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Abstract.
The size of data sets produced on remote supercomputer facilities frequently exceeds the processing capabilities of local visualization
workstations. This phenomenon increasingly limits scientists when analyzing results of large-scale scientific simulations. That
problem gets even more prominent in scientific collaborations, spanning large virtual organizations, working on common shared sets
of data distributed in Grid environments. In the visualization community, this problem is addressed by distributing the visualization
pipeline. In particular, early stages of the pipeline are executed on resources closer to the initial (remote) locations of the data sets.

This paper presents an efficient technique for placing the first two stages of the visualization pipeline (data access and data
filter) onto remote resources. This is realized by exploiting the “extended retrieve” feature of GridFTP for flexible, high performance
access to very large HDF5 files. We reduce the number of network transactions for filtering operations by utilizing a server side
data processing plugin, and hence reduce latency overhead compared to GridF TP partial file access. The paper further describes
the application of hierarchical rendering techniques on remote uniform data sets, which make use of the remote data filtering stage.

1. Introduction. The amount of data produced by numerical simulations on supercomputing facilities
continues to increase rapidly in parallel with the increasing compute power, main memory, storage space, and
I/0 transfer rates available to researchers. These developments in supercomputing have been observed to exceed
the growth of commodity network bandwith and visualization workstation memory /performance by a factor of
4 [11]. Hence, it is increasingly critical to use remote data access techniques for analyzing this data. Among
other factors, this tendency is strengthened by the increasing prominence of large, spatially distributed scientific
collaborations working on common, shared sets of data. Under these conditions, the simple approach of (partial)
data replication for local data analysis does not scale.

The sheer size of existing data sets creates a demand for flexible and adaptive visualization techniques, such
as hierarchical rendering or viewpoint dependent resolution. Such techniques can reduce the initial amount of
data to be visualized by maintaining the overall visual impression of the full data set. This can be achieved
(e.g.) by retrieving the portions of the data set which are important to the user; or by retrieving low resolution
versions of the full data set first, and refining this data later. Remote access to partial interesting portions of
large data files can significantly support these techniques.

One major problem of naive remote data access techniques is the inherent difficulty in handling meta data
for large data sets. Meta data is the highly structured set of information describing the data set, containing
(e.g.) the number of samples per coordinate axis and the data volume bounds within physical space. While
the metadata itself is relatively small, meta data access is often connected with many small read operations
and many seek operations. However, individually requesting many seeks over a remote, potentially high-latency
connection is quite inefficient for protocols that do not support transactions over higher level operations [13, 19].

In general, these developments ultimately require distributing the pipeline used for data visualization. The
present paper describes techniques useable for distributing early stages of this visualization pipeline. Specifically,
we enable the application to efficiently access portions of remote large data sets present in the HDF5 file
format [2]. This general approach can be adapted both to other file formats and other access patterns. The
paper further presents higher level visualization techniques which utilize these data access mechanisms to provide
adaptive and progressive rendering capabilities.

The paper is structured as follows. First, we describe the problem space our approach is targeting in more
detail in sect. 2. Next, we relate our research to other relevant research activities (see sect. 3). In sect. 4 follows
an overall description of the techniques we developed. Sect. 5 and 6 describe the main components in more
technical detail. The paper concludes with two sections about our results and an outlook for future work.

2. Scenario. The increasing gap between resources available at remote supercomputing centers and on the
local workstations of individual researchers is one of the major motivations for our research. In particular, we aim
to improve the access to Grand Challenge simulation results as produced by numerous research collaborations
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around the world [12, 25, 26]. These simulations tend to drive the resource utilization of supercomputer resources
to the available maximum, and often produce immense amounts of data during single simulations runs.

As an exemplary application we consider numerical relativity simulations performed in the Cactus simula-
tion framework [10]. Among other things, this framework provides the simulation code with an efficient I/0
infrastructure to write data to HDF5 files. The astrophysical simulations in question write data for scalar,
vector and tensor fields (as components stored in separate data sets or files), and parameters for simulation
runs. A typical size for a data file is on the order of tens of gigabytes'.

Visualization of this data during post simulation analysis usually does not require access to the complete
data set. For typical production runs, where many different physical fields are written to disk, only a couple
of these fields are visualized later. The data sets and subsets that are to be visualized are not initially known,
but depend on interactive selections by the user (timestep, field, resolution, spatial area, etc.). For our target
users, this flexibility needs to be maintained as far as possible.

