the JXTA virtual network is made by using pipes.Pipes are unidire
tional, unreliable and asyn
hronous logi
al 
hannels. JXTA o�ers two types of pipes:point-to-point pipes, and propagate pipes. Propagate pipes 
an be used to build a multi
ast layer atthe virtual level.Advertisements. Every resour
e in the JXTA network (peer, peer group, pipe, servi
e, et
.) is des
ribed andpublished using advertisements. Advertisements are stru
tured XML do
uments whi
h are publishedwithin the network of rendezvous peers. To request a servi
e, a 
lient has �rst to dis
over a mat
hingadvertisement using spe
i�
 lo
alization proto
ols.JXTA proto
ols. JXTA proposes six generi
 proto
ols. Out of these, two are parti
ularly useful for buildinghigher-level peer-to-peer servi
es: the Peer Dis
overy Proto
ol, whi
h allows for advertisement publish-ing and dis
overy; and the Pipe Binding Proto
ol, whi
h dynami
ally establishes links between peers
ommuni
ating on a given pipe.The data sharing servi
e that we propose is designed using the JXTA building blo
ks des
ribed above.3. JuxMem: a supportive platform for data sharing on the grid. The ar
hite
ture of the datasharing servi
e we propose, mirrors an ar
hite
ture 
onsisting of a federation of distributed 
lusters. Thear
hite
ture is therefore hierar
hi
al, and is illustrated through the proposition of a software platform 
alledJuxMem (for Juxtaposed Memory), whose goal is to be the foundation for a data sharing servi
e for grid
omputing environments, like DIET [4℄.
Group "cluster A"

Group "data"

Group "cluster B"

Physical network

Overlay network

Group "cluster C"

Cluster C

Cluster B

Cluster A

Node

Group "juxmem"

Client

Provider

Cluster managerFig. 3.1. Hierar
hy of the entities in the network overlay de�ned by JuxMem.3.1. Hierar
hi
al ar
hite
ture. Figure 3.1 shows the hierar
hy of the entities de�ned in the ar
hite
tureof JuxMem. This ar
hite
ture is made up of a network of peer groups (
luster groups A, B and C), whi
hgenerally 
orrespond to 
lusters at the physi
al level. All the groups are inside a wider group whi
h in
ludesall the peers whi
h run the servi
e (the juxmem group). Ea
h 
luster group 
onsists of a set of nodes whi
hprovide memory for data storage. We will 
all these nodes providers. In ea
h 
luster group, a node is in 
hargeof managing the memory made available by the providers of the group. This node is 
alled 
luster manager.Finally, a node whi
h simply uses the servi
e to allo
ate and/or a

ess data blo
ks is 
alled 
lient. It shouldbe noted that a node 
an be at the same time a 
luster manager, a 
lient and a provider, but for the sake of
larity, ea
h node plays only one role in the example illustrated on the Figure 3.1.Ea
h blo
k of data stored in the system is asso
iated to a group of peers 
alled data group. This group
onsists of a set of providers that host 
opies of that data blo
k. Note that a data group 
an be made up of



