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t. This paper des
ribes a data distribution algorithm suitable for 
opying large �les to many nodes in multiple 
lustersin wide-area networks. It is a self-organizing algorithm that a
hieves pipeline transfers, fault toleran
e, s
alability, and an e�
ientroute sele
tion. It works in the presen
e of today's typi
al network restri
tions su
h as �rewalls and Network Address Translations,making it suitable in wide-area setting. Experimental results indi
ate our algorithm is able to automati
ally build a transfer route
lose to the optimal. Propagation of a 300MB �le from one root node to over 150 nodes takes about 1.5 times as long as the besttime obtained by the manually optimized transfer route.Key words. Self-stabilizing distributed algorithm, fault toleran
e, s
alability, wide-area network1. Introdu
tion. This paper des
ribes a pra
ti
al algorithm for 
opying large data (typi
ally in a �le)from a sour
e node(s) to many destination nodes in parallel. We seek a s
alable solution suitable both withina 
luster and a
ross many 
lusters in wide-area. By suitable within a 
luster, we mean that it fully utilizesthe available bandwidth of LAN/
luster inter
onne
t. For example, assuming 32 nodes are 
onne
ted via asu�
iently high-throughput swit
h, it should be able to 
opy a single large �le to the 32 nodes in not mu
hmore than the time it takes to 
opy the �le to a single node. Su
h an algorithm must at least perform manyone-to-one transfers in parallel. By suitable in wide-area, we mean it makes a good 
hoi
e in sele
ting transferroutes. If many nodes in a 
luster retrieve data from another 
luster, a link a
ross the two easily saturates.Thus su
h an algorithm should have a me
hanism to transfer data within a 
luster where possible.To be pra
ti
al, it should work with a simple and small manual 
on�guration that may not be very a

urate.It won't be pra
ti
al to assume, for example, that the user gives a 
omplete and a

urate information aboutphysi
al network topology, desirable paths for transferring data, or even logi
al network 
onne
tivity (i.e.,network settings su
h as �rewall and Network Address Translation (NAT)). Assuming su
h information isnot pra
ti
al not only be
ause the user may not want to write them, but also be
ause su
h information may
hange over time due to su
h events as node/network failures. The system therefore must tolerate ina

urateinformation and adapt to the 
onditions observed at runtime. Su
h an adaptive system naturally supports faulttoleran
e in the sense that even if some nodes fail, remaining nodes a

omplish their work and nodes that on
efailed 
an join the transfer again.We believe su
h a fault-tolerant and adaptive �le repli
ator is a mandatory building blo
k for 
luster andGrid 
omputing. It may be used for installing large program/data to many nodes. It may also be used in�le syn
hronizers [5℄ so they support syn
hronizing data among a large number of nodes in parallel. Perhapsmost important, repli
ating a large data to many nodes will be a pra
ti
al te
hnique to �reset� a distributed
omputation; it simply reinitializes all the involved nodes, so as to re
over from some broken/in
onsistent states.This observation a

ords with re
ent pra
ti
es in large-s
ale 
luster management, where reinstalling operatingsystems from s
rat
h is 
onsidered as a normal operation, rather than the last resort, to �x broken 
lusters [13℄.To get an intuitive idea about how a good transfer route typi
ally looks, 
onsider a network in Figure 1.1.There are two lo
al area networks (LANs) named A and B, ea
h in
luding three 
lusters (A1, A2, and A3in A and B1, B2, and B3 in B). Assume nodes 
an 
onne
t to ea
h other via the TCP layer.Suppose the data is on a node in 
luster A1 and should propagate to all other nodes. In the �gure, a small
ir
le is a node, a re
tangle a swit
h, and a line 
onne
ting a node and a swit
h a network 
able that 
an transferdata with 100Mbps.1Intuitively, the best strategy is to form a transfer route like the one shown in Figure 1.2. Figure 1.3represents the same route in the physi
al topology. Spe
i�
ally, the following two properties are important.
• The number of 
onne
tions that 
ross a LAN/
luster boundary is small; there is only one 
onne
tiona
ross the two LANs and �ve 
onne
tions a
ross the six 
lusters.
• The entire transfer route forms a list. That is, no nodes serve data to two or more nodes.The reason why the �rst property is important will be 
lear. A simple 
al
ulation will reveal that if nodes arerandomly 
onne
ted without any e�ort to 
onne
t nodes 
lose to ea
h other, links a
ross LANs/
lusters will
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1Of 
ourse, this limit may not be due to the 
apa
ity of the 
able per se, but due to NIC or swit
h.67
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ation layereasily be
ome a bottlene
k. This is espe
ially true in today's typi
al network 
on�guration where 
apa
ity oflong links (
orporate-/
ampus-/wide- area) is similar to or at best only an order of magnitude larger or so thantypi
al lo
al area links. For example, let us assume for the purpose of dis
ussion that we have two 100Mbpsswit
hed LANs 
onne
ted via a 1Gbps link. In su
h settings, we should be able to transfer data among allthe nodes in the two LANs approximately at the LAN bandwidth (100Mbps), but if 
onne
tions are randomly
hosen, a link a
ross the two LANs 
an sustain only 10 su
h 
onne
tions at best. Thus the 1Gbps link won'tbe enough for supporting 10 or more nodes in ea
h side of it.The se
ond bullet may be less obvious. It is important for redu
ing the bottlene
k in NICs. Suppose threenodes A, B, and C are linked via a 100Mbps swit
h. If data go from A to B to C, the throughput will be
lose to 100Mbps. If, on the other hand, A sends data both to B and C simultaneously, it 
an emit data at50Mbps to ea
h. Note that we assume A must send data to B and C separately, whi
h we believe is a reasonableassumption be
ause B and C may want di�erent portion of the entire data stream. This is important espe
ially
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Fig. 1.3. Best transfer route a

