
Salable Computing: Pratie and ExperieneVolume 6, Number 3, pp. 57�66. http://www.spe.org ISSN 1895-1767© 2005 SWPSPROGRESSIVE RETRIEVAL AND HIERARCHICAL VISUALIZATION OF LARGEREMOTE DATAHANS-CHRISTIAN HEGE∗, ANDREI HUTANU∗ , RALF KÄHLER∗, ANDRÉ MERZKY∗ , THOMAS RADKE† ,EDWARD SEIDEL† , AND BRYGG ULLMER†Abstrat.The size of data sets produed on remote superomputer failities frequently exeeds the proessing apabilities of loal visualizationworkstations. This phenomenon inreasingly limits sientists when analyzing results of large-sale sienti� simulations. Thatproblem gets even more prominent in sienti� ollaborations, spanning large virtual organizations, working on ommon shared setsof data distributed in Grid environments. In the visualization ommunity, this problem is addressed by distributing the visualizationpipeline. In partiular, early stages of the pipeline are exeuted on resoures loser to the initial (remote) loations of the data sets.This paper presents an e�ient tehnique for plaing the �rst two stages of the visualization pipeline (data aess and data�lter) onto remote resoures. This is realized by exploiting the �extended retrieve� feature of GridFTP for �exible, high performaneaess to very large HDF5 �les. We redue the number of network transations for �ltering operations by utilizing a server sidedata proessing plugin, and hene redue lateny overhead ompared to GridFTP partial �le aess. The paper further desribesthe appliation of hierarhial rendering tehniques on remote uniform data sets, whih make use of the remote data �ltering stage.1. Introdution. The amount of data produed by numerial simulations on superomputing failitiesontinues to inrease rapidly in parallel with the inreasing ompute power, main memory, storage spae, andI/O transfer rates available to researhers. These developments in superomputing have been observed to exeedthe growth of ommodity network bandwith and visualization workstation memory/performane by a fator of4 [11℄. Hene, it is inreasingly ritial to use remote data aess tehniques for analyzing this data. Amongother fators, this tendeny is strengthened by the inreasing prominene of large, spatially distributed sienti�ollaborations working on ommon, shared sets of data. Under these onditions, the simple approah of (partial)data repliation for loal data analysis does not sale.The sheer size of existing data sets reates a demand for �exible and adaptive visualization tehniques, suhas hierarhial rendering or viewpoint dependent resolution. Suh tehniques an redue the initial amount ofdata to be visualized by maintaining the overall visual impression of the full data set. This an be ahieved(e.g.) by retrieving the portions of the data set whih are important to the user; or by retrieving low resolutionversions of the full data set �rst, and re�ning this data later. Remote aess to partial interesting portions oflarge data �les an signi�antly support these tehniques.One major problem of naive remote data aess tehniques is the inherent di�ulty in handling meta datafor large data sets. Meta data is the highly strutured set of information desribing the data set, ontaining(e.g.) the number of samples per oordinate axis and the data volume bounds within physial spae. Whilethe metadata itself is relatively small, meta data aess is often onneted with many small read operationsand many seek operations. However, individually requesting many seeks over a remote, potentially high-latenyonnetion is quite ine�ient for protools that do not support transations over higher level operations [13, 19℄.In general, these developments ultimately require distributing the pipeline used for data visualization. Thepresent paper desribes tehniques useable for distributing early stages of this visualization pipeline. Spei�ally,we enable the appliation to e�iently aess portions of remote large data sets present in the HDF5 �leformat [2℄. This general approah an be adapted both to other �le formats and other aess patterns. Thepaper further presents higher level visualization tehniques whih utilize these data aess mehanisms to provideadaptive and progressive rendering apabilities.The paper is strutured as follows. First, we desribe the problem spae our approah is targeting in moredetail in set. 2. Next, we relate our researh to other relevant researh ativities (see set. 3). In set. 4 followsan overall desription of the tehniques we developed. Set. 5 and 6 desribe the main omponents in moretehnial detail. The paper onludes with two setions about our results and an outlook for future work.2. Senario. The inreasing gap between resoures available at remote superomputing enters and on theloal workstations of individual researhers is one of the major motivations for our researh. In partiular, we aimto improve the aess to Grand Challenge simulation results as produed by numerous researh ollaborations