Within these constraints, our target scenario is the following:

A scientist performs a large scale simulation run, utilizing one or more supercomputing re-

sources at different locations. The simulation run produces up to TBytes of data, by storing

various scalar and vector fields to HDFS files. These HDF5 files are created according to a

custom predefined structure.

After the simulation finishes, members of the scientists’ collaboration wish to visualize the data,

or portions hereof, from remote workstations. They would like to use standard visualization

techniques from their visualization environment. They also wish to interactively choose the

data fields to be visualized, and to interactively change the spatial selection and resolution for

the data.

Ideally, the data transfer and visualization are adaptive to the available network connectivity,

and hides data distribution details from the user.
This scenario defines the problem space we are targeting. We explicitely do not expect to find data on the
remote systems which are, by pre- or postprocessing, specifically prepared for later visualization. We also want
to provide a solution for environments with notorious short supply of I/O bandwith and compute resources. And
we want to enable remote visualization for a broad width of end users, connected to the Grid by a wide range
of network types and with varying, potentially low end commodity systems. The ability of the visualization
pipeline to be adaptive to that range of boundary conditions is a central point of our efforts the focus of the
paper on progressive data retrieval patterns and on hierarchical rendering techniques emphasizes this.

3. Related Work. To support the scenario we presented, it is ultimately necessary to distribute the
pipeline used for data visualization. In principle, there are many possible ways to distribute this pipeline (fig. 3.1)
over remote resources. The distribution schemes used in real world systems are limited by the communication
requirements for transferring data between the stages of the pipeline, and by the complexity of the resulting
distributed software systems.

—__>| Data Set :> Geometry | >| Image | > £>

access filter map render display view

T T user control

Fig. 3.1. Most visualization systems share the same underlying visualization pipeline [27].
The components of the pipeline can be freely distributed, in principle, as the communication
elements between these components have different demands on latency and bandwith required.
All elements of the pipeline should be controlled by the end user or by the application.

Early stages of the pipeline—remote access and remote filtering—potentially need to transfer and process
large amounts of data, but show considerable flexibility with respect to latency. Also, by distributing these early

LWith a spatial resolution of 256 cubed, this corresponds to only a few scalar fields and one vector field in 64 bit, for 1000 time
steps of evolution, with every 10th step saved to disk.
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stages, it is possible to completely hide the data locality from application and end user. Remote access solutions
as NFS [4] and AFS [3] allow transparent utilization of standard (local) file I/O techniques. However, systems
like NFS and AFS are problematic in the administrative maintenance. For widely distributed environments
spanning multiple administrative domains these solutions are not applicable.

Common remote data access techniques crossing administrative boundaries are marked by several limita-
tions. Some, like SCP and FTP, do not support access to partial files, which is not acceptable for our purpose of
adaptive visualizing. Other techniques fail to deliver the performance required for interactive data visualization.
For example, the GridF TP support for access to remote files with the partial file access feature [9] is inefficient
for meta data access. Due to the file format chosen by HDF5, meta data is not necessarily stored in a continuous
file space, but instead scattered in a hierarchical binary tree. Also, a single read on the HDF5 API level may
be translated by the library into many individual low-level seek/read operations on the virtual file driver level.
Other protocols are similarly lacking in support for transactions of higher level operations [13, 19].

Remote filtering techniques often integrate models of meta data and data structures, and can perform the
data access efficiently?. Also, putting the remote filter on the remote site can significantly reduce the amount of
data to be transferred over the net, and ensures that only the data actually needed for the visualization process
is retrieved and transferred. A standard problem for remote filtering is that this process needs to integrate a
model of the data structures it is operating upon. It is difficult or impossible to implement filtering without
explicit information about what is to be filtered, and this information is difficult to express in a general way
that is applicable over a broad range of data formats and models. Hence, remote filtering techniques are often
limited to specific file and data types, and to specific filtering operations.

The Data Cutter project [14] is another well known representative of the remote filtering approach. It
provides the application programmer with a flexible and extensible filter pipeline to access portions of the
original data set. Compared to our approach, there are several main differences. First, the data cutter requires
the data to be stored in chunked data files in order to benefit from its boundary box indexing scheme, since
all chunks with a bounding box at least partly overlapping with the area of interest are completely read into
memory, and passed to the filter pipeline. Also, since all filters pass data using network communication, the
total network load is much higher than for our approach, where the filter resides at the data source, and is
tightly coupled to the data access stage. Further, our utilization of standard Grid tools (GridFTP and GSI)
seems more appropriate for the targeted Grid environment. On the other hand, Data Cutters user definable
filter pipeline is more flexible than our approach.