ording to our guidelines in typi
al networkwhen links a
ross LANs are su�
iently powerful, so they won't be
ome bottlene
ks as long as we maintain the�rst property.Our algorithm tries to build a transfer route 
lose to su
h best routes. Note that it is not always possibleto 
onne
t all nodes in a list. For example, if �rewalls do not allow some 
onne
tions, it may be unavoidablefor some nodes to serve data to two or more 
hildren. Thus, our algorithm in general forms a transfer forest ,with some heuristi
s to 
onne
t nodes 
lose to ea
h other and to make the tree deeper. It may be a forest,rather than a single tree, be
ause there may be multiple nodes that have 
omplete data in the beginning. Insu
h 
ases, a separate tree will be formed rooted at ea
h sour
e node.The paper is organized as follows. Se
tion 2 des
ribes a model of the network and the goal of this resear
h.Then, we propose our algorithm and proof of e�
ien
y in Se
tion 3. And validation and evaluation are shownin Se
tion 4. In Se
tion 5, we explain related work. Finally, we 
on
lude and summarize this resear
h andremark to future work in Se
tion 6.2. Problem Des
ription. In this se
tion, we de�ne goals of the algorithm and formalize the problem.2.1. Goals.Tolerate faults and adapt to resour
e 
onditions: Copying a large �le to many nodes takes a long time.Therefore our solution must tolerate temporal/permanent network faults and node 
rashes. When anode 
rashes, nodes re
eiving data from the 
rashed node must �nd a substitute so that the remainingnodes �nish their tasks. When a node re
overs, it must be able to join the transfer network and 
ontinueits job, without waiting for the ongoing operation to �nish and then restarting from s
rat
h. In additionto being fault-tolerant, it must adapt to 
hanges in network 
onditions; it should 
hange the transferroute depending on 
hanges of 
onditions.Both of these requirements pre
lude a simplisti
 solution that stati
ally 
onstru
ts a route in thebeginning and tries to retain the same route until they �nish. Nodes must 
ontinuously sear
h for abetter transfer route.Make an e�
ient transfer route automati
ally: As motivated in Se
tion 1, our general 
riteria for �good�transfer route are (1) using a small number of �long� 
onne
tions (i.e., 
onne
tions that travel a largenumber of hops, su
h as inter-subnet 
onne
tions), and (2) having a small number of nodes that serve
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hildren. This is based on our assumption that a bottlene
k is typi
ally
aused by an inter-subnet edge or a node. Examples for the latter are disks and network interfa
es.Our algorithm tries to optimize the number of long 
onne
tions and the number of 
hildren for ea
hnode, with a very simple lo
al sear
h heuristi
s.Work on today's typi
al network 
on�gurations: Today's typi
al network 
on�gurations do not allowea
h node to 
onne
t to all other nodes. Firewalls may blo
k 
onne
tions between LANs. Inside aLAN, it is 
ommon to pla
e all 
luster nodes but one (a master node) behind a NAT router, so thata

