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t.The size of data sets produ
ed on remote super
omputer fa
ilities frequently ex
eeds the pro
essing 
apabilities of lo
al visualizationworkstations. This phenomenon in
reasingly limits s
ientists when analyzing results of large-s
ale s
ienti�
 simulations. Thatproblem gets even more prominent in s
ienti�
 
ollaborations, spanning large virtual organizations, working on 
ommon shared setsof data distributed in Grid environments. In the visualization 
ommunity, this problem is addressed by distributing the visualizationpipeline. In parti
ular, early stages of the pipeline are exe
uted on resour
es 
loser to the initial (remote) lo
ations of the data sets.This paper presents an e�
ient te
hnique for pla
ing the �rst two stages of the visualization pipeline (data a

ess and data�lter) onto remote resour
es. This is realized by exploiting the �extended retrieve� feature of GridFTP for �exible, high performan
ea

ess to very large HDF5 �les. We redu
e the number of network transa
tions for �ltering operations by utilizing a server sidedata pro
essing plugin, and hen
e redu
e laten
y overhead 
ompared to GridFTP partial �le a

ess. The paper further des
ribesthe appli
ation of hierar
hi
al rendering te
hniques on remote uniform data sets, whi
h make use of the remote data �ltering stage.1. Introdu
tion. The amount of data produ
ed by numeri
al simulations on super
omputing fa
ilities
ontinues to in
rease rapidly in parallel with the in
reasing 
ompute power, main memory, storage spa
e, andI/O transfer rates available to resear
hers. These developments in super
omputing have been observed to ex
eedthe growth of 
ommodity network bandwith and visualization workstation memory/performan
e by a fa
tor of4 [11℄. Hen
e, it is in
reasingly 
riti
al to use remote data a

ess te
hniques for analyzing this data. Amongother fa
tors, this tenden
y is strengthened by the in
reasing prominen
e of large, spatially distributed s
ienti�

ollaborations working on 
ommon, shared sets of data. Under these 
onditions, the simple approa
h of (partial)data repli
ation for lo
al data analysis does not s
ale.The sheer size of existing data sets 
reates a demand for �exible and adaptive visualization te
hniques, su
has hierar
hi
al rendering or viewpoint dependent resolution. Su
h te
hniques 
an redu
e the initial amount ofdata to be visualized by maintaining the overall visual impression of the full data set. This 
an be a
hieved(e.g.) by retrieving the portions of the data set whi
h are important to the user; or by retrieving low resolutionversions of the full data set �rst, and re�ning this data later. Remote a

ess to partial interesting portions oflarge data �les 
an signi�
antly support these te
hniques.One major problem of naive remote data a

ess te
hniques is the inherent di�
ulty in handling meta datafor large data sets. Meta data is the highly stru
tured set of information des
ribing the data set, 
ontaining(e.g.) the number of samples per 
oordinate axis and the data volume bounds within physi
al spa
e. Whilethe metadata itself is relatively small, meta data a

ess is often 
onne
ted with many small read operationsand many seek operations. However, individually requesting many seeks over a remote, potentially high-laten
y
onne
tion is quite ine�
ient for proto
ols that do not support transa
tions over higher level operations [13, 19℄.In general, these developments ultimately require distributing the pipeline used for data visualization. Thepresent paper des
ribes te
hniques useable for distributing early stages of this visualization pipeline. Spe
i�
ally,we enable the appli
ation to e�
iently a

ess portions of remote large data sets present in the HDF5 �leformat [2℄. This general approa
h 
an be adapted both to other �le formats and other a

ess patterns. Thepaper further presents higher level visualization te
hniques whi
h utilize these data a

ess me
hanisms to provideadaptive and progressive rendering 
apabilities.The paper is stru
tured as follows. First, we des
ribe the problem spa
e our approa
h is targeting in moredetail in se
t. 2. Next, we relate our resear
h to other relevant resear
h a
tivities (see se
t. 3). In se
t. 4 followsan overall des
ription of the te
hniques we developed. Se
t. 5 and 6 des
ribe the main 
omponents in morete
hni
al detail. The paper 
on
ludes with two se
tions about our results and an outlook for future work.2. S
enario. The in
reasing gap between resour
es available at remote super
omputing 
enters and on thelo
al workstations of individual resear
hers is one of the major motivations for our resear
h. In parti
ular, we aimto improve the a