One widely used compromise for remote filtering is the usage of preprocessed data sets: during the simu-
lations I/0 stage or during a post processing step, filter operations are applied to create new data sets on the
remote resources. These data sets are stored in optimized form making later remote access and visualization
very efficient. In the future, more and more simulation frameworks will support such features, not at least
in order to improve their own I/O characteristics, i.e. due to compression on the fly, but also to enable the
efficient handling of the very large data sets, after completion of the source simulation. Wavelet transformed
data storage is an excellent example of that technique [22], which allows lossless compression, and adaptive,
efficient offline acces to optimally resolved data samples. Other example filters create octrees [18] or similar
structured representations [21], or provide progressive mesh generation.

For the problem space we described with our scenario, pre applied filters are no valid option, since they
either need to be integrated into the simulation I/O code, what they aren’t in our case; or they need to be
executed via external jobs on the remote resource. This duplicates the storage needed and potentially performs
excess work, thereby wasting costly supercomputing resources.

After filtering, visualization algorithms work on the data and map essential features into geometries (includ-
ing color and texture information, etc.). The next stage renders images from these geometrical representation.
In the future, these stages may also be executed close to the data source, on the supercomputer itself. This
would be the most efficient way to handle large simulation data, since the amount of data to be transfered
during the later stages of the visualization pipeline typically decreases significantly. Completely changed access
patterns to remote data can significantly reduce the amount of data transfered. Visualization algorithms using
such patterns [23], in particular for large data, are seen as use cases for the presented work.

The best prospects of deploying such scenarios have those environments containing PC-cluster based super-
computers. Here, adding commodity graphics boards to all nodes does not increase the total costs significantly,

21f the filter stage is located on the remote site, the data access is often performed local to the filter.



60 Hans-Christian Hege, Andrei Hutanu, Ralf Kdhler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmer

but allows high performance image rendering. These types of clusters are becoming increasingly common, but
are still rare in the top500 [6]. For the collaborative and highly interactive visualization scenario we envision,
the feedback to the remote and distributed rendering system gets important, and complex. Also, in perhaps
the most important point, the field is currently missing sufficiently flexible software solutions which are able
to realize such scenarios. Promising approaches do exist through work such as [8, 7, 24|, and we expect major
progress in that field over the next decade.

4. Architecture. Our proposed remote data access scheme builds upon the GridFTP protocol [9].
GridFTP is a Grid-aware extension to the standard FTP protocol. Amongst others, it provides a flexible server
side processing feature, and allows specification of custom operations on remote data. These operations are
performed by corresponding custom extensions (“plugins”) to the GridFTP server. This technique is described
in more detail in sect. 5. We utilize these server side data processing capabilities to perform data filtering oper-
ations on the scientific data sets. As described, the data sets are stored remotely in HDF5 format. Our plugin
to the GridF TP server accesses this data locally via the HDF5 library, and performs data filtering on the fly.

GridFTP Server

Visualization System
(Amira)

GridFTP Client

fGridFTP Protocol (ERET/ESTO)

NIINEIN]

HDF5 Plugin

- MetaData
- Data Blocks

MetaData
Cache
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HDF5 Calls

1

HDF5
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Fia. 4.1. The GridFTP protocol transports ERET commands from the visualization system
to the GridFTP server, which forwards them to the HDF5 plugin. This way, the plugin can
perform 1/0 operations plus filtering and data type conversion on the HDF5 file with full local
performance. Data is transferred back via ESTO commands, and is written into the memory
buffer of the visualization process.

An important element for the architectural decisions is the usage of the HDF5 file format [1]. Given the
complexity of this format and the ongoing improvement efforts concerning the associated API, the decision was
to use the existing API and to have the remote access procedures either on top of the API or as also described
in sect. 3 underneath of it. The architecture described in this work has the remote operations on top of the
HDF5 API, a limited set of high-level operations was chosen to be implemented by making use of the existing
API, and these operations were integrated in the GridF TP server to be executed at the remote site.