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58 Hans-Christian Hege, Andrei Hutanu, Ralf Kähler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmeraround the world [12, 25, 26℄. These simulations tend to drive the resoure utilization of superomputer resouresto the available maximum, and often produe immense amounts of data during single simulations runs.As an exemplary appliation we onsider numerial relativity simulations performed in the Catus simula-tion framework [10℄. Among other things, this framework provides the simulation ode with an e�ient I/Oinfrastruture to write data to HDF5 �les. The astrophysial simulations in question write data for salar,vetor and tensor �elds (as omponents stored in separate data sets or �les), and parameters for simulationruns. A typial size for a data �le is on the order of tens of gigabytes1.Visualization of this data during post simulation analysis usually does not require aess to the ompletedata set. For typial prodution runs, where many di�erent physial �elds are written to disk, only a oupleof these �elds are visualized later. The data sets and subsets that are to be visualized are not initially known,but depend on interative seletions by the user (timestep, �eld, resolution, spatial area, et.). For our targetusers, this �exibility needs to be maintained as far as possible.Within these onstraints, our target senario is the following:A sientist performs a large sale simulation run, utilizing one or more superomputing re-soures at di�erent loations. The simulation run produes up to TBytes of data, by storingvarious salar and vetor �elds to HDF5 �les. These HDF5 �les are reated aording to austom prede�ned struture.After the simulation �nishes, members of the sientists' ollaboration wish to visualize the data,or portions hereof, from remote workstations. They would like to use standard visualizationtehniques from their visualization environment. They also wish to interatively hoose thedata �elds to be visualized, and to interatively hange the spatial seletion and resolution forthe data.Ideally, the data transfer and visualization are adaptive to the available network onnetivity,and hides data distribution details from the user.This senario de�nes the problem spae we are targeting. We expliitely do not expet to �nd data on theremote systems whih are, by pre- or postproessing, spei�ally prepared for later visualization. We also wantto provide a solution for environments with notorious short supply of I/O bandwith and ompute resoures. Andwe want to enable remote visualization for a broad width of end users, onneted to the Grid by a wide rangeof network types and with varying, potentially low end ommodity systems. The ability of the visualizationpipeline to be adaptive to that range of boundary onditions is a entral point of our e�orts�the fous of thepaper on progressive data retrieval patterns and on hierarhial rendering tehniques emphasizes this.3. Related Work. To support the senario we presented, it is ultimately neessary to distribute thepipeline used for data visualization. In priniple, there are many possible ways to distribute this pipeline (�g. 3.1)over remote resoures. The distribution shemes used in real world systems are limited by the ommuniationrequirements for transferring data between the stages of the pipeline, and by the omplexity of the resultingdistributed software systems.
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user controlFig. 3.1. Most visualization systems share the same underlying visualization pipeline [27℄.The omponents of the pipeline an be freely distributed, in priniple, as the ommuniationelements between these omponents have di�erent demands on lateny and bandwith required.All elements of the pipeline should be ontrolled by the end user or by the appliation.Early stages of the pipeline�remote aess and remote �ltering�potentially need to transfer and proesslarge amounts of data, but show onsiderable �exibility with respet to lateny. Also, by distributing these early
1With a spatial resolution of 256 ubed, this orresponds to only a few salar �elds and one vetor �eld in 64 bit, for 1000 timesteps of evolution, with every 10th step saved to disk.