50 G. Antoniu, L. Bougé and M. Janproviders from di�erent 
luster groups. Indeed, a data 
an be spread over on several 
lusters (here A and C).For this reason, the data and 
luster groups are at the same level of the group hierar
hy. Note also that the
luster groups 
ould also 
orrespond to subsets of the same physi
al 
luster.Another important feature is that the ar
hite
ture of JuxMem is dynami
, sin
e 
luster and data groups
an be 
reated at run time. For instan
e, for ea
h blo
k of data inserted into the system, a data group isautomati
ally instantiated.API of the data sharing servi
e. The Appli
ation Programming Interfa
e (API) provided by JuxMemillustrates the fun
tionalities of a data sharing servi
e providing data persisten
e as well as transparen
y withrespe
t to data lo
alization.allo
(size, attributes) allows to 
reate a memory area of the spe
i�ed size on a 
luster. The attributesparameter allows to spe
ify the level of redundan
y and the default proto
ol used to manage the
onsisten
y of the 
opies of the 
orresponding data blo
k. This fun
tion returns an ID whi
h 
an beseen at the appli
ation level as a data blo
k ID.map(id, attributes) allows to retrieve the advertisement of a data 
ommuni
ation 
hannel whi
h has tobe used to manipulate the data blo
k identi�ed by id. The attributes argument allows to spe
ifyparameters for the view of the data blo
k desired by the 
lient, like for instan
e what we 
all the degreeof 
onsisten
y: some 
lients may have weaker 
onsisten
y requirements than the one ensured by thedefault proto
ol used to manage the data blo
k.put(id, value) allows to modify the value of the data blo
k identi�ed by id. The new value is then value.get(id) allows to get the 
urrent value of the data blo
k identi�ed by id.lo
k(id) allows to lo
k the data blo
k identi�ed by id. A lo
k is impli
itly asso
iated to ea
h data blo
k.Clients whi
h a

ess a shared data blo
k need to syn
hronize using this lo
k.unlo
k(id) allows to unlo
k the data identi�ed by id.re
onfigure(attributes) allows to dynami
ally re
on�gure a node. The attributes parameter allows toindi
ate if the node is going to a
t as a 
luster manager and/or as a provider. If the node is going to a
tas a provider, the attributes parameter also allows to spe
ify the amount of memory that the nodeprovides to JuxMem.3.2. Managing memory resour
es.Publishing and pla
ement of resour
e advertisements. Memory resour
es are managed using advertisements.Ea
h provider publishes the amount of memory it o�ers within the 
luster group to whi
h it belongs, by themeans of a provider advertisement. The 
luster manager of the group stores all su
h advertisements availablein his group. He is also responsible for publishing the amount of memory available in the 
luster by using a
luster advertisement. This advertisement lists the amounts of memory o�ered by providers of the asso
iated
luster group. These 
luster advertisements are published inside the juxmem group, so that they 
an then beused by all the 
lients in order to allo
ate memory.Cluster managers are thus in 
harge of making the link between the 
luster group and the juxmem group.They make up a network organized using a DHT at the level of the juxmem group level, in order to build theframe of the data sharing servi
e. This frame is represented by the ring on the Figure 3.2. Ea
h 
luster managerG1 to G6 is responsible for a 
luster, respe
tively A1 to A6, ea
h of whi
h is made up of �ve nodes. At the levelof the juxmem group, the DHT works as follows. Ea
h 
luster advertisement 
ontains a list whi
h enumeratesthe amounts of memory available in the 
luster. Ea
h individual amount is separately used to generate anID, by means of a hash fun
tion. This ID is then used to determine the 
luster manager responsible for alladvertisements having this amount of available memory in their list. This 
luster manager is not the peer thatstores the advertisement, it only knows the 
luster manager whi
h published it in the JuxMem network. Thispla
ement of 
luster advertisements allows 
lients to easily retrieve advertisements in order to allo
ate memory:any request for a given amount of memory is dire
ted to the 
luster manager responsible for that amount ofmemory, using the hash me
hanisms des
ribed aboveSear
hing for advertisements is therefore short, and responses are exa
t and exhaustive, e.g., all the ad-vertisements that in
lude the requested memory size will be returned. But sin
e using a DHT on memorysizes means to generate a di�erent hash for ea
h memory size, JuxMem uses a parameterizable poli
y for thedis
retization of the spa
e of memory sizes. Thus, JuxMem will sear
h for the minimum memory size, givenby the poli
y used, that is superior to the one requested by 
lients. For example, if a 
lient wants to allo
ate amemory area of 1280 bytes, JuxMem will internally and automati
ally sear
h for a memory area of 2048 bytes,



JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 51
1

G1

G2 P

C

Group "cluster A4"

G4

3a

G3

3a

5

Group "cluster A3"

Group "cluster A1"

3b

4

6

2

3b

G6

G5

Group "cluster A5"

Group "cluster A6"

Group "cluster A2"