ess to Grand Challenge simulation results as produ
ed by numerous resear
h 
ollaborations
∗Zuse Institute Berlin (ZIB), http://www.zib.de/, {hege, hutanu, kaehler, merzky, ullmer}�zib.de
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58 Hans-Christian Hege, Andrei Hutanu, Ralf Kähler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmeraround the world [12, 25, 26℄. These simulations tend to drive the resour
e utilization of super
omputer resour
esto the available maximum, and often produ
e immense amounts of data during single simulations runs.As an exemplary appli
ation we 
onsider numeri
al relativity simulations performed in the Ca
tus simula-tion framework [10℄. Among other things, this framework provides the simulation 
ode with an e�
ient I/Oinfrastru
ture to write data to HDF5 �les. The astrophysi
al simulations in question write data for s
alar,ve
tor and tensor �elds (as 
omponents stored in separate data sets or �les), and parameters for simulationruns. A typi
al size for a data �le is on the order of tens of gigabytes1.Visualization of this data during post simulation analysis usually does not require a

ess to the 
ompletedata set. For typi
al produ
tion runs, where many di�erent physi
al �elds are written to disk, only a 
oupleof these �elds are visualized later. The data sets and subsets that are to be visualized are not initially known,but depend on intera
tive sele
tions by the user (timestep, �eld, resolution, spatial area, et
.). For our targetusers, this �exibility needs to be maintained as far as possible.Within these 
onstraints, our target s
enario is the following:A s
ientist performs a large s
ale simulation run, utilizing one or more super
omputing re-sour
es at di�erent lo
ations. The simulation run produ
es up to TBytes of data, by storingvarious s
alar and ve
tor �elds to HDF5 �les. These HDF5 �les are 
reated a

ording to a
ustom prede�ned stru
ture.After the simulation �nishes, members of the s
ientists' 
ollaboration wish to visualize the data,or portions hereof, from remote workstations. They would like to use standard visualizationte
hniques from their visualization environment. They also wish to intera
tively 
hoose thedata �elds to be visualized, and to intera
tively 
hange the spatial sele
tion and resolution forthe data.Ideally, the data transfer and visualization are adaptive to the available network 
onne
tivity,and hides data distribution details from the user.This s
enario de�nes the problem spa
e we are targeting. We expli
itely do not expe
t to �nd data on theremote systems whi
h are, by pre- or postpro
essing, spe
i�
ally prepared for later visualization. We also wantto provide a solution for environments with notorious short supply of I/O bandwith and 
ompute resour
es. Andwe want to enable remote visualization for a broad width of end users, 
onne
ted to the Grid by a wide rangeof network types and with varying, potentially low end 
ommodity systems. The ability of the visualizationpipeline to be adaptive to that range of boundary 
onditions is a 
entral point of our e�orts�the fo
us of thepaper on progressive data retrieval patterns and on hierar
hi
al rendering te
hniques emphasizes this.3. Related Work. To support the s
enario we presented, it is ultimately ne
essary to distribute thepipeline used for data visualization. In prin
iple, there are many possible ways to distribute this pipeline (�g. 3.1)over remote resour
es. The distribution s
hemes used in real world systems are limited by the 
ommuni
ationrequirements for transferring data between the stages of the pipeline, and by the 
omplexity of the resultingdistributed software systems.
Data
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user controlFig. 3.1. Most visualization systems share the same underlying visualization pipeline [27℄.The 
omponents of the pipeline 
an be freely distributed, in prin
iple, as the 
ommuni
ationelements between these 
omponents have di�erent demands on laten
y and bandwith required.All elements of the pipeline should be 
ontrolled by the end user or by the appli
ation.Early stages of the pipeline�remote a

ess and remote �ltering�potentially need to transfer and pro
esslarge amounts of data, but show 
onsiderable �exibility with respe
t to laten
y. Also, by distributing these early
1With a spatial resolution of 256 
ubed, this 
orresponds to only a few s
alar �elds and one ve
tor �eld in 64 bit, for 1000 timesteps of evolution, with every 10th step saved to disk.
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al Visualization of Large Remote Data 59stages, it is possible to 
ompletely hide the data lo
ality from appli
ation and end user. Remote a

ess solutionsas NFS [4℄ and AFS [3℄ allow transparent utilization of standard (lo
al) �le I/O te
hniques. However, systemslike NFS and AFS are problemati
 in the administrative maintenan
e. For widely distributed environmentsspanning multiple administrative domains these solutions are not appli
able.Common remote data a

ess te
hniques 
rossing administrative boundaries are marked by several limita-tions. Some, like SCP and FTP, do not support a