Progressive Retrieval and Hierarhial Visualization of Large Remote Data 59stages, it is possible to ompletely hide the data loality from appliation and end user. Remote aess solutionsas NFS [4℄ and AFS [3℄ allow transparent utilization of standard (loal) �le I/O tehniques. However, systemslike NFS and AFS are problemati in the administrative maintenane. For widely distributed environmentsspanning multiple administrative domains these solutions are not appliable.Common remote data aess tehniques rossing administrative boundaries are marked by several limita-tions. Some, like SCP and FTP, do not support aess to partial �les, whih is not aeptable for our purpose ofadaptive visualizing. Other tehniques fail to deliver the performane required for interative data visualization.For example, the GridFTP support for aess to remote �les with the partial �le aess feature [9℄ is ine�ientfor meta data aess. Due to the �le format hosen by HDF5, meta data is not neessarily stored in a ontinuous�le spae, but instead sattered in a hierarhial binary tree. Also, a single read on the HDF5 API level maybe translated by the library into many individual low-level seek/read operations on the virtual �le driver level.Other protools are similarly laking in support for transations of higher level operations [13, 19℄.Remote �ltering tehniques often integrate models of meta data and data strutures, and an perform thedata aess e�iently2. Also, putting the remote �lter on the remote site an signi�antly redue the amount ofdata to be transferred over the net, and ensures that only the data atually needed for the visualization proessis retrieved and transferred. A standard problem for remote �ltering is that this proess needs to integrate amodel of the data strutures it is operating upon. It is di�ult or impossible to implement �ltering withoutexpliit information about what is to be �ltered, and this information is di�ult to express in a general waythat is appliable over a broad range of data formats and models. Hene, remote �ltering tehniques are oftenlimited to spei� �le and data types, and to spei� �ltering operations.The Data Cutter projet [14℄ is another well known representative of the remote �ltering approah. Itprovides the appliation programmer with a �exible and extensible �lter pipeline to aess portions of theoriginal data set. Compared to our approah, there are several main di�erenes. First, the data utter requiresthe data to be stored in hunked data �les in order to bene�t from its boundary box indexing sheme, sineall hunks with a bounding box at least partly overlapping with the area of interest are ompletely read intomemory, and passed to the �lter pipeline. Also, sine all �lters pass data using network ommuniation, thetotal network load is muh higher than for our approah, where the �lter resides at the data soure, and istightly oupled to the data aess stage. Further, our utilization of standard Grid tools (GridFTP and GSI)seems more appropriate for the targeted Grid environment. On the other hand, Data Cutters user de�nable�lter pipeline is more �exible than our approah.One widely used ompromise for remote �ltering is the usage of preproessed data sets: during the simu-lations I/O stage or during a post proessing step, �lter operations are applied to reate new data sets on theremote resoures. These data sets are stored in optimized form making later remote aess and visualizationvery e�ient. In the future, more and more simulation frameworks will support suh features, not at leastin order to improve their own I/O harateristis, i.e. due to ompression on the �y, but also to enable thee�ient handling of the very large data sets, after ompletion of the soure simulation. Wavelet transformeddata storage is an exellent example of that tehnique [22℄, whih allows lossless ompression, and adaptive,e�ient o�ine aes to optimally resolved data samples. Other example �lters reate otrees [18℄ or similarstrutured representations [21℄, or provide progressive mesh generation.For the problem spae we desribed with our senario, pre applied �lters are no valid option, sine theyeither need to be integrated into the simulation I/O ode, what they aren't in our ase; or they need to beexeuted via external jobs on the remote resoure. This dupliates the storage needed and potentially performsexess work, thereby wasting ostly superomputing resoures.After �ltering, visualization algorithms work on the data and map essential features into geometries (inlud-ing olor and texture information, et.). The next stage renders images from these geometrial representation.In the future, these stages may also be exeuted lose to the data soure, on the superomputer itself. Thiswould be the most e�ient way to handle large simulation data, sine the amount of data to be transferedduring the later stages of the visualization pipeline typially dereases signi�antly. Completely hanged aesspatterns to remote data an signi�antly redue the amount of data transfered. Visualization algorithms usingsuh patterns [23℄, in partiular for large data, are seen as use ases for the presented work.The best prospets of deploying suh senarios have those environments ontaining PC-luster based super-omputers. Here, adding ommodity graphis boards to all nodes does not inrease the total osts signi�antly,
2If the �lter stage is loated on the remote site, the data aess is often performed loal to the �lter.