A complete visualization session is performed as follows. The user selects a data file to be visualized by
browsing the remote file space. Next, a connection to the remote GridFTP server is established, using the
users GSI credential. The server plugin is utilized to perform an extraction of the files meta data (see sect. 5),
which is then transfered to the visualization host and cached on the local file system. The visualization system
accesses this local HDF5 file, extracts all needed information (number of time steps, bounding box, resolution,

..), and creates an octree hierarchy fitting the data set. The user can interactively specify the depth of the
hierarchy. As the user then triggers various visualization operations on the data (to produce orthoslices, hight
fields, volumetric renderings), the octree blocks are scheduled in a separate thread for data reading. The read
requests are served according to a priority tag defined for the visualization, and each trigger a GridFTP data
access. This GridFTP data access utilizes our remote GridFTP server side data processing plugin. It extracts
the data in the block specific resolution and returns this data. On arrival, the data is stored within the octree
hierarchy, and the visualization is triggered to update the rendering by including the newly arrived data.
On user request (e.g., next timestep) or timeout, all pending block reads can be canceled. Our visualization
techniques (see sect. 6) use these features for dynamic data access to optimize visualization performance by
requesting data blocks close to the viewpoint first, and by progressively improving data (and image) resolution.

5. GridFTP. As described in sect. 4, the GridFTP protocol plays a central role in our data access schema.
GridFTP is mostly used for network file transfer, whereby this paper explores its usage for memory to memory
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transfer. This approach gives us a number of advantages if compared to approaches implemented on top of
custom or proprietary protocols.
1. GridFTP allows for server side data processing, which we utilize for data filtering.
2. The GridFTP protocol, as an extension to the standard FTP protocol, is well known and reliable.
3. It allows the incorporation of standard servers for solutions with limited functionality.?
4. The GridFTP infrastructure takes care of:
e establishing the data connection;
e ensuring authentication and authorization;
e invoking the data filter plugin; and
e performing the data transfer;
In this way, the data transfer task is reduced to filling a buffer on the writing and reading it on the
receiving end.
The following subsections describe the server side processing in more detail, and specify the low level operations
we use.

5.1. Server-Side Processing. As described before, the GridFTP protocol enables support for adding
custom commands for server side data processing [9]. Specifically, the plugins offered by a server define sets
of ERET and ESTO parameters that correspond to the data filter module implemented by the plugin®. The
extended store (ESTO) and extended retrieve (ERET) commands of the GridFTP protocol are defined as
following:

ESTO <module_name>="<modules_parms>" <filename>

ERET <module_name>="<modules_parms>" <filename>

module_name is a server-specific string representing the name of the module to be used. The second string
(module_parms) is module specific and defines the operation to be performed by the module. The last parameter
(filename) specifies the file to be processed, which can be any file that can be processed by the given module.
In our case, any HDF5 file.

5.2. Operations. We use this ERET/ESTO mechanism to define two operations that can be applied to
HDF5 files: one for meta data filtering, and a second one for data access.

Meta Data Filtering. The first operation is the filtering of meta data from the HDF5 file. This is achieved
by creating a filtered copy of the original file. Toward this end, the module reads and parses the original file,
and writes the meta data information to a copy of the file. However, when copying (writing) a data set, we use
the HDF5 filter interface and apply a filter to the original files data set. This filter reduces all data sets to zero
length®. Thus, the only resulting differences between the generated file and the original one are in the data
array and storage layout of the data sets. All other information e.g., the hierarchy (groups), attributes, and
data set information (name, data type and data space) is preserved. While this approach might seem like a
significant overhead, it is in fact very fast, due to the good performance of HDF5.

The generated file is transferred to the requesting client using GridF TP. The ERET command for requesting
the meta data file is:

ERET Hdf5="METADATA" <filename>

filename is the file from which the meta data will be extracted. Given the now dramatically reduced size of
the file, the transfer time is very small relative to the transfer time of the original data®. After the high-level
filtering call is executed remotely and the transfer is finished, the client can access the local meta data file
using the standard HDF5 API. In this way, we avoid to execute each HDF5 API call remote, and still offer
the user the flexibility of the original API for meta data access. Because the data set structures within this
temporary local file do not contain actual data, the standard API cannot be used for data access. For this
task, we provide a second API call.