ess to partial �les, whi
h is not a

eptable for our purpose ofadaptive visualizing. Other te
hniques fail to deliver the performan
e required for intera
tive data visualization.For example, the GridFTP support for a

ess to remote �les with the partial �le a

ess feature [9℄ is ine�
ientfor meta data a

ess. Due to the �le format 
hosen by HDF5, meta data is not ne
essarily stored in a 
ontinuous�le spa
e, but instead s
attered in a hierar
hi
al binary tree. Also, a single read on the HDF5 API level maybe translated by the library into many individual low-level seek/read operations on the virtual �le driver level.Other proto
ols are similarly la
king in support for transa
tions of higher level operations [13, 19℄.Remote �ltering te
hniques often integrate models of meta data and data stru
tures, and 
an perform thedata a

ess e�
iently2. Also, putting the remote �lter on the remote site 
an signi�
antly redu
e the amount ofdata to be transferred over the net, and ensures that only the data a
tually needed for the visualization pro
essis retrieved and transferred. A standard problem for remote �ltering is that this pro
ess needs to integrate amodel of the data stru
tures it is operating upon. It is di�
ult or impossible to implement �ltering withoutexpli
it information about what is to be �ltered, and this information is di�
ult to express in a general waythat is appli
able over a broad range of data formats and models. Hen
e, remote �ltering te
hniques are oftenlimited to spe
i�
 �le and data types, and to spe
i�
 �ltering operations.The Data Cutter proje
t [14℄ is another well known representative of the remote �ltering approa
h. Itprovides the appli
ation programmer with a �exible and extensible �lter pipeline to a

ess portions of theoriginal data set. Compared to our approa
h, there are several main di�eren
es. First, the data 
utter requiresthe data to be stored in 
hunked data �les in order to bene�t from its boundary box indexing s
heme, sin
eall 
hunks with a bounding box at least partly overlapping with the area of interest are 
ompletely read intomemory, and passed to the �lter pipeline. Also, sin
e all �lters pass data using network 
ommuni
ation, thetotal network load is mu
h higher than for our approa
h, where the �lter resides at the data sour
e, and istightly 
oupled to the data a

ess stage. Further, our utilization of standard Grid tools (GridFTP and GSI)seems more appropriate for the targeted Grid environment. On the other hand, Data Cutters user de�nable�lter pipeline is more �exible than our approa
h.One widely used 
ompromise for remote �ltering is the usage of prepro
essed data sets: during the simu-lations I/O stage or during a post pro
essing step, �lter operations are applied to 
reate new data sets on theremote resour
es. These data sets are stored in optimized form making later remote a

ess and visualizationvery e�
ient. In the future, more and more simulation frameworks will support su
h features, not at leastin order to improve their own I/O 
hara
teristi
s, i.e. due to 
ompression on the �y, but also to enable thee�
ient handling of the very large data sets, after 
ompletion of the sour
e simulation. Wavelet transformeddata storage is an ex
ellent example of that te
hnique [22℄, whi
h allows lossless 
ompression, and adaptive,e�
ient o�ine a

es to optimally resolved data samples. Other example �lters 
reate o
trees [18℄ or similarstru
tured representations [21℄, or provide progressive mesh generation.For the problem spa
e we des
ribed with our s
enario, pre applied �lters are no valid option, sin
e theyeither need to be integrated into the simulation I/O 
ode, what they aren't in our 
ase; or they need to beexe
uted via external jobs on the remote resour
e. This dupli
ates the storage needed and potentially performsex
ess work, thereby wasting 
ostly super
omputing resour
es.After �ltering, visualization algorithms work on the data and map essential features into geometries (in
lud-ing 
olor and texture information, et
.). The next stage renders images from these geometri
al representation.In the future, these stages may also be exe
uted 
lose to the data sour
e, on the super
omputer itself. Thiswould be the most e�
ient way to handle large simulation data, sin
e the amount of data to be transferedduring the later stages of the visualization pipeline typi
ally de
reases signi�
antly. Completely 
hanged a

esspatterns to remote data 
an signi�
antly redu
e the amount of data transfered. Visualization algorithms usingsu
h patterns [23℄, in parti
ular for large data, are seen as use 
ases for the presented work.The best prospe
ts of deploying su
h s
enarios have those environments 
ontaining PC-
luster based super-
omputers. Here, adding 
ommodity graphi
s boards to all nodes does not in
rease the total 
osts signi�
antly,
2If the �lter stage is lo
ated on the remote site, the data a