60 Hans-Christian Hege, Andrei Hutanu, Ralf Kähler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmerbut allows high performane image rendering. These types of lusters are beoming inreasingly ommon, butare still rare in the top500 [6℄. For the ollaborative and highly interative visualization senario we envision,the feedbak to the remote and distributed rendering system gets important, and omplex. Also, in perhapsthe most important point, the �eld is urrently missing su�iently �exible software solutions whih are ableto realize suh senarios. Promising approahes do exist through work suh as [8, 7, 24℄, and we expet majorprogress in that �eld over the next deade.4. Arhiteture. Our proposed remote data aess sheme builds upon the GridFTP protool [9℄.GridFTP is a Grid-aware extension to the standard FTP protool. Amongst others, it provides a �exible serverside proessing feature, and allows spei�ation of ustom operations on remote data. These operations areperformed by orresponding ustom extensions (�plugins�) to the GridFTP server. This tehnique is desribedin more detail in set. 5. We utilize these server side data proessing apabilities to perform data �ltering oper-ations on the sienti� data sets. As desribed, the data sets are stored remotely in HDF5 format. Our pluginto the GridFTP server aesses this data loally via the HDF5 library, and performs data �ltering on the �y.
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Fig. 4.1. The GridFTP protool transports ERET ommands from the visualization systemto the GridFTP server, whih forwards them to the HDF5 plugin. This way, the plugin anperform I/O operations plus �ltering and data type onversion on the HDF5 �le with full loalperformane. Data is transferred bak via ESTO ommands, and is written into the memorybu�er of the visualization proess.An important element for the arhitetural deisions is the usage of the HDF5 �le format [1℄. Given theomplexity of this format and the ongoing improvement e�orts onerning the assoiated API, the deision wasto use the existing API and to have the remote aess proedures either on top of the API or as also desribedin set. 3 underneath of it. The arhiteture desribed in this work has the remote operations on top of theHDF5 API, a limited set of high-level operations was hosen to be implemented by making use of the existingAPI, and these operations were integrated in the GridFTP server to be exeuted at the remote site.A omplete visualization session is performed as follows. The user selets a data �le to be visualized bybrowsing the remote �le spae. Next, a onnetion to the remote GridFTP server is established, using theusers GSI redential. The server plugin is utilized to perform an extration of the �les meta data (see set. 5),whih is then transfered to the visualization host and ahed on the loal �le system. The visualization systemaesses this loal HDF5 �le, extrats all needed information (number of time steps, bounding box, resolution,. . . ), and reates an otree hierarhy �tting the data set. The user an interatively speify the depth of thehierarhy. As the user then triggers various visualization operations on the data (to produe orthoslies, hight�elds, volumetri renderings), the otree bloks are sheduled in a separate thread for data reading. The readrequests are served aording to a priority tag de�ned for the visualization, and eah trigger a GridFTP dataaess. This GridFTP data aess utilizes our remote GridFTP server side data proessing plugin. It extratsthe data in the blok spei� resolution and returns this data. On arrival, the data is stored within the otreehierarhy, and the visualization is triggered to update the rendering by inluding the newly arrived data.On user request (e.g., next timestep) or timeout, all pending blok reads an be aneled. Our visualizationtehniques (see set. 6) use these features for dynami data aess to optimize visualization performane byrequesting data bloks lose to the viewpoint �rst, and by progressively improving data (and image) resolution.5. GridFTP. As desribed in set. 4, the GridFTP protool plays a entral role in our data aess shema.GridFTP is mostly used for network �le transfer, whereby this paper explores its usage for memory to memory



Progressive Retrieval and Hierarhial Visualization of Large Remote Data 61transfer. This approah gives us a number of advantages if ompared to approahes implemented on top ofustom or proprietary protools.1. GridFTP allows for server side data proessing, whih we utilize for data �ltering.2. The GridFTP protool, as an extension to the standard FTP protool, is well known and reliable.3. It allows the inorporation of standard servers for solutions with limited funtionality.34. The GridFTP infrastruture takes are of:
• establishing the data onnetion;
• ensuring authentiation and authorization;
• invoking the data �lter plugin; and