esses to 
lusters need go through the master. With DHCP, it may even be impra
ti
al to assume allnodes to have persistent names.In short, we must model the network as a general graph where allowed 
onne
tions are representedby its edges. Yet it is impra
ti
al to assume su
h a graph is given by the user (or the administrator)either o�ine or in the beginning of the algorithm. Altogether, we must design an algorithm that beginswith a minimum amount of global information (e.g., parti
ipating nodes) and a lo
al knowledge of thenetwork (e.g., neighbors) in ea
h node.Do not assume physi
al network topology: Knowing physi
al network topology would help us to opti-mize transfer routes. Designing the algorithm assuming a 
omplete knowledge about it is, however,impra
ti
al for many reasons dis
ussed so far. First it is 
umbersome for the user or the administra-tor to maintain su
h information. We may be able to obtain su
h information by using tools su
has tra
eroute, but su
h tools tend to be unavailable these days for se
urity 
onsiderations. It is alsodi�
ult to obtain the topology of the network behind a single router with tra
eroute. Se
ond, evenif topology information is available, dynami
ally probing the network is always ne
essary to make thealgorithm fault-tolerant and adaptive. Algorithms based on probing 
onne
tivity and proximity atruntime naturally work without detailed knowledge about network topology.Of 
ourse, we 
ould always use physi
al topology as hints to our algorithm, among many other hintssu
h as IP address pre�x, laten
y, and observed throughput.To a
hieve these goals, ea
h node involved in our algorithm 
ontinuously seeks a parent, a node that servesdata to the node. When it fa
es su
h events as parent 
rashes or dis
onne
tions, it tries to �nd a new parent.Even without su
h events, they 
ontinuously sear
h for a better parent to optimize the transfer route. The
riteria for a better parent are that (1) the 
loser a node is to itself the better, and (2) the fewer 
hildren a nodehas the better.Our algorithm is a simple lo
al sear
h algorithm that 
onverges to a satisfa
tory transfer in typi
al network
on�gurations of today. Ideally, we desire an algorithm to �nd a globally optimal solution for any given network.A plausible de�nition of the optimal would be to minimize the sum of sele
ted edge weights and the number ofbran
hes (or equivalently, the number of leaves) in the graph. The two 
riteria may 
on�i
t for general weightedgraphs and even if they do not, they will require a 
omplex global optimization algorithm (e.g., fault-tolerantMST 
onstru
tion) whose pra
ti
al importan
e may not be very 
lear. In the following, we formulate ourproblem and prove our simple algorithm has a property whi
h translates to �a su�
iently good� transfer routein typi
al real network 
on�gurations.2.2. Problem Formulation. As usual, we model the network by a dire
ted graph G = 〈V, E〉, where V isa set of nodes parti
ipating in the repli
ation. E represents possible 
onne
tions between nodes; (a, b) ∈ E ⇐⇒
a knows b's name and the 
urrent network status allows a to 
onne
t to b.The graph is for modeling purposes only; in pra
ti
e, the network status may 
hange over time, so ea
hnode 
annot know the 
omplete status of the network. It may even be impra
ti
al to assume ea
h node knowsall the neighbors it 
an 
onne
t to. In our implementation, ea
h node begins with knowing information abouta few of its neighbors and re
eiving a 
ommand that instru
ts it to parti
ipate in the repli
ation of a �le. Theylearn other node names on the �y by propagating information along established 
onne
tions. This way, theylearn other 
onne
tions they may be able to make. They learn whether a parti
ular 
onne
tion is allowed ornot by trying to establish a 
onne
tion only when ne
essary. Nodes never maintain information about edgesthey are not adja
ent to.Below, we prove our optimization algorithm eventually rea
hes a transfer forest that has some desirableproperties, assuming that the graph is �xed at some point. Note that our algorithm 
orre
tly �nishes its jobwithout this assumption. The assumption is essential only for stating the property of the forest our algorithm
onverges to.



An Adaptive File Distribution Algorithm for Wide Area Network 71To de�ne the �goodness� of a transfer forest, we must introdu
e a notion of distan
e between nodes. Oneplausible formulation would be to give edges arbitrary weights, and to aim at redu
ing the total weights ofsele
ted edges (i.e., minimum spanning forest). We do not use this formulation but introdu
e a strongerassumption about the distan
es between nodes whi
h we believe is a pra
ti
al approximation of real networks,and show a simpler lo
al sear
h obtains su�
iently good results.We assume nodes 
an be de
omposed into groups so that nodes 
lose to ea
h other 
onstitute a group. Ouroptimization algorithm does not assume that ea
h node knows the de
omposition expli
itly, but only assumesthat ea
h node 
an somehow 
ompare relative distan
es from the lo
al node to other nodes. We show inSe
tion 3.3 su
h a 
omparison indu
es a de
omposition. It is su
h a de
omposition for whi
h our algorithm triesto redu
e the number of inter-group edges. Again, the repli
ation 
orre
tly �nishes with ina