ess is often performed lo
al to the �lter.
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e image rendering. These types of 
lusters are be
oming in
reasingly 
ommon, butare still rare in the top500 [6℄. For the 
ollaborative and highly intera
tive visualization s
enario we envision,the feedba
k to the remote and distributed rendering system gets important, and 
omplex. Also, in perhapsthe most important point, the �eld is 
urrently missing su�
iently �exible software solutions whi
h are ableto realize su
h s
enarios. Promising approa
hes do exist through work su
h as [8, 7, 24℄, and we expe
t majorprogress in that �eld over the next de
ade.4. Ar
hite
ture. Our proposed remote data a

ess s
heme builds upon the GridFTP proto
ol [9℄.GridFTP is a Grid-aware extension to the standard FTP proto
ol. Amongst others, it provides a �exible serverside pro
essing feature, and allows spe
i�
ation of 
ustom operations on remote data. These operations areperformed by 
orresponding 
ustom extensions (�plugins�) to the GridFTP server. This te
hnique is des
ribedin more detail in se
t. 5. We utilize these server side data pro
essing 
apabilities to perform data �ltering oper-ations on the s
ienti�
 data sets. As des
ribed, the data sets are stored remotely in HDF5 format. Our pluginto the GridFTP server a

esses this data lo
ally via the HDF5 library, and performs data �ltering on the �y.
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Fig. 4.1. The GridFTP proto
ol transports ERET 
ommands from the visualization systemto the GridFTP server, whi
h forwards them to the HDF5 plugin. This way, the plugin 
anperform I/O operations plus �ltering and data type 
onversion on the HDF5 �le with full lo
alperforman
e. Data is transferred ba
k via ESTO 
ommands, and is written into the memorybu�er of the visualization pro
ess.An important element for the ar
hite
tural de
isions is the usage of the HDF5 �le format [1℄. Given the
omplexity of this format and the ongoing improvement e�orts 
on
erning the asso
iated API, the de
ision wasto use the existing API and to have the remote a

ess pro
edures either on top of the API or as also des
ribedin se
t. 3 underneath of it. The ar
hite
ture des
ribed in this work has the remote operations on top of theHDF5 API, a limited set of high-level operations was 
hosen to be implemented by making use of the existingAPI, and these operations were integrated in the GridFTP server to be exe
uted at the remote site.A 
omplete visualization session is performed as follows. The user sele
ts a data �le to be visualized bybrowsing the remote �le spa
e. Next, a 
onne
tion to the remote GridFTP server is established, using theusers GSI 
redential. The server plugin is utilized to perform an extra
tion of the �les meta data (see se
t. 5),whi
h is then transfered to the visualization host and 
a
hed on the lo
al �le system. The visualization systema

esses this lo
al HDF5 �le, extra
ts all needed information (number of time steps, bounding box, resolution,. . . ), and 
reates an o
tree hierar
hy �tting the data set. The user 
an intera
tively spe
ify the depth of thehierar
hy. As the user then triggers various visualization operations on the data (to produ
e orthosli
es, hight�elds, volumetri
 renderings), the o
tree blo
ks are s
heduled in a separate thread for data reading. The readrequests are served a

ording to a priority tag de�ned for the visualization, and ea
h trigger a GridFTP dataa

ess. This GridFTP data a

ess utilizes our remote GridFTP server side data pro
essing plugin. It extra
tsthe data in the blo
k spe
i�
 resolution and returns this data. On arrival, the data is stored within the o
treehierar
hy, and the visualization is triggered to update the rendering by in
luding the newly arrived data.On user request (e.g., next timestep) or timeout, all pending blo
k reads 
an be 
an
eled. Our visualizationte
hniques (see se
t. 6) use these features for dynami
 data a

ess to optimize visualization performan
e byrequesting data blo
ks 
lose to the viewpoint �rst, and by progressively improving data (and image) resolution.5. GridFTP. As des
ribed in se
t. 4, the GridFTP proto
ol plays a 
entral role in our data a