• performing the data transfer;In this way, the data transfer task is redued to �lling a bu�er on the writing and reading it on thereeiving end.The following subsetions desribe the server side proessing in more detail, and speify the low level operationswe use.5.1. Server-Side Proessing. As desribed before, the GridFTP protool enables support for addingustom ommands for server side data proessing [9℄. Spei�ally, the plugins o�ered by a server de�ne setsof ERET and ESTO parameters that orrespond to the data �lter module implemented by the plugin4. Theextended store (ESTO) and extended retrieve (ERET) ommands of the GridFTP protool are de�ned asfollowing:ESTO <module_name>="<modules_parms>" <filename>ERET <module_name>="<modules_parms>" <filename>module_name is a server-spei� string representing the name of the module to be used. The seond string(module_parms) is module spei� and de�nes the operation to be performed by the module. The last parameter(filename) spei�es the �le to be proessed, whih an be any �le that an be proessed by the given module.In our ase, any HDF5 �le.5.2. Operations. We use this ERET/ESTO mehanism to de�ne two operations that an be applied toHDF5 �les: one for meta data �ltering, and a seond one for data aess.Meta Data Filtering. The �rst operation is the �ltering of meta data from the HDF5 �le. This is ahievedby reating a �ltered opy of the original �le. Toward this end, the module reads and parses the original �le,and writes the meta data information to a opy of the �le. However, when opying (writing) a data set, we usethe HDF5 �lter interfae and apply a �lter to the original �les data set. This �lter redues all data sets to zerolength5. Thus, the only resulting di�erenes between the generated �le and the original one are in the dataarray and storage layout of the data sets. All other information�e.g., the hierarhy (groups), attributes, anddata set information (name, data type and data spae)�is preserved. While this approah might seem like asigni�ant overhead, it is in fat very fast, due to the good performane of HDF5.The generated �le is transferred to the requesting lient using GridFTP. The ERET ommand for requestingthe meta data �le is:ERET Hdf5="METADATA" <filename>filename is the �le from whih the meta data will be extrated. Given the now dramatially redued size ofthe �le, the transfer time is very small relative to the transfer time of the original data6. After the high-level�ltering all is exeuted remotely and the transfer is �nished, the lient an aess the loal meta data �leusing the standard HDF5 API. In this way, we avoid to exeute eah HDF5 API all remote, and still o�erthe user the �exibility of the original API for meta data aess. Beause the data set strutures within thistemporary loal �le do not ontain atual data, the standard API annot be used for data aess. For thistask, we provide a seond API all.

3bakwards ompatible with FTP, by using normal FTP we ould transfer the �le to a loal disk ahe; for standard GridFTPserver(without plugins) we use diret partial �le aess (ERET PART, for �ltering ine�ient).
4Not all servers implement the same set of modules. In the urrent implementation, the plugins are ompiled together with theserver, and are statially linked.
5Atually, for tehnial reasons internal to HDF5 the length is 1.
6See set. 7 for the times for meta data loading



62 Hans-Christian Hege, Andrei Hutanu, Ralf Kähler, André Merzky, Thomas Radke, Edward Seidel, Brygg UllmerData Set Reading and Subsampling. The seond operation performs data seletion and �ltering. Byknowing the data set oordinates (dimensions, data type) from the now loally available meta data, the lientan hoose to read an entire data set, or a portion of the data set. The HDF5 data sets logially group theatual data within multidimensional arrays named �data spaes.� The model we use to speify a portion froma data set is based on the HDF5 �hyperslab� model. A hyperslab desribes either a ontiguous olletion ofpoints, or a regular pattern of points or bloks in the data spaes. A hyperslab is spei�ed by four parameters:
• origin: the starting loation;
• size: the number of elements (or bloks) to selet along eah dimension;
• stride: the number of elements to separate eah element (or blok) to be seleted; and