urate information,thus an implementation 
an use any su�
iently a

urate measurement. Our 
urrent implementation is given inSe
tion 3.2.1.We say a de
omposition is 
omplete if nodes in ea
h group form a 
lique (a 
omplete subgraph) of G.That is, nodes inside a group 
an 
onne
t to ea
h other without being blo
ked by, e.g., �rewalls. For anyde
omposition whi
h may or may not be 
omplete, one 
an derive a 
omplete de
omposition by dividing itsin
omplete group into a number of groups so ea
h of them is a 
lique. We 
all su
h a 
omplete de
omposition a
omplete subdivision of the original de
omposition. Given a de
omposition D, a 
omplete subdivision that hasthe minimum number of groups is 
alled the 
oarsest subdivision of D.Given a de
omposition, the goal would be to make a transfer forest 
lose to the following best desirable,whi
h has1. the minimum number of edges 
onne
ting nodes in di�erent groups, and2. the minimum number of bran
hes.Our algorithm 
onverges to the optimal if ea
h node 
an 
onne
t to any other node (i.e., the entire graphis 
omplete, or in pra
ti
al terms, �rewall, NAT, or DHCP do not deny any 
onne
tion against us). In moregeneral graphs, our algorithm has the following property. Let D the de
omposition indu
ed by a heuristi
s usedto measure the relative distan
e between nodes, and D the 
oarsest 
omplete subdivision of D. Our algorithma
hieves (1) the number of inter-group 
onne
tions ≤ N − F and (2) the number of bran
hes ≤ N − 1, where
N is the total number of groups in D and F the number of groups in D 
ontaining at least one �nished node,a node whi
h has re
eived the entire data.Our 
laim that the above property translates to a good result in pra
ti
e is based on the following obser-vations.

• A simple measurement 
an reasonably approximate the �
loseness� between nodes. For example, givena node in the same LAN as the lo
al node and another not in the same LAN, it will be relatively easyfor the lo
al node to judge if one node is 
loser to the other, thus should be preferred. Therefore, one
an obtain a de
omposition ea
h group of whi
h has nodes 
lose to ea
h other.
• In typi
al network 
on�gurations, nodes 
lose to ea
h other tend to be allowed to 
onne
t to ea
h other.Most typi
ally, nodes within a LAN 
an 
onne
t to ea
h other. Making a group of nodes 
lose to ea
hother thus tends to yield a subgraph that is nearly 
omplete.The �rst bullet implies that, if we group nodes based on a reasonably a

urate measurement of distan
es betweenthem, we will have groups ea
h of whi
h 
onsists of nodes 
lose to ea
h other. Ea
h su
h group will be nearly
omplete (bullet #2), therefore N will be 
lose to N . Together, the number of 
onne
tions 
rossing a groupboundary will be 
lose to N − F , and the number of bran
hes 
lose to N − 1.3. Algorithm. The algorithm has several features that we should remark.A simple, self-stabilizing distributed algorithm: Ea
h node works based on information about its neigh-bors and optimizes transfer routes with a small amount of lo
al information. Ea
h node 
ontinuouslyseeks a 
loser node that may serve data faster. This me
hanism naturally makes our algorithm fault-tolerant and allows nodes to join or leave 
omputation at any time.Parallel and pipelined transfer: Transferring data from node A to B and from C to D 
an o

ur in parallel.Moreover, transferring a pie
e of data from A to B and transferring another pie
e of data from B to

C 
an also take pla
e in parallel (pipelined transfer). This is espe
ially important for repli
ating large�les in swit
hed networks.A simple transfer loop avoidan
e: The algorithm naturally avoids deadlo
k due to a transfer loop simply byletting ea
h node be
ome a parent of another only when it has more data than others. This me
hanism,



72 Takashi Hoshino, Kenjiro Taura, Takashi Chikayamatogether with the self-stabilizing nature of the algorithm, is enough to make it deadlo
k-free; when anode 
rashes, its 
hildren will eventually learn there is no progress for a long time, in whi
h 
ase theytry to 
onne
t to another node that is ahead of it.01: /* Starting or After Re
overed */02: o�set = 
urrent �lesize on disk;03: parent = invalid; /* the node self is getting data from.*/04: 
andidate = null;05: is_sending_giveme = false;06: 
hildren = none; /* nodes self is giving data to */07: siblings = none; /* used for Tree2List Suggestion */08: neighbors = list of neighbors (dead or alive);09: while (true) {10: /********** Sear
hing for Parent **********/11: (
andidate == null && parent == invalid) ⇒12: 
andidate = a node in neighbors;13: send(
andidate, ask(id , o�set));14: /* NearParent Heuristi
s */15: (
andidate == null && a node in neighbors satis�es16: is_
loser(self , node, parent)) ⇒17: 
andidate = node;18: send(
andidate, ask(id ,o�set));19: /* Tree2List Heuristi
s */20: (
andidate == null && a sibling in siblings satis�es21: !is_
loser(self , parent , sibling)) ⇒22: 
andidate = sibling ;23: send(
andidate, ask(id ,o�set));24: re
eived(ask(wid , wo�set)) ⇒25: if ((o�set > wo�set) &&26: (MAX_NODE > number of 
hildren)) {27: add this node (wid , wo�set) to 
hildren;28: send(wid , ok(id , o�set));29: } else {30: send(wid , ng(id));31: }32: re
eived(ok(wid , wo�set)) ⇒33: if (wo�set > o�set) {34: parent = wid ; 
andidate = null;35: }36: re
eived(ng(wid)) ⇒37: if (wid == 
andidate) {38: 
andidate = null;39: } else if (wid == parent) {40: parent = invalid;