ess s
hema.GridFTP is mostly used for network �le transfer, whereby this paper explores its usage for memory to memory
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h gives us a number of advantages if 
ompared to approa
hes implemented on top of
ustom or proprietary proto
ols.1. GridFTP allows for server side data pro
essing, whi
h we utilize for data �ltering.2. The GridFTP proto
ol, as an extension to the standard FTP proto
ol, is well known and reliable.3. It allows the in
orporation of standard servers for solutions with limited fun
tionality.34. The GridFTP infrastru
ture takes 
are of:
• establishing the data 
onne
tion;
• ensuring authenti
ation and authorization;
• invoking the data �lter plugin; and
• performing the data transfer;In this way, the data transfer task is redu
ed to �lling a bu�er on the writing and reading it on there
eiving end.The following subse
tions des
ribe the server side pro
essing in more detail, and spe
ify the low level operationswe use.5.1. Server-Side Pro
essing. As des
ribed before, the GridFTP proto
ol enables support for adding
ustom 
ommands for server side data pro
essing [9℄. Spe
i�
ally, the plugins o�ered by a server de�ne setsof ERET and ESTO parameters that 
orrespond to the data �lter module implemented by the plugin4. Theextended store (ESTO) and extended retrieve (ERET) 
ommands of the GridFTP proto
ol are de�ned asfollowing:ESTO <module_name>="<modules_parms>" <filename>ERET <module_name>="<modules_parms>" <filename>module_name is a server-spe
i�
 string representing the name of the module to be used. The se
ond string(module_parms) is module spe
i�
 and de�nes the operation to be performed by the module. The last parameter(filename) spe
i�es the �le to be pro
essed, whi
h 
an be any �le that 
an be pro
essed by the given module.In our 
ase, any HDF5 �le.5.2. Operations. We use this ERET/ESTO me
hanism to de�ne two operations that 
an be applied toHDF5 �les: one for meta data �ltering, and a se
ond one for data a

ess.Meta Data Filtering. The �rst operation is the �ltering of meta data from the HDF5 �le. This is a
hievedby 
reating a �ltered 
opy of the original �le. Toward this end, the module reads and parses the original �le,and writes the meta data information to a 
opy of the �le. However, when 
opying (writing) a data set, we usethe HDF5 �lter interfa
e and apply a �lter to the original �les data set. This �lter redu
es all data sets to zerolength5. Thus, the only resulting di�eren
es between the generated �le and the original one are in the dataarray and storage layout of the data sets. All other information�e.g., the hierar
hy (groups), attributes, anddata set information (name, data type and data spa
e)�is preserved. While this approa
h might seem like asigni�
ant overhead, it is in fa
t very fast, due to the good performan
e of HDF5.The generated �le is transferred to the requesting 
lient using GridFTP. The ERET 
ommand for requestingthe meta data �le is:ERET Hdf5="METADATA" <filename>filename is the �le from whi
h the meta data will be extra
ted. Given the now dramati
ally redu
ed size ofthe �le, the transfer time is very small relative to the transfer time of the original data6. After the high-level�ltering 
all is exe
uted remotely and the transfer is �nished, the 
lient 
an a

ess the lo
al meta data �leusing the standard HDF5 API. In this way, we avoid to exe
ute ea
h HDF5 API 
all remote, and still o�erthe user the �exibility of the original API for meta data a

ess. Be
ause the data set stru
tures within thistemporary lo
al �le do not 
ontain a
tual data, the standard API 
annot be used for data a

ess. For thistask, we provide a se
ond API 
all.

3bakwards 
ompatible with FTP, by using normal FTP we 
ould transfer the �le to a lo
al disk 
a
he; for standard GridFTPserver(without plugins) we use dire
t partial �le a

ess (ERET PART, for �ltering ine�
ient).
4Not all servers implement the same set of modules. In the 
urrent implementation, the plugins are 
ompiled together with theserver, and are stati
ally linked.
5A
tually, for te
hni
al reasons internal to HDF5 the length is 1.
6See se
t. 7 for the times for meta data loading
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ond operation performs data sele
tion and �ltering. Byknowing the data set 
oordinates (dimensions, data type) from the now lo
ally available meta data, the 
lient
an 
hoose to read an entire data set, or a portion of the data set. The HDF5 data sets logi
ally group thea
tual data within multidimensional arrays named �data spa
es.� The model we use to spe
ify a portion froma data set is based on the HDF5 �hyperslab� model. A hyperslab des
ribes either a 
ontiguous 
olle
tion ofpoints, or a regular pattern of points or blo
ks in the data spa
es. A hyperslab is spe
i�ed by four parameters:
• origin: the starting lo
ation;
• size: the number of elements (or blo
ks) to sele
t along ea
h dimension;
• stride: the number of elements to separate ea
h element (or blo
k) to be sele
ted; and
• blo
k: the size of ea
h blo
k sele
ted from the data set.All of these parameters are one-dimensional lists, with lengths equal to the number of dimensions of the dataset. The elements of these lists spe
ify data array lengths or o�sets for 
orresponding dimensions of the dataarrays. Currently the size of element blo
ks is prede�ned to one, whi
h is adequate for the targeted visualizations
enario. In future work, we will extend the proto
ol to a