• blok: the size of eah blok seleted from the data set.All of these parameters are one-dimensional lists, with lengths equal to the number of dimensions of the dataset. The elements of these lists speify data array lengths or o�sets for orresponding dimensions of the dataarrays. Currently the size of element bloks is prede�ned to one, whih is adequate for the targeted visualizationsenario. In future work, we will extend the protool to aept variable blok sizes.Our urrent mehanism for speifying the hyperslab oordinates takes the following form:ERET Hdf5="BLOCK:NAME=<datasetname>;\DIMENSIONS=<dims>;\ORIGIN=<orig0>,<orig1>,...,<orign>;\SIZE=<size0>,<size1>,...,<sizen>;\SAMPLING=<sampling0>,<sampling1>,...,<samplingn>"<filename>datasetname is the fully quali�ed name (inluding the path to the data set) of the data set from whih datashould be read; orig0 to orign are the oordinates of the �rst element to be seleted from the data set; size0to sizen are the number of elements to be seleted in eah dimension; and sampling0 to samplingn representthe distane between two seleted elements for eah dimension.This request is sent to the server. The server opens the �le �lename, opens the given data set, and readsthe portion of the �le spei�ed by the given parameters. This proedure is performed via native HDF5 libraryalls. Next, the retrieved data is sent via the GridFTP onnetion to the lient, whih will onvert the datato the loal byte order if needed. To determine if onversion is neessary, the �rst 32 bits sent by the serverrepresent an integer with the value of 1, enoded using the servers byte ordering.The approah we have taken in reating this limited HDF5 API wrapper does redue the �exibility providedby the original API. Nonetheless, for our visualization senario this API is appropriate, and makes signi�antsteps toward maximizing overall performane. To retain the �exibility of the original API, one approah wouldbe to exeute eah native API all remotely. In this ase, the ost per all is at least that of the network lateny.This, ombined with the relatively large number of alls needed for example to gather the meta data from the�le, signi�antly redues the performane. This motivates the usage of higher level API wrappers, as the onewe have implemented. However, suh wrappers need not to be as limited as our urrent version of ourse.5.3. Seurity. The seurity model used used by the GridFTP server is GSI (Grid Seurity Infrastru-ture) [17℄. The lient needs to hold a valid GSI proxy ontaining a seurity redential with limited validity.The proxy represents a Distinguished Name (DN) that must be present in the grid-mapfile of the servermahine in order for the server to aept the onnetion. This proxy is used to authentiate the lient withoutusing passwords. After the onnetion is established, the server front end starts the MPI-based bak end.This bak end runs under the loal identity to whih the DN is mapped. The bak end is responsible for allsubsequent operations, inluding the �ltering operations. This ensures that only authorized lients an aessthe information from the original �le.6. Adaptive Visualization. We utilize the previously desribed tehniques for data aess and �lteringto generate a level-of-detail representation of the remote data set in the visualization phase.First, the meta data�i. e. information about the number of data samples per oordinate axis and the datavolume extension in physial spae�is retrieved (see set. 5.2). With help of this information, and a seletableminimal resolution of the data, an otree struture is generated, whih initially ontains no data other than theparent-hild relations and position and extensions of the tree nodes. The root node of the struture will storea oarse representation of the whole data volume. This is reursively re�ned by subnodes with higher spatialresolution until the resolution of the original data is reahed.



Progressive Retrieval and Hierarhial Visualization of Large Remote Data 63Next, the data for the otree nodes is requested from the reader module, starting at the root node. Theorder in whih nodes are re�ned is determined by the distane from a user-de�ned point-of-interest, whihmight be the amera position or an arbitrary point within the data volume. Subregions of the data sets loserto this point are requested with higher priority than those whih are further away. The position and resolutionparameters for eah request are spei�ed and sent to the remote mahine as desribed in set. 5.2.The reader runs in a separate thread, so the visualization routines are not bloked during the loading phase.Eah time a data blok has arrived, the visualization module is noti�ed, and this new data is re�eted in thenext rendered frame of the visualization.

Fig. 6.1. The sequene depits the volume rendering of a remote data set. First, a oarseresolution representation of the data is generated on-the-�y and transferred to the loal visual-ization lient. Next, subregions loser to the point-of-interest (in this ase, the amera position)are requested and integrated at progressively higher resolutions.Besides hierarhial visualization modules for orthosliing and the display of height �elds, we implementeda 3D texture-based volume rendering module for otrees. The otree is traversed in a view-onsistent (bak-to-front) order, starting at the root node. A node is rendered, if two riteria are ful�lled:
• The data for this node is already loaded (otherwise, the traversal of the assoiated subtree is stopped).