41: }42: /********** Data Transfer **********/43: (parent != invalid && o�set < �lesize &&44: !is_sending_giveme) ⇒45: is_sending_giveme = true;46: send(parent , giveme(id , o�set));47: re
eived(giveme(
hild , wo�set)) ⇒48: if (o�set > wo�set) {49: size = max(BLOCKSIZE, o�set�wo�set);50: buf = load(�lename, wo�set , size);51: send(
hild , data(id , wo�set , size, buf ));52: } else {53: send(
hild , ng(id));54: }55: re
eived(data(wid , wo�set , size, buf ) ⇒56: if (wo�set == o�set) {57: is_sending_giveme = false;58: save(�lename, wo�set , size, buf );59: o�set += wo�set ;60: }61: (o�set == �lesize && parent != null) ⇒62: if (parent != invalid)63: send(parent , dis
onne
t(id));64: parent = null;65: re
eived(dis
onne
t(
hild)) ⇒66: delete the 
hild from 
hildren;67: /********** Tree2List Suggestion **********/68: (having more than one 
hild) ⇒69: forea
h 
hild in 
hildren {70: send(
hild , suggestion(id , 
hildren));71: }72: re
eived(suggestion(parent , new_siblings)) ⇒73: siblings = new_siblings;74: /********** Fault Handling **********/75: (timeout(data, ng) from parent) ⇒76: parent = invalid;77: (timeout(giveme, dis
onne
t) from 
hild) ⇒78: delete the 
hild from 
hildren;79: (timeout(ok, ng) from 
andidate) ⇒80: 
andidate = null;81: }Fig. 3.1. Pseudo-
ode of our algorithmFigure 3.1 shows the lo
al algorithm running on ea
h node. Prior to running this algorithm, ea
h nodeknows its neighbors (neighbors) and the size of the �le ea
h node must eventually have (�lesize). In a
tualimplementation, ea
h node may begin with an in
omplete list of neighbors. Nodes propagate their neighbors toother and learn from others.Inside the main while loop (line 9�81) is written as a list of the following form:
ondition ⇒ a
tionwhere 
ondition is a pre
ondition (or a guard) in whi
h the a
tion 
an take pla
e. The predi
ate re
eived(X)evaluates to true if a message that mat
hes X is in the in
oming message queue of the node. Ea
h iteration ofthe loop waits for at least one guard to be
ome true, and exe
utes the 
orresponding a
tion. If multiple guards
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hosen arbitrarily.First, we explain the base part of this algorithm in Se
tion 3.1. We 
ontinue with the route optimizationheuristi
s in Se
tion 3.23.1. The Base Algorithm. Ea
h node repeats the following until it gets the entire data.
• It seeks a node that is ahead of itself (i.e., has more data than itself). Let us 
all su
h a node its parent .A parent may 
hange over time.
• On
e it �nds a parent, it asks the parent to send the data that should 
ome next to the data it 
urrentlyhas. For example, if a node has the �rst 1000 bytes of a �le, it will ask the parent to send some amountof data from o�set 1000.
• In addition,� Ea
h node, ex
ept ones that have obtained the entire data, seeks a node that is 
loser to its 
urrentparent. Details are in Se
tion 3.2.1.� Ea
h node having two or more 
hildren tries to resolve this situation, by suggesting 
hildren to
onne
t to one of its siblings.When a node re
eives an instru
tion to parti
ipate in a repli
ation, ea
h node 
he
ks how mu
h data ithas (line 2), sear
hes for a 
andidate node that has data grater than itself by 
onne
ting to some nodes inits neighbors list. Variable o�set indi
ates the size of data at that time, and satis�es the inequality 0 ≤o�set ≤ �lesize. During data transfer, the invariant 
hild's o�set ≤ parent's o�set is maintained (line 25, 33,and 48).A node sear
hing for a parent sends an ask message 
arrying its o�set (data size) to a 
andidate (line 11�13).If the re
eiver has more data than the sender, it sends an ok message to the node sender (line 24�28, 32�35).At that time, the relation between parent-
hild is established. After that, the 
hild sends a giveme message tothe parent (line 43�46) and the parent sends a 
hunk of data to the 
hild (line 47�51). This repeats until the
hild either 
at
hes up the parent in data size (line 52�54), �nds a better 
andidate than the 
urrent parent, orre
eives an error. If the re
eiver of ask does not have more data than the sender, it sends an answer ng (line29�31) to the sender. Re
eiving an ng message (line 36�41), the node 
ontinues to sear
h for a parent.A node 
an be a parent of some nodes and a 
hild of another at the same time. In e�e
t, we a
hieve a pipelinetransfer through all nodes.When a parent be
omes unrea
hable from its 
hild (due to a parent 
rash or a network failure), the 
hildmerely sear
hes for a new parent. When a node re
overs, it 
an parti
ipate in the transfer from the o�set atthe time it has failed. Hen
e, this algorithm is fault-tolerant (line 74�80).3.2. Adaptive Transfer Route Optimization. Now, we explain optimizing heuristi
s on top of thebase algorithm (line 14�23, 67�73).