ept variable blo
k sizes.Our 
urrent me
hanism for spe
ifying the hyperslab 
oordinates takes the following form:ERET Hdf5="BLOCK:NAME=<datasetname>;\DIMENSIONS=<dims>;\ORIGIN=<orig0>,<orig1>,...,<orign>;\SIZE=<size0>,<size1>,...,<sizen>;\SAMPLING=<sampling0>,<sampling1>,...,<samplingn>"<filename>datasetname is the fully quali�ed name (in
luding the path to the data set) of the data set from whi
h datashould be read; orig0 to orign are the 
oordinates of the �rst element to be sele
ted from the data set; size0to sizen are the number of elements to be sele
ted in ea
h dimension; and sampling0 to samplingn representthe distan
e between two sele
ted elements for ea
h dimension.This request is sent to the server. The server opens the �le �lename, opens the given data set, and readsthe portion of the �le spe
i�ed by the given parameters. This pro
edure is performed via native HDF5 library
alls. Next, the retrieved data is sent via the GridFTP 
onne
tion to the 
lient, whi
h will 
onvert the datato the lo
al byte order if needed. To determine if 
onversion is ne
essary, the �rst 32 bits sent by the serverrepresent an integer with the value of 1, en
oded using the servers byte ordering.The approa
h we have taken in 
reating this limited HDF5 API wrapper does redu
e the �exibility providedby the original API. Nonetheless, for our visualization s
enario this API is appropriate, and makes signi�
antsteps toward maximizing overall performan
e. To retain the �exibility of the original API, one approa
h wouldbe to exe
ute ea
h native API 
all remotely. In this 
ase, the 
ost per 
all is at least that of the network laten
y.This, 
ombined with the relatively large number of 
alls needed for example to gather the meta data from the�le, signi�
antly redu
es the performan
e. This motivates the usage of higher level API wrappers, as the onewe have implemented. However, su
h wrappers need not to be as limited as our 
urrent version of 
ourse.5.3. Se
urity. The se
urity model used used by the GridFTP server is GSI (Grid Se
urity Infrastru
-ture) [17℄. The 
lient needs to hold a valid GSI proxy 
ontaining a se
urity 
redential with limited validity.The proxy represents a Distinguished Name (DN) that must be present in the grid-mapfile of the serverma
hine in order for the server to a

ept the 
onne
tion. This proxy is used to authenti
ate the 
lient withoutusing passwords. After the 
onne
tion is established, the server front end starts the MPI-based ba
k end.This ba
k end runs under the lo
al identity to whi
h the DN is mapped. The ba
k end is responsible for allsubsequent operations, in
luding the �ltering operations. This ensures that only authorized 
lients 
an a

essthe information from the original �le.6. Adaptive Visualization. We utilize the previously des
ribed te
hniques for data a

ess and �lteringto generate a level-of-detail representation of the remote data set in the visualization phase.First, the meta data�i. e. information about the number of data samples per 
oordinate axis and the datavolume extension in physi
al spa
e�is retrieved (see se
t. 5.2). With help of this information, and a sele
tableminimal resolution of the data, an o
tree stru
ture is generated, whi
h initially 
ontains no data other than theparent-
hild relations and position and extensions of the tree nodes. The root node of the stru
ture will storea 
oarse representation of the whole data volume. This is re
ursively re�ned by subnodes with higher spatialresolution until the resolution of the original data is rea
hed.
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hi
al Visualization of Large Remote Data 63Next, the data for the o
tree nodes is requested from the reader module, starting at the root node. Theorder in whi
h nodes are re�ned is determined by the distan
e from a user-de�ned point-of-interest, whi
hmight be the 
amera position or an arbitrary point within the data volume. Subregions of the data sets 
loserto this point are requested with higher priority than those whi
h are further away. The position and resolutionparameters for ea
h request are spe
i�ed and sent to the remote ma
hine as des
ribed in se
t. 5.2.The reader runs in a separate thread, so the visualization routines are not blo
ked during the loading phase.Ea
h time a data blo
k has arrived, the visualization module is noti�ed, and this new data is re�e
ted in thenext rendered frame of the visualization.