Provider

Client

Cluster managerFig. 3.2. Steps of an allo
ation request made by a 
lient.if it uses a power of 2 law for the spa
e dis
retization. Providers also internally use the same law when o�eringmemory areas, but provide the maximum memory size, given by the poli
y used, that is inferior to the one theywish to o�er.One of the 
onstraints we �xed is to support the volatility of nodes whi
h make up the 
lusters. Therefore,the advertisements published at a time t1 
an be invalid at the time t2 > t1, sin
e providers 
an disappear fromJuxMem at any time. The me
hanism used to manage this volatility of peers is based on republishing the 
lusteradvertisements whenever a 
hanging of the amount of memory provided is dete
ted. Besides, advertisementshave a limited but parameterizable lifetime, so it is ne
essary to periodi
ally republish them.Pro
essing an allo
ation request. Clients make allo
ation requests by spe
ifying the size of the memory areathey want to allo
ate. The di�erent steps for su
h a request, numbered on the Figure 3.2, are the following:1. The 
lient C of the 
luster group A1 wants to allo
ate a memory area of 8 MB with a redundan
ydegree of two. Consequently, it submits its request to the 
luster manager G1 to whi
h it is 
onne
ted.2. The 
luster manager G1 then determines that the peer responsible of advertisements having a memorysize of 8 MB in their list is the 
luster manager G3, using the hash me
hanism des
ribed previously.Therefore, the 
luster manager peer G1 forwards the request to G3.3. The 
luster manager G3 then determines that 
luster managers G2 and G4 mat
h the 
riterion of the
lient, and asks them to forward their 
luster advertisement to the 
lient C.4. The 
lient C then 
hooses the 
luster manager G2 as the peer having the �best� advertisement: forinstan
e the 
orresponding 
luster o�ers a higher degree of redundan
y than the 
luster handled by the
luster manager G4. Thus, it submits its allo
ation request to G2.5. The 
luster manager G2 re
eives the allo
ation request and handles it. If it 
an satisfy the request thenit asks one of its providers, for example P , to allo
ate a 8 MB memory area. If the request 
annot besatis�ed, an error message is sent ba
k to the 
lient.6. If the provider P 
an satisfy this request, it 
reates a 10 MB memory area, then sends ba
k theadvertisement of this memory area to the 
lient C. P be
omes the 
luster manager of the asso
iateddata group, whi
h means that it is responsible for repli
ating the data blo
k stored in that memoryarea. If the provider P 
annot satisfy the request, an error message is sent ba
k to the 
luster manager
G2, whi
h 
an try other provider peers of the 
luster group.If no providers 
an be found on the last step of an allo
ation request, an error message is sent ba
k to the 
lient.Then the 
lient 
an restart the allo
ation request from step 4, e.g., with another 
luster manager mat
hing therequested memory size. Finally, if no 
luster manager 
an allo
ate the memory area, the 
lient in
reases therequested memory size and restarts the allo
ation request from the beginning. This 
an be done N times (forexample N = 3) until the request is satis�ed or an error is reported at the appli
ation level.



52 G. Antoniu, L. Bougé and M. Jan3.3. Managing shared data. When a memory area is allo
ated by a 
lient, a data group is 
reatedon the 
hosen provider and an advertisement is sent to the 
lient. This advertisement allows the 
lient to
ommuni
ate with the data group. This advertisement is published at the juxmem's group level, but only theID of this advertisement is returned at the appli
ation level. A

ess to data by other 
lients is then possible byusing this ID: the platform transparently lo
ates the 
orresponding data blo
k.Storage of data blo
ks is independent of 
lients. Indeed, when 
lients dis
onne
t from JuxMem, data blo
ksstill remain stored in the data sharing servi
e on the providers. Consequently, 
lients 
an have a