3bakwards compatible with FTP, by using normal FTP we could transfer the file to a local disk cache; for standard GridFTP
server(without plugins) we use direct partial file access (ERET PART, for filtering inefficient).

4Not all servers implement the same set of modules. In the current implementation, the plugins are compiled together with the
server, and are statically linked.

5 Actually, for technical reasons internal to HDF5 the length is 1.

6See sect. 7 for the times for meta data loading



62 Hans-Christian Hege, Andrei Hutanu, Ralf Kéhler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmer

Data Set Reading and Subsampling. The second operation performs data selection and filtering. By
knowing the data set coordinates (dimensions, data type) from the now locally available meta data, the client
can choose to read an entire data set, or a portion of the data set. The HDF5 data sets logically group the
actual data within multidimensional arrays named “data spaces.” The model we use to specify a portion from
a data set is based on the HDF5 “hyperslab” model. A hyperslab describes either a contiguous collection of
points, or a regular pattern of points or blocks in the data spaces. A hyperslab is specified by four parameters:
origin: the starting location;
size: the number of elements (or blocks) to select along each dimension;
stride: the number of elements to separate each element (or block) to be selected; and

e block: the size of each block selected from the data set.
All of these parameters are one-dimensional lists, with lengths equal to the number of dimensions of the data
set. The elements of these lists specify data array lengths or offsets for corresponding dimensions of the data
arrays. Currently the size of element blocks is predefined to one, which is adequate for the targeted visualization
scenario. In future work, we will extend the protocol to accept variable block sizes.

Our current mechanism for specifying the hyperslab coordinates takes the following form:

ERET HAf5="BLOCK:NAME=<datasetname>;\

DIMENSIONS=<dims>;\

ORIGIN=<orig0>,<origl>,...,<orign>;\
SIZE=<size0>,<sizel>,...,<sizen>;\
SAMPLING=<sampling0>,<samplingl>,...,<samplingn>"
<filename>

datasetname is the fully qualified name (including the path to the data set) of the data set from which data
should be read; orig0 to orign are the coordinates of the first element to be selected from the data set; sizeO
to sizen are the number of elements to be selected in each dimension; and sampling0 to samplingn represent
the distance between two selected elements for each dimension.

This request is sent to the server. The server opens the file filename, opens the given data set, and reads
the portion of the file specified by the given parameters. This procedure is performed via native HDF5 library
calls. Next, the retrieved data is sent via the GridF'TP connection to the client, which will convert the data
to the local byte order if needed. To determine if conversion is necessary, the first 32 bits sent by the server
represent an integer with the value of 1, encoded using the servers byte ordering.

The approach we have taken in creating this limited HDF5 API wrapper does reduce the flexibility provided
by the original API. Nonetheless, for our visualization scenario this API is appropriate, and makes significant
steps toward maximizing overall performance. To retain the flexibility of the original API, one approach would
be to execute each native API call remotely. In this case, the cost per call is at least that of the network latency.
This, combined with the relatively large number of calls needed for example to gather the meta data from the
file, significantly reduces the performance. This motivates the usage of higher level API wrappers, as the one
we have implemented. However, such wrappers need not to be as limited as our current version of course.

5.3. Security. The security model used used by the GridFTP server is GSI (Grid Security Infrastruc-
ture) [17]. The client needs to hold a valid GSI proxy containing a security credential with limited validity.
The proxy represents a Distinguished Name (DN) that must be present in the grid-mapfile of the server
machine in order for the server to accept the connection. This proxy is used to authenticate the client without
using passwords. After the connection is established, the server front end starts the MPI-based back end.
This back end runs under the local identity to which the DN is mapped. The back end is responsible for all
subsequent operations, including the filtering operations. This ensures that only authorized clients can access
the information from the original file.

6. Adaptive Visualization. We utilize the previously described techniques for data access and filtering
to generate a level-of-detail representation of the remote data set in the visualization phase.

First, the meta data i. e. information about the number of data samples per coordinate axis and the data
volume extension in physical space is retrieved (see sect. 5.2). With help of this information, and a selectable
minimal resolution of the data, an octree structure is generated, which initially contains no data other than the
parent-child relations and position and extensions of the tree nodes. The root node of the structure will store
a coarse representation of the whole data volume. This is recursively refined by subnodes with higher spatial
resolution until the resolution of the original data is reached.