• The data for the subnodes is not loaded yet (otherwise, the node is skipped and the subnodes arevisited).One a node is seleted, it is rendered utilizing the standard approah for volume rendering with 3D textures,as proposed in (e.g.) [16, 15℄. The 3D texture is sampled on slies perpendiular to the viewing diretion andblended in the frame bu�er.In order to take advantage of the multi-resolution struture of the data for fast rendering, the sampledistane of the slies is set with respet to the resolution level of the atual node, as proposed in [29℄.7. Results.7.1. Implementation. The implementation of the remote data aess infrastruture we have desribedis based on an experimental version of the GridFTP server provided by the Globus Group. This server is not



64 Hans-Christian Hege, Andrei Hutanu, Ralf Kähler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmerpart of the Globus software distribution as of yet. It supports the addition of ompile-time plugins (writtenin C) for handling spei� inarnations of the ERET/ESTO protool ommands. Although ERET and ESTOare spei�ed in the GridFTP protool version 1.0, there is urrently no other implementation of this featureavailable other than the basi support for partial �le aess and striped data aess. There are good prospetsfor this feature to be present in various future implementations of GridFTP servers. The plugin ode will beavailable via the GridLab projet software distribution, and will be published at http://www.gridlab.org/.For benhmarking the software we used a dual Xeon 1.7GHz Server running RedHat Linux 8.0 as a dataserver. The mahine was equipped with 1GB of RAM and a logial volume storage of 320 GByte (36.5 MByte/setransfer rate). The measurements have a granularity of 1 seond.The visualization modules we desribed have been implemented in the Amira visualization environment [28,5℄, whih is based on OpenGL and OpenInventor. The renderings have been performed on a dual Pentium IVsystem with 2.6 GHz, 1 GByte main memory and NVidia Quadro4 graphis. The system ran under RedHatLinux 8.0 with the standard NVidia video driver.7.2. Benhmark Results. In order to evaluate our approah, we performed a number of performanemeasurements for aessing, loading and displaying large remote HDF5 data sets. We ompare the performaneobtained using the GridFTP plugin (GridFTP HDF5 ) with a omparable remote aess tehnique, that isHDF5 over GridFTP partial �le aess (GridFTP PFA). We also inlude measurements of loal (loal aess)and Network File System (NFS aess) times to see if we ahieved our goal of having aeptable waiting timesbefore the �rst visualization is reated, onsidering the loal and NFS times as aeptable.The results of these tests are listed in table 7.2. The time needed to reate the �rst image (t3) is omposedof the time needed to gather and transfer the meta data (t1) and the time needed to �lter and transfer thesubsampled �rst timestep (t2). t4 gives the aess time for a full resolution time step.The tests have been performed on a Loal Area Network (LAN ) with normal network load (lateny 1ms,measured 32.0 MBit/se), and on a Wide Area Network onnetion (WAN ) between Amsterdam and Berlin(lateny 20ms, measured bandwith: 24.0 MBit/se).The WAN measurements have been performed with various level settings, that is with di�erent depth ofthe otree hierarhy reated. Table 7.1The table lists performane measurements for the various aess tehniques we explored.The results have been obtained by timing the visualization proess for a 32 GB HDF5 �le, on-taining 500 timesteps, eah timestep with the resolution of 256
3 data points (double preision).Aess Type Net Level Meta Data Root Blok Startup Complete

t1 t2 t3 = t1 + t2 t4loal aess - 2 7 se 1 se 8 se 3 seNFS aess LAN 2 8 se 5 se 13 se 8 seGridFTP HDF5 LAN 2 11 se 2 se 13 se 11 seGridFTP PFA LAN 2 165 se 10 se 175 se 200 seGridFTP HDF5 WAN 3 14 se 2 se 16 se 126 seGridFTP HDF5 WAN 2 14 se 3 se 17 se 68 seGridFTP HDF5 WAN 1 14 se 7 se 21 se 45 seGridFTP HDF5 WAN 0 14 se 41 se 55 se 41 seGridFTP PFA WAN 3 430 se 28 se 458 se 3760 seGridFTP PFA WAN 2 430 se 53 se 483 se 960 seGridFTP PFA WAN 1 430 se 110 se 560 se 477 seGridFTP PFA WAN 0 430 se 220 se 670 se 220 seThese measurements show that the goal of a fast initial visual representation of the data set was ahieved:a small startup time t3 an be ahieved by using the GridFTP HDF5 tehnique ombined with hierarhialaess (level ≥ 2). This time is of the same order of magnitude as for loal visualization.Speifying the hierarhy level provides the user with an interative mehanism for tuning response times.The data aess sheme ould prove its adaptivity for di�erent network onnetivity. In priniple, the user anredue the time to obtain a �rst visual representation by hoosing a larger hierarhy level. The tradeo� for