Fig. 6.1. The sequen
e depi
ts the volume rendering of a remote data set. First, a 
oarseresolution representation of the data is generated on-the-�y and transferred to the lo
al visual-ization 
lient. Next, subregions 
loser to the point-of-interest (in this 
ase, the 
amera position)are requested and integrated at progressively higher resolutions.Besides hierar
hi
al visualization modules for orthosli
ing and the display of height �elds, we implementeda 3D texture-based volume rendering module for o
trees. The o
tree is traversed in a view-
onsistent (ba
k-to-front) order, starting at the root node. A node is rendered, if two 
riteria are ful�lled:
• The data for this node is already loaded (otherwise, the traversal of the asso
iated subtree is stopped).
• The data for the subnodes is not loaded yet (otherwise, the node is skipped and the subnodes arevisited).On
e a node is sele
ted, it is rendered utilizing the standard approa
h for volume rendering with 3D textures,as proposed in (e.g.) [16, 15℄. The 3D texture is sampled on sli
es perpendi
ular to the viewing dire
tion andblended in the frame bu�er.In order to take advantage of the multi-resolution stru
ture of the data for fast rendering, the sampledistan
e of the sli
es is set with respe
t to the resolution level of the a
tual node, as proposed in [29℄.7. Results.7.1. Implementation. The implementation of the remote data a

ess infrastru
ture we have des
ribedis based on an experimental version of the GridFTP server provided by the Globus Group. This server is not
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ompile-time plugins (writtenin C) for handling spe
i�
 in
arnations of the ERET/ESTO proto
ol 
ommands. Although ERET and ESTOare spe
i�ed in the GridFTP proto
ol version 1.0, there is 
urrently no other implementation of this featureavailable other than the basi
 support for partial �le a

ess and striped data a

ess. There are good prospe
tsfor this feature to be present in various future implementations of GridFTP servers. The plugin 
ode will beavailable via the GridLab proje
t software distribution, and will be published at http://www.gridlab.org/.For ben
hmarking the software we used a dual Xeon 1.7GHz Server running RedHat Linux 8.0 as a dataserver. The ma
hine was equipped with 1GB of RAM and a logi
al volume storage of 320 GByte (36.5 MByte/se
transfer rate). The measurements have a granularity of 1 se
ond.The visualization modules we des
ribed have been implemented in the Amira visualization environment [28,5℄, whi
h is based on OpenGL and OpenInventor. The renderings have been performed on a dual Pentium IVsystem with 2.6 GHz, 1 GByte main memory and NVidia Quadro4 graphi
s. The system ran under RedHatLinux 8.0 with the standard NVidia video driver.7.2. Ben
hmark Results. In order to evaluate our approa
h, we performed a number of performan
emeasurements for a

essing, loading and displaying large remote HDF5 data sets. We 
ompare the performan
eobtained using the GridFTP plugin (GridFTP HDF5 ) with a 
omparable remote a

ess te
hnique, that isHDF5 over GridFTP partial �le a

ess (GridFTP PFA). We also in
lude measurements of lo
al (lo
al a

ess)and Network File System (NFS a

ess) times to see if we a
hieved our goal of having a

eptable waiting timesbefore the �rst visualization is 
reated, 
onsidering the lo
al and NFS times as a

eptable.The results of these tests are listed in table 7.2. The time needed to 
reate the �rst image (t3) is 
omposedof the time needed to gather and transfer the meta data (t1) and the time needed to �lter and transfer thesubsampled �rst timestep (t2). t4 gives the a

ess time for a full resolution time step.The tests have been performed on a Lo
al Area Network (LAN ) with normal network load (laten
y 1ms,measured 32.0 MBit/se
), and on a Wide Area Network 
onne
tion (WAN ) between Amsterdam and Berlin(laten
y 20ms, measured bandwith: 24.0 MBit/se
).The WAN measurements have been performed with various level settings, that is with di�erent depth ofthe o
tree hierar
hy 
reated. Table 7.1The table lists performan
e measurements for the various a

ess te
hniques we explored.The results have been obtained by timing the visualization pro
ess for a 32 GB HDF5 �le, 
on-taining 500 timesteps, ea
h timestep with the resolution of 256
3 data points (double pre
ision).A