ess to datablo
ks previously stored by other 
lients: they simply need to look for the advertisement of the data groupasso
iated with the data blo
k (whose identi�er is assumed to be known). The map primitive of the API ofJuxMem does this by taking in input the ID of the data blo
k. In this way, the storage of data blo
ks ispersistent.Ea
h data blo
k is repli
ated on a �xed, parameterizable number of providers for a better availability. Thisredundan
y degree is spe
i�ed as an attribute at allo
ation time. The 
onsisten
y of the di�erent 
opies mustthen be handled. In this �rst version of JuxMem, the use of a multi
ast at the level of the juxmem group solvesthis problem: the di�erent 
opies of a same data blo
k are simultaneously updated whenever a writing a

ess ismade. Alternative 
onsisten
y models and proto
ols will be experimented in further versions. Note that 
lientswhi
h have previously read a data blo
k are not noti�ed of this update: 
lients do not store a 
opy of datablo
k. Therefore, the result of a reading whi
h is valid at a time t1, may not be valid at time t2 > t1. It isworth noting that this di�eren
e between 
lient and providers allows to handle a high number of 
lients withouthaving to deal with a high number of 
opies of data blo
ks. Syn
hronization between 
lients whi
h 
on
urrentlya

ess a data blo
k is handled using the lo
k/unlo
k primitives.3.4. Handling volatile providers. In order to tolerate the volatility of peers, a stati
 repli
ation of dataon a �xed and parameterizable number of providers is not enough. Indeed, the set of providers hosting a 
opyof the same data blo
k 
an su

essively be
ome unavailable. A dynami
 monitoring of the number of 
opiesfor data is therefore needed. Consequently, ea
h data group has a manager (noted data manager) whi
h is in
harge of monitoring the level of redundan
y of the data blo
k. If this number goes below the one spe
i�edby 
lients, the data manager must sear
h and ask a provider to host an extra 
opy of the data blo
k. Whenthe data manager de
ides to repli
ate it, it must �rst lo
k it (internally) in order to maintain 
onsisten
y. Theprovider whi
h will host this new 
opy is then responsible for unlo
king it. A timeout me
hanism followed by aping test is used in order to dete
t if the provider be
ame unavailable just before unlo
king the data blo
k. Ifit is the 
ase, then the data manager unlo
ks itself the data blo
k.3.5. Handling volatile managers. If a 
luster manager goes down, this 
ould lead to the unavailabilityof resour
es provided by a whole 
luster. The role of 
luster manager (noted main 
luster manager) is thereforeautomati
ally dupli
ated on another provider of the 
luster (
alled se
ondary 
luster manager). Managersperiodi
ally syn
hronize using a me
hanism based on the ex
hange of provider advertisements, in order to �ndout new advertisements published. They 
an thus both know in a nearly a

urate manner the amount ofmemory available in the 
luster. A me
hanism based on periodi
al heartbeats allows to dynami
ally ensure thisdupli
ation of 
luster managers. Su
h a me
hanism is also used for the data managers (see Se
tion 3.4). Notethat, the possible 
hanges of managers in the 
luster and data groups, due to the unavailability of managers,are not seen outside these groups. The availability of 
lusters and of data blo
ks is thus maximized, whereasthe perturbation on the 
lient side is minimized.4. Implementation and preliminary evaluations.4.1. Implementation of JuxMem within the JXTA framework. In order to build a prototypeof the software ar
hite
ture des
ribed in the previous se
tion, we have used the JXTA generi
 peer-to-peerframework (see Se
tion 2.3). Our JuxMem prototype uses the referen
e Java binding of JXTA (whi
h is todaythe only binding 
ompatible with the JXTA 2.0 spe
i�
ation). JuxMem is written in Java and in
ludes about50 
lasses (5000 
ode lines).JXTA fully meets the needs of JuxMem. Thus, managers of data and 
luster groups are based onJXTA's rendezvous peers. Indeed, managers have to know if providers are still alive by using a ping test inorder to manage a 
luster or a blo
k of data. This 
an only be done if providers have previously publishedtheir advertisements on managers, whi
h need to extra
t the address of ea
h provider. Moreover, only JXTA'srendezvous peers 
an forward requests inside the JXTA network; these peers 
orrespond to the role of main



JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 53

0

20

40

60

80

100

160 140 120 100 80 60 50 40 30

Seconds elapsed between provider losses

R
el

at
iv

e 
ov

er
he

ad
 (

%
)

Fig. 4.1. Relative overhead due to the volatility of providers for a sequen
e lo
k -put -unlo
k , with respe
t to a stable system.managers. For example, data managers have to forward a

ess requests, made by 
lients, to providers hostinga 
opy of the data blo
k. In the same way, 
luster managers have to forward allo
ation requests, made by
lients, to providers. Clients and providers whi
h do not a
t as data managers for one or several blo
ks of dataare based on JXTA's edge peers. Indeed, they do not have to play a role in the dynami
 monitoring of thenumber of 
opies for a blo
k of data in the system. Therefore, they do not have to store published provideradvertisements. Moreover, 
lients only need to dis
over and store 
luster advertisements whi
h will allow themto allo
ate memory areas. The various groups de�ned in JuxMem are implemented by JXTA's peer groups. Thejuxmem group implements a JXTA peer group servi
e providing the API of JuxMem (see Se
tion 3.1). Finally,the 
ommuni
ation 
hannels of JXTA also o�er the needed support for building multi
ast 
ommuni
ations forsimultaneously updating 
opies of the same blo
k of data.4.2. Preliminary evaluations. For our preliminary experiments, we used a 
luster of 450 MHz PentiumII nodes with 256 MB RAM, inter
onne
ted by a 100 MB/s FastEthernet network.We �rst measured the memory 
onsumption overhead generated by the di�erent JuxMem peers with respe
tto the underlying JXTA peers used to build JuxMem peers. This overhead is reasonable: it ranges between5% and 7.4%.We then measured the in�uen
e of the volatility degree of provider peers on the duration of a sequen
elo
k-put-unlo
k exe
uted in a loop by a 
lient. This sequen
e in the loop is made on a data blo
k stored inJuxMem. The goal of this measure is to evaluate the relative overhead generated by the repli
ations whi
htake pla
e in order to maintain a given redundan
y degree for a given blo
k of data. This repli
ations aretransparently triggered when the servi
e dete
ts that a provider holding a data blo
k goes down. If theserepli
ations take pla
e while a 
lient a

esses the data blo
k being repli
ated, these a

esses slow down.The test program �rst allo
ates a small memory area (1 byte) on a provider belonging to 
luster and writesto it a data blo
k. The redundan
y degree is set to 3. The allo
ation takes pla
e on a 
luster initially 
onsistingof 16 providers and one 
luster manager. 16 ma
hines of the 
luster previously des
ribed host a provider, onema
hine of the same 
luster hosts a 
luster manager and another ma
hine of the same 
luster hosts a 
lient.The 
lient exe
utes a 100 iteration loop, and ea
h iteration 
onsists of a sequen
e lo
k-put-unlo
k.During the exe
ution of this loop, a random provider hosting a 
opy of the data is killed every δ se
onds,where δ is a parameter of the experiment. In order to measure only the overhead due to the volatility ofproviders, the data manager of the asso
iated group is never killed.Figure 4.1 shows the relative overhead measured, with respe
t to a stable system (i.e. where no providergoes down during the loop exe
ution: δ = ∞). When the data manager dete
ts that providers holding a 
opy ofthe data blo
k have gone down, it tries to repli
ate the blo
k on other available providers, whi
h are not alreadyhosting a 
opy of the data blo
k. To ensure the 
onsisten
y of the data during its repli
ation, 
lients are notallowed to modify it. Therefore, the system has to internally lo
k the data. As a result of this internal lo
king,the sequen
e lo
k-put-unlo
k is longer, sin
e the 
lient is blo
ked and has to wait for the lo
k to be set free.