Progressive Retrieval and Hierarhial Visualization of Large Remote Data 65shorter startup times is the total transfer time for a fully resolved data set (all otree levels)7. The results showthat relation (t3 / t4) learly for the WAN measurements with di�erent level settings.Also, the large overhead for the ompliated meta data aess was dramatially redued in omparison toGridFTP partial �le aess. The remaining time di�erene relative to the NFS meta data aess results fromthe appliation of the zero �lter to all data sets, the time needed to write the meta data �le, and the time totransfer it.8. Conlusions. With the presented sheme for progressive remote data aess and its use for hierarhialrendering, we have suessfully realized the funtionality targeted in our motivating senario (set. 2). Inpartiular, the tehniques we have developed support the adaptation of remote data aess to a wide range ofI/O onnetions, and reat �exibly to user and appliation demands. For example, our mehanisms supportadjustment of the systems reation time�the time until the �rst visual impression for the data set appears�byadapting data �lter parameters, suh as the hosen otree depth.Our presented solution does not depend on server-side o�ine preproessing of the omplete data set. Theaess to the data sets meta data, when ompared to naive remote aess tehniques, o�ers very high perfor-mane, as supported by the results of Table 1. Only a small loal disk storage spae is required for ahing theassoiated metadata.The extensibility of this approah is also notable. This approah supports both additional data formatsother than HDF5, and aess patterns other than hyperslab, through the provision of additional plugins. Si-multaneously, it is important to aknowledge that this approah may make it inreasingly di�ult to maintainompatible on�gurations on all hosts of a Grid. The situation may improve with future GridFTP server im-plementations allowing dynami linking and invoation of plugins. Thus implementation is one of the �rst fewexisting utilizations of the ERET apabilities provided by GridFTP. It is expeted to see many more in the future.Our work further demonstrates the usability of the data aess sheme for hierarhial rendering tehniques.The implemented algorithms (orthoslie, height �eld, volumetri rendering) show very good performane, andare also adaptive to user spei�ation and onnetivity harateristis.The presented arhiteture enables us to realize visualization senarios whih would be impossible earlier, byreduing the total amount needed for obtaining a visual data impression by orders of magnitudes, if omparedto naive approahes.We are planning to enhane the dynami protool seletion feature of Stork, so that it will not only seletany available protool to perform the transfer, but it will selet the best one. The requirements of `being thebest protool' may vary from user to user. Some users may be interested in better performane, and others inbetter seurity or better reliability. Even the de�nition of `better performane' may vary from user to user. Weare looking into the semantis of how to to de�ne `the best' aording to eah user's requirements.We are also planning to add a feature to Stork to dynamially selet whih route to use in the transfers andthen dynamially deploy DiskRouters at the nodes on that route. This will enable us to use the optimal routesin the transfers, as well as optimal use of the available bandwidth throughout that route.Aknowledgments. It is a pleasure to thank many olleagues and ollaborators who ontributed to thiswork both diretly and indiretly. At ZIB, that are namely Werner Benger and Tino Weinkauf, who ontributedto the overall ideas of our approah. We wish to thank the Globus group, in partiular Bill Allok and JohnBresnahan, for their substantial support with the GridFTP server plugin infrastruture and implementation �without the experimental server provided by them, our work would have been hardly possible. We also wish tothank John Shalf and Werner Benger for many insightful disussions about data handling. Finally, we wish tothank the members of the GridLab projet who ontributed to the Adaptive Component work pakage for usefuldisussions about (future) semi-automati adaptivity shemes, and for their support during the benhmarkingThe presented work was funded by the German Researh Network (the DFN GriKSL projet, grant TK-602-AN-200), and by the European Community (the EC GridLab projet, grant IST-2001-32133).REFERENCES[1℄ HDF5 File Format Spei�ation, National Center for Superomputing Appliations (NCSA).http://hdf.nsa.uiu.edu/HDF5/do/H5.format.html.
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