ess Type Net Level Meta Data Root Blo
k Startup Complete

t1 t2 t3 = t1 + t2 t4lo
al a

ess - 2 7 se
 1 se
 8 se
 3 se
NFS a

ess LAN 2 8 se
 5 se
 13 se
 8 se
GridFTP HDF5 LAN 2 11 se
 2 se
 13 se
 11 se
GridFTP PFA LAN 2 165 se
 10 se
 175 se
 200 se
GridFTP HDF5 WAN 3 14 se
 2 se
 16 se
 126 se
GridFTP HDF5 WAN 2 14 se
 3 se
 17 se
 68 se
GridFTP HDF5 WAN 1 14 se
 7 se
 21 se
 45 se
GridFTP HDF5 WAN 0 14 se
 41 se
 55 se
 41 se
GridFTP PFA WAN 3 430 se
 28 se
 458 se
 3760 se
GridFTP PFA WAN 2 430 se
 53 se
 483 se
 960 se
GridFTP PFA WAN 1 430 se
 110 se
 560 se
 477 se
GridFTP PFA WAN 0 430 se
 220 se
 670 se
 220 se
These measurements show that the goal of a fast initial visual representation of the data set was a
hieved:a small startup time t3 
an be a
hieved by using the GridFTP HDF5 te
hnique 
ombined with hierar
hi
ala

ess (level ≥ 2). This time is of the same order of magnitude as for lo
al visualization.Spe
ifying the hierar
hy level provides the user with an intera
tive me
hanism for tuning response times.The data a

ess s
heme 
ould prove its adaptivity for di�erent network 
onne
tivity. In prin
iple, the user 
anredu
e the time to obtain a �rst visual representation by 
hoosing a larger hierar
hy level. The tradeo� for
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hi
al Visualization of Large Remote Data 65shorter startup times is the total transfer time for a fully resolved data set (all o
tree levels)7. The results showthat relation (t3 / t4) 
learly for the WAN measurements with di�erent level settings.Also, the large overhead for the 
ompli
ated meta data a

ess was dramati
ally redu
ed in 
omparison toGridFTP partial �le a

ess. The remaining time di�eren
e relative to the NFS meta data a

ess results fromthe appli
ation of the zero �lter to all data sets, the time needed to write the meta data �le, and the time totransfer it.8. Con
lusions. With the presented s
heme for progressive remote data a

ess and its use for hierar
hi
alrendering, we have su

essfully realized the fun
tionality targeted in our motivating s
enario (se
t. 2). Inparti
ular, the te
hniques we have developed support the adaptation of remote data a

ess to a wide range ofI/O 
onne
tions, and rea
t �exibly to user and appli
ation demands. For example, our me
hanisms supportadjustment of the systems rea
tion time�the time until the �rst visual impression for the data set appears�byadapting data �lter parameters, su
h as the 
hosen o
tree depth.Our presented solution does not depend on server-side o�ine prepro
essing of the 
omplete data set. Thea

ess to the data sets meta data, when 
ompared to naive remote a

ess te
hniques, o�ers very high perfor-man
e, as supported by the results of Table 1. Only a small lo
al disk storage spa
e is required for 
a
hing theasso
iated metadata.The extensibility of this approa
h is also notable. This approa
h supports both additional data formatsother than HDF5, and a

ess patterns other than hyperslab, through the provision of additional plugins. Si-multaneously, it is important to a
knowledge that this approa
h may make it in
reasingly di�
ult to maintain
ompatible 
on�gurations on all hosts of a Grid. The situation may improve with future GridFTP server im-plementations allowing dynami
 linking and invo
ation of plugins. Thus implementation is one of the �rst fewexisting utilizations of the ERET 
apabilities provided by GridFTP. It is expe
ted to see many more in the future.Our work further demonstrates the usability of the data a

ess s
heme for hierar
hi
al rendering te
hniques.The implemented algorithms (orthosli
e, height �eld, volumetri
 rendering) show very good performan
e, andare also adaptive to user spe
i�
ation and 
onne
tivity 
hara
teristi
s.The presented ar
hite
ture enables us to realize visualization s
enarios whi
h would be impossible earlier, byredu
ing the total amount needed for obtaining a visual data impression by orders of magnitudes, if 
omparedto naive approa
hes.We are planning to enhan
e the dynami
 proto
ol sele
tion feature of Stork, so that it will not only sele
tany available proto
ol to perform the transfer, but it will sele
t the best one. The requirements of `being thebest proto
ol' may vary from user to user. Some users may be interested in better performan
e, and others inbetter se
urity or better reliability. Even the de�nition of `better performan
e' may vary from user to user. Weare looking into the semanti
s of how to to de�ne `the best' a

ording to ea
h user's requirements.We are also planning to add a feature to Stork to dynami
ally sele
t whi
h route to use in the transfers andthen dynami
ally deploy DiskRouters at the nodes on that route. This will enable us to use the optimal routesin the transfers, as well as optimal use of the available bandwidth throughout that route.A
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