54 G. Antoniu, L. Bougé and M. JanThe 
urve pro�le is explained by the number of times the system repli
ates the data on providers, in orderto maintain the redundan
y degree spe
i�ed by the 
lient (whi
h is 3 for this test). For the whole duration ofour test, the number of triggered repli
ations is given in the Table 4.1 as a fun
tion of the δ parameter.For highly volatile systems (δ < 80 s), the number of repli
ations triggered be
omes higher than 2 andthe relative overhead be
omes signi�
ant. For δ = 30 s, it rea
hes more than 65% (10 repli
ations triggered).However, in a realisti
 situation, the node volatility on the ar
hite
ture we 
onsider is typi
ally a lot weaker(δ ≫ 80 s). For su
h values, the re
on�guration overhead is less than 5%. We 
an reasonably say that theJuxMem platform in
ludes a me
hanism whi
h allows to dynami
ally maintain a 
ertain redundan
y degree fordata blo
ks, in order to improve data availability, without signi�
ant overhead, while authorizing node failures.Table 4.1Number of triggered repli
ations when the volatility of provider peers evolves from 160 to 30 se
onds.Se
onds 160 140 120 100 80 60 50 40 30Number of triggered repli
ations 1 1 1 1 2 2.5 5 5.5 105. Con
lusion. This paper de�nes a hierar
hi
al ar
hite
ture for a data sharing servi
e managing mutabledata within a grid 
onsisting of a federation of 
lusters. This ar
hite
ture has been designed using a peer-to-peerapproa
h, and demonstrated through the JuxMem platform. Not only the ar
hite
ture allows to redu
e thenumber of messages to sear
h for a pie
e of data, thanks to a hierar
hi
al sear
h s
heme, but it also allows totake advantage of spe
i�
 features of the underlying physi
al ar
hite
ture. The management poli
y for ea
h
luster 
an be spe
i�
 to its 
on�guration, for instan
e in terms of network links to be used. Thus, some 
lusters
ould use high-bandwidth, low-laten
y networks for intra-
luster 
ommuni
ation, if available.The JuxMem user 
an allo
ate memory areas in the system, by spe
ifying an area size and some attributes,su
h as a redundan
y degree. The allo
ation primitive returns an ID whi
h identi�es the blo
k of data. Then,data lo
alization and transfer is fully transparent, sin
e this ID is su�
ient in order to a

ess and manipulatethe 
orresponding data wherever it is: no IP address nor port number needs to be spe
i�ed at the appli
ationlevel.Our ar
hite
ture supports the volatility of all types of peers. This kind of volatility is also supported in peer-to-peer systems su
h as Gnutella or KaZaA, whi
h enhan
e data availability thanks to redundan
y. However,this is a side e�e
t of the user a
tions. In 
ontrast, our system a
tively takes into a

ount this volatility: thisallows not only to maintain a 
ertain degree of data redundan
y (as in systems like Ivy or CFS [5℄), but also tosupport the volatility of peers with �spe
i�
� responsibilities (e.g., 
luster managers, or data managers).The implementation of a JXTA-based prototype has shown the feasibility of su
h a system. However,note that the design of JuxMem is not dependent on JXTA. A
tually, other libraries 
ould be used, su
h asJavaGroups [13℄. We used the Java version of JXTA, sin
e this is the most advan
ed binding of JXTA, the onlyone 
ompatible with the JXTA 2.0 spe
i�
ation.The modular ar
hite
ture of JXTA allows to easily add and remove servi
es and/or proto
ols, in
luding
ommuni
ation proto
ols. This should eventually allow the platform to take advantage of high-performan
enetworks (su
h as Myrinet or SCI) for data transfer. We plan to address this problem in the future. We alsoplan to use JuxMem as an experimental platform for di�erent data 
onsisten
y strategies supporting peervolatility, in order to build a 
on�gurable, adaptive data sharing servi
e for mutable data. The �nal goal is tointegrate this servi
e into large-s
ale 
omputing environments, su
h as DIET [4℄, developed at ENS Lyon. Thiswill allow an extensive evaluation of the servi
e, with realisti
 