is_closer(A,B,C)

parent candidate

Sub
Tree

new
parent

A

C B C B

A

Sub
Tree

Sub
Tree

Sub
TreeFig. 3.2. NearParent Operation3.2.1. NearParent Heuristi
s. Ea
h node periodi
ally tries to 
onne
t to a node that is 
loser to its
urrent parent (
andidate in Figure 3.2, line 15�18 in Figure 3.1). If the 
andidate node turns out to have moredata than the lo
al node (line 32�35), it sele
ts the new node as the new parent. Figure 3.2 shows how thisheuristi
s modi�es a part of the transfer tree.
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h node has 
onne
ted to its parent, it sear
hes for an even 
loser 
andidate periodi
ally.We have not 
ondu
ted an extensive study about the best frequen
y. Frequent measurements will allow us to�nd a good transfer route fast at the 
ost of in
reased network tra�
. Our 
urrent implementation guaranteesthat there is at most one tra�
 from ea
h node for the measurement. It also guarantees ea
h node performs ameasurement at most on
e every 100ms. This will hardly a�e
ts CPU or network load.The predi
ate to judge if a node B is 
loser than C from the lo
al node A, is_
loser(A, B, C), 
urrently usesthe following 
riteria in the listed order.Throughput observed in the past: Ea
h node re
ords throughput from ea
h of the nodes that have been
hosen as its parent. If A has 
hosen both B and C as its parent before, whi
hever produ
ed a betterthroughput is 
onsidered 
loser.Observed laten
y: The above 
riterion is not appli
able when either B or C has never been 
hosen one as
A's parent. In this 
ase A uses laten
ies it takes to 
onne
t to B and C.The length of the mat
hing IP address pre�x: When observed laten
ies are too 
lose to dis
riminate, weuse IP addresses of A, B, and C. We 
ompare the lengths of the 
ommon pre�xes of IP addresses of Aand B to that of A and C.For the purpose of proving the theoreti
al property of the algorithm mentioned in Se
tion 3.3 (also stated asTheorem 3.7), is_
loser 
an be any predi
ate that satis�es the following properties.

• is_
loser(A, B, C) and is_
loser(A, C, B) do not be
ome true at the same time.
• For a given A, the binary relation:

RA(B, C)
def
= is_
loser(A, B, C)is transitive. That is, is_
loser(A, B, C) ∧ is_
loser(A, C, D)

⇒ is_
loser(A, B, D)

• is_
loser(A, B, C) ⇒ is_
loser(B, A, C)It will be 
lear that any reasonable de�nition of relative distan
e and an a

urate measurement of it, in
ludingthe ones listed above, will satisfy the �rst two bullets. The third property may not sound very obvious. Examplesthat satisfy the property in
lude:
• A de�nition based on the bottlene
k edge on trees. That is, assume nodes are 
onne
ted via a weightedtree and let is_
loser(A, B, C) be true i� the minimum weight on the path between A and B is largerthan that on the path between A and C.
• A de�nition based on the distan
e on trees. That is, assume nodes are 
onne
ted via a tree and letis_
loser(A, B, C) be true i� the path between A and B is shorter than A and C.
• A de�nition based on address pre�xes. That is, assume nodes are assigned integer addresses and letis_
loser(A, B, C) be true i� the length of the mat
hing address pre�x between A and B is larger thanthat between A and C.Therefore we expe
t that our 
urrent implementation of is_
loser based on measured bandwidths betweennodes, measured laten
ies between nodes, and the length of IP address pre�xes, will satisfy the third propertyprovided measurements are a