Progressive Retrieval and Hierarchical Visualization of Large Remote Data 63

Next, the data for the octree nodes is requested from the reader module, starting at the root node. The
order in which nodes are refined is determined by the distance from a user-defined point-of-interest, which
might be the camera position or an arbitrary point within the data volume. Subregions of the data sets closer
to this point are requested with higher priority than those which are further away. The position and resolution
parameters for each request are specified and sent to the remote machine as described in sect. 5.2.

The reader runs in a separate thread, so the visualization routines are not blocked during the loading phase.
Each time a data block has arrived, the visualization module is notified, and this new data is reflected in the
next rendered frame of the visualization.

Fic. 6.1. The sequence depicts the volume rendering of a remote data set. First, a coarse
resolution representation of the data is generated on-the-fly and transferred to the local visual-
ization client. Next, subregions closer to the point-of-interest (in this case, the camera position)
are requested and integrated at progressively higher resolutions.

Besides hierarchical visualization modules for orthoslicing and the display of height fields, we implemented
a 3D texture-based volume rendering module for octrees. The octree is traversed in a view-consistent (back-to-
front) order, starting at the root node. A node is rendered, if two criteria are fulfilled:
e The data for this node is already loaded (otherwise, the traversal of the associated subtree is stopped).
e The data for the subnodes is not loaded yet (otherwise, the node is skipped and the subnodes are
visited).
Once a node is selected, it is rendered utilizing the standard approach for volume rendering with 3D textures,
as proposed in (e.g.) [16, 15]. The 3D texture is sampled on slices perpendicular to the viewing direction and
blended in the frame buffer.
In order to take advantage of the multi-resolution structure of the data for fast rendering, the sample
distance of the slices is set with respect to the resolution level of the actual node, as proposed in [29].

7. Results.

7.1. Implementation. The implementation of the remote data access infrastructure we have described
is based on an experimental version of the GridF TP server provided by the Globus Group. This server is not



64 Hans-Christian Hege, Andrei Hutanu, Ralf Kéhler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmer

part of the Globus software distribution as of yet. It supports the addition of compile-time plugins (written
in C) for handling specific incarnations of the ERET/ESTO protocol commands. Although ERET and ESTO
are specified in the GridFTP protocol version 1.0, there is currently no other implementation of this feature
available other than the basic support for partial file access and striped data access. There are good prospects
for this feature to be present in various future implementations of GridF'TP servers. The plugin code will be
available via the GridLab project software distribution, and will be published at http://www.gridlab.org/.

For benchmarking the software we used a dual Xeon 1.7GHz Server running RedHat Linux 8.0 as a data
server. The machine was equipped with 1GB of RAM and a logical volume storage of 320 GByte (36.5 MByte/sec
transfer rate). The measurements have a granularity of 1 second.

The visualization modules we described have been implemented in the Amira visualization environment |28,
5], which is based on OpenGL and OpenInventor. The renderings have been performed on a dual Pentium IV
system with 2.6 GHz, 1 GByte main memory and NVidia Quadro4 graphics. The system ran under RedHat
Linux 8.0 with the standard NVidia video driver.

7.2. Benchmark Results. In order to evaluate our approach, we performed a number of performance
measurements for accessing, loading and displaying large remote HDF5 data sets. We compare the performance
obtained using the GridFTP plugin (GridFTP HDF5) with a comparable remote access technique, that is
HDF5 over GridFTP partial file access (GridFTP PFA). We also include measurements of local (local access)
and Network File System (NF'S access) times to see if we achieved our goal of having acceptable waiting times
before the first visualization is created, considering the local and NFS times as acceptable.

The results of these tests are listed in table 7.2. The time needed to create the first image (¢3) is composed
of the time needed to gather and transfer the meta data (¢1) and the time needed to filter and transfer the
subsampled first timestep (t2). t4 gives the access time for a full resolution time step.

The tests have been performed on a Local Area Network (LAN) with normal network load (latency lms,
measured 32.0 MBit/sec), and on a Wide Area Network connection (WAN) between Amsterdam and Berlin
(latency 20ms, measured bandwith: 24.0 MBit/sec).

The WAN measurements have been performed with various level settings, that is with different depth of
the octree hierarchy created.

TABLE 7.1
The table lists performance measurements for the various access techniques we explored.
The results have been obtained by timing the visualization process for a 32 GB HDFS file, con-
taining 500 timesteps, each timestep with the resolution of 256 data points (double precision).