odes, using various data a

ess s
hemes.REFERENCES[1℄ B. All
o
k, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder and S. Tue
ke, GridFTP Proto
olSpe
i�
ation, GGF GridFTP Working Group Do
ument, Sept. 2002.[2℄ A. Bassi, M. Be
k, G. Fagg, T. Moore, J. Plank, M. Swany and R. Wolski, The Internet Ba
kplane Proto
ol: A studyin resour
e sharing, In 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid2002),pages 194�201, Berlin, Germany, May 2002. IEEE.[3℄ J. Bester, I. Foster, C. Kesselman, J. Tedes
o and S. Tue
ke, GASS: A data movement and a

ess servi
e forwide area 
omputing systems, In 6th Workshop on I/O in Parallel and Distributed Systems (IOPADS '99), pages 77�88,Atlanta, GA, May 1999. ACM Press.



JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 55[4℄ E. Caron, F. Desprez, F. Lombard, J.-M. Ni
od, M. Quinson and F. Suter, A s
alable approa
h to network enabledservers, In B. Monien and R. Feldmann, editors, 8th International Euro-Par Conferen
e, volume 2400 of Le
ture Notesin Computer S
ien
e, pages 907�910, Paderborn, Germany, Aug. 2002. Springer-Verlag.[5℄ F. Dabek, F. Kaashoek, D. Karger, R. Morris and I. Stoi
a, Wide-area 
ooperative storage with CFS, In 18th ACMSymposium on Operating Systems Prin
iples (SOSP '01), pages 202�215, Chateau Lake Louise, Ban�, Alberta, Canada,O
t. 2001.[6℄ A. Datta, M. Hauswirth and K. Aberer, Updates in highly unreliable, repli
ated peer-to-peer systems, In 23rd Interna-tional Conferen
e on Distributed Computing Systems (ICDCS 2003), pages 76�87, Providen
e, Rhode Island, USA, May2003.[7℄ I. Foster and C. Kesselman, Globus: A meta
omputing infrastru
ture toolkit, The International Journal of Super
omputerAppli
ations and High Performan
e Computing, 11(2):115�128, 1997.[8℄ J. Kubiatowi
z, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,C. Wells and B. Zhao, O
eanStore: An ar
hite
ture for global-s
ale persistent storage, In 9th International Conferen
eon Ar
hite
ture Support for Programming Languages and Operating Systems (ASPLOS 2000), number 2218 in Le
tureNotes in Computer S
ien
e, pages 190�201, Cambridge, MA, Nov. 2000. Springer.[9℄ A. Muthita
haroen, R. Morris, T. M. Gil and B. Chen, Ivy: A read/write peer-to-peer �le system, In 5th Symposiumon Operating Systems Design and Implementation (OSDI '02), Boston, MA, De
. 2002.[10℄ A. Oram, Peer-to-Peer: Harnessing the Power of Disruptive Te
hnologies, 
hapter Gnutella, pages 94�122, O'Reilly, May2001.[11℄ J. Proti¢, M. Tomasevi¢ and V. Milutinovi¢, Distributed Shared Memory: Con
epts and Systems, IEEE, Aug. 1997.[12℄ S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao and J. Kubiatowi
z, Pond: the o
eanstore prototype, In2nd USENIX Conferen
e on File and Storage Te
hnologies (FAST '03), Californie, CA, USA, Mar. 2003.[13℄ JavaGroups, http://www.javagroups.
om/javagroupsnew/do
s/index.html[14℄ The JXTA proje
t, http://www.jxta.org/[15℄ JXTA v2.0 proto
ol spe
ifi
ation, http://spe
.jxta.org/nonav/v1.0/do
book/JXTAProto
ols.pdf, Mar. 2003.[16℄ KaZaA, http://www.kazaa.
om/[17℄ Napster proto
ol spe
ifi
ation, http://opennap.sour
eforge.net/napster.txt, Mar. 2001.[18℄ The NetSolve proje
t, http://i
l.
s.utk.edu/netsolve/Edited by: Wilson Rivera, Jaime Seguel.Re
eived: June 26, 2003.A

epted: September 1, 2003.