urate.Note that implementing su
h a predi
ate does not require any a priori notion of groups. Just de�ning/mea-suring the relative 
loseness between nodes will su�
e, as long as su
h a de�nition/measurement satis�es theabove properties. In Se
tion 2.2, we show su
h a predi
ate in general impli
itly indu
es a distan
e betweennodes, whi
h in turn indu
es a de
omposition of nodes based on the distan
e. Our algorithm redu
es thenumber of inter-group edges for a de
omposition derived this way.3.2.2. Tree2List Heuristi
s. NearParent heuristi
s redu
es the number of edges that 
ross group bound-aries. It however is not useful for redu
ing the number of bran
hes. Another optimization, 
alled Tree2Listheuristi
s, 
omes into play to make the transfer route 
loser to a list.A node that has two or more 
hildren sends its 
hildren list to every 
hild (line 68�71). When a node re
eives asuggestion message, whi
h e�e
tively 
ontains its 
urrent siblings, it 
hooses one in the list as the next 
andidateif the 
urrent parent is not 
loser to it (lines 72�73, 20�23). Figure 3.3 shows how Tree2List heuristi
s modi�esa part of the transfer tree. Intuitively, Tree2List pushes bran
hes in a transfer tree downwards, hoping the treeeventually be
omes a list.



An Adaptive File Distribution Algorithm for Wide Area Network 75
Sub
TreeSub

Tree
Sub
Tree

Sub
Tree

Sub
Tree

Sub
Tree

A

B C

A

B C

!is_closer(C,A,B)

Fig. 3.3. Tree2List OperationAn important property about Tree2List, proved in the next se
tion, is that it never in
reases the number ofinter-group edges. This guarantees that applying Tree2List does not impede the NearParent's e�ort of redu
ingthe number of inter-group edges. In the next se
tion, we state and prove properties of transfer forests afterapplying both heuristi
s in an arbitrary order.3.3. Properties of the Route Optimization Algorithm. Let is_
loser satisfy the properties statedin Se
tion 3.2.1. We �rst show the following, that says is_
loser(A, B, C) is equivalent to 
omparing a distan
ebetween A and B and between A and C, for some de�nition of a distan
e.Lemma 3.1. For is_
loser satisfying the property stated in Se
tion 3.2.1, there exists a distan
e fun
tion dthat satis�es the following.
• For all nodes A and B, d(A, B) = d(B, A).
• For all nodes A, B, and C, is_
loser(A, B, C) ⇐⇒ d(A, B) < d(A, C).Proof: See Appendix A.1.The following Lemma is important for guaranteeing Tree2List is appli
able when we have many bran
hes.Lemma 3.2. For any d satisfying the 
ondition in Lemma 3.1,

max(d(A, B), d(A, C)) ≥ d(B, C)is true for all nodes A, B, and C. Proof: See Appendix A.2.A distan
e fun
tion d and a threshold t de�ne a natural de
omposition of a graph. That is, we remove alledges (x, y) su
h that d(x, y) > t from the original graph, and let a group be a 
onne
ted 
omponent of thegraph. We 
all su
h a de
omposition is derived from is_
loser. Many de
ompositions 
an be derived from asingle de�nition of is_
loser, depending on the 
hoi
e of d and t.We model our route optimization heuristi
s as a pro
ess of rewriting the transfer forest a

ording to Near-Parent, Tree2List, or �nishing the transfer to a node.Definition 3.3. A state of 
omputation is a forest among parti
ipating nodes, indu
ed by their parentpointers. Let S and S′ be states. We de�ne relations →n, →t, →f , and → by:1. S →n S′
def
⇐⇒ S′ is obtained by applying NearParent to S (Figure 3.2),2. S →t S′
def
⇐⇒ S′ is obtained by applying Tree2List to S (Figure 3.3),3. S →f S′
def
⇐⇒ S′ is obtained by �nishing a node and making its parent pointer null, and4. →