Access Type Net | Level | Meta Data | Root Block Startup | Complete

tq to | t3 =11 +to ty4
local access - 2 7 sec 1 sec 8 sec 3 sec
NFS access LAN 2 8 sec 5 sec 13 sec 8 sec
GridFTP HDF5 | LAN 2 11 sec 2 sec 13 sec 11 sec
GridFTP PFA LAN 2 165 sec 10 sec 175 sec 200 sec
GridFTP HDF5 | WAN 3 14 sec 2 sec 16 sec 126 sec
GridFTP HDF5 | WAN 2 14 sec 3 sec 17 sec 68 sec
GridFTP HDF5 | WAN 1 14 sec 7 sec 21 sec 45 sec
GridFTP HDF5 | WAN 0 14 sec 41 sec 55 sec 41 sec
GridFTP PFA WAN 3 430 sec 28 sec 458 sec 3760 sec
GridFTP PFA WAN 2 430 sec 53 sec 483 sec 960 sec
GridFTP PFA WAN 1 430 sec 110 sec 560 sec 477 sec
GridFTP PFA WAN 0 430 sec 220 sec 670 sec 220 sec

These measurements show that the goal of a fast initial visual representation of the data set was achieved:
a small startup time t3 can be achieved by using the GridFTP HDF5 technique combined with hierarchical
access (level > 2). This time is of the same order of magnitude as for local visualization.

Specifying the hierarchy level provides the user with an interactive mechanism for tuning response times.
The data access scheme could prove its adaptivity for different network connectivity. In principle, the user can
reduce the time to obtain a first visual representation by choosing a larger hierarchy level. The tradeoff for
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shorter startup times is the total transfer time for a fully resolved data set (all octree levels)”. The results show
that relation (t3 / t4) clearly for the WAN measurements with different level settings.

Also, the large overhead for the complicated meta data access was dramatically reduced in comparison to
GridFTP partial file access. The remaining time difference relative to the NFS meta data access results from
the application of the zero filter to all data sets, the time needed to write the meta data file, and the time to
transfer it.

8. Conclusions. With the presented scheme for progressive remote data access and its use for hierarchical
rendering, we have successfully realized the functionality targeted in our motivating scenario (sect. 2). In
particular, the techniques we have developed support the adaptation of remote data access to a wide range of
I/0O connections, and react flexibly to user and application demands. For example, our mechanisms support
adjustment of the systems reaction time the time until the first visual impression for the data set appears by
adapting data filter parameters, such as the chosen octree depth.

Our presented solution does not depend on server-side offline preprocessing of the complete data set. The
access to the data sets meta data, when compared to naive remote access techniques, offers very high perfor-
mance, as supported by the results of Table 1. Only a small local disk storage space is required for caching the
associated metadata.

The extensibility of this approach is also notable. This approach supports both additional data formats
other than HDF5, and access patterns other than hyperslab, through the provision of additional plugins. Si-
multaneously, it is important to acknowledge that this approach may make it increasingly difficult to maintain
compatible configurations on all hosts of a Grid. The situation may improve with future GridFTP server im-
plementations allowing dynamic linking and invocation of plugins. Thus implementation is one of the first few
existing utilizations of the ERET capabilities provided by GridFTP. It is expected to see many more in the future.

Our work further demonstrates the usability of the data access scheme for hierarchical rendering techniques.
The implemented algorithms (orthoslice, height field, volumetric rendering) show very good performance, and
are also adaptive to user specification and connectivity characteristics.

The presented architecture enables us to realize visualization scenarios which would be impossible earlier, by
reducing the total amount needed for obtaining a visual data impression by orders of magnitudes, if compared
to naive approaches.

We are planning to enhance the dynamic protocol selection feature of Stork, so that it will not only select
any available protocol to perform the transfer, but it will select the best one. The requirements of ‘being the
best protocol’ may vary from user to user. Some users may be interested in better performance, and others in
better security or better reliability. Even the definition of ‘better performance’ may vary from user to user. We
are looking into the semantics of how to to define ‘the best’ according to each user’s requirements.

We are also planning to add a feature to Stork to dynamically select which route to use in the transfers and
then dynamically deploy DiskRouters at the nodes on that route. This will enable us to use the optimal routes
in the transfers, as well as optimal use of the available bandwidth throughout that route.
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