def
= →n ∪ →t ∪ →f . That is,

S → S′
def
⇐⇒ (S →n S′) or (S →t S′) or (S →f S′).Next, we de�ne some quantities of states. Below, we �x a de
omposition D derived by is_
loser, and let Dbe the 
oarsest subdivision of D. Let d and t the distan
e fun
tion and the threshold that indu
ed D. Let Nbe the number of groups in D. When we say a group, it always means a group of D. Nodes in a single groupby de�nition form a 
lique.
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• Let w(S) be the number of edges in forest S that 
ross group boundaries. For te
hni
al 
onvenien
e, we
onsider an invalid parent pointer to 
ross a group boundary, and a null parent pointer not to 
rossany group boundary.
• Let f(S) be the number of �nished nodes (having parent = null) and F (S) be the number of groupsthat have at least one �nished node. We say su
h a group is �nished. Note there may be un�nishednodes in a �nished group.
• Let l(S) be the number of leaves (i.e., nodes that are not pointed to by any parent pointer).Lemma 3.5. Transition paths are bounded. That is, the length of a path S0 → S1 → S2 → · · · is bounded.Proof: De�ne SUMDIST(S), SUMDEPTH(S), and Q(S) as follows.SUMDIST(S) =

∑
x : node d(x, x's parent),SUMDEPTH(S) =
∑

x : node depth(x), and
Q(S) = (f(S),−SUMDIST(S),SUMDEPTH(S)),where depth(x) is the number of hops from the root of the tree x belongs to. d(x, x's parent) is the distan
ebetween x and its parent. Again for te
hni
al 
onvenien
e, if x's parent pointer is invalid we 
onsider it hasa value larger than any other d(y, z) for z 6= invalid. Similarly, if x's parent is null, it takes a value smallerthan any other d(y, z) for z 6= null.If we introdu
e a lexi
ographi
al order among triples Q(S), it is easy to see Q(S) stri
tly in
reases by a singletransition step. That is,

S → S′ ⇒ Q(S) < Q(S′).In fa
t, →f in
reases f(S), →n does not 
hange f(S) and in
reases −SUMDIST(S), and →t does not 
hange
f(S), never de
reases −SUMDIST(S), and in
reases SUMDEPTH(S).Sin
e all quantities of the triples are 
learly bounded above, we have proved transition paths are bounded.Lemma 3.6.1. If S satis�es w(S) > N −F (S), then →n is appli
able to S. That is, there exists S′ su
h that S →n S′.2. If S satis�es l(S) − f(S) ≥ N , f(S) ≥ 1, and →n is not appli
able to S, then →t is appli
able to S.Proof:1. If w(S) > N − F (S) (= the number of un�nished groups), either of the following must hold.

• There is an un�nished group having more than one outgoing inter-group edges.
• There is a �nished group having an outgoing inter-group inter-group edge.An outgoing edge is a parent pointer pointing to a node outside the group. In the former 
ase, let twoof su
h edges be (A, B) and (C, D). A and C belong to one group, say X , while neither B nor D belongto X . Thus, a transition by →n that either makes A one of C's 
hildren or vi
e versa, is appli
able. Inthe latter 
ase, let one su
h edge be (A, B) and one �nished node in the group be P . Thus, a transitionby →n that makes A one of P 's 
hildren is appli
able.2. We split the proof into two 
ases, (i) l(S) − f(S) > N , and (ii) l(S) − f(S) = N .(i) l(S) − f(S) > N :We have at least one group X that satis�es:

l − f > 1where l and f denote the number of leaves in X and the number of �nished nodes in X , respe
tively.Let a1, a2, · · · al be the leaves in X (l ≥ 2). Let ai,1 = ai and ~ai = (ai,1, ai,2, · · · , ai,ni
) (i = 1, · · · , l) be
hains of parent pointers starting from ai. That is, ai,j is a 
hild of ai,j+1) for all i and j (1 ≤ i ≤ l,

1 ≤ j ≤ ni − 1).We argue by 
ontradi
tion that all but one of su
h 
hains must be entirely in X . Let us assume w.o.l.g.neither of ~a1 nor ~a2 are in X . Then there are j and k (1 ≤ j ≤ n1 − 1 and 1 ≤ k ≤ n2 − 1) su
h that
a1,j and a2,k ∈ X , and a1,j+1 and a2,k+1 6∈ X . Then a transition by →n that 
onne
ts a1,j and a2,kshould be appli
able. This 
ontradi
ts the assumption that →n is not appli
able in S.Now we have l − 1 
hains entirely in X . Sin
e l − f ≥ 2 (⇒ l − 1 ≥ f + 1), at least two of them mustmerge at some node in X . Let a node at whi
h two merges be A, and B and C the 
hildren of A on the
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hains. It remains to show we have either (¬is_
loser(B, A, C)) or (¬is_
loser(C, A, B)), so either
B or C 
an trigger →t. By Lemma 3.2, we havemax(d(A, B), d(A, C)) ≥ d(B, C),from whi
h we 
an derive: max(d(A, B), d(A, C)) ≥ d(B, C)

⇔ d(A, B) ≥ d(B, C) or d(A, C) ≥ d(B, C)
⇔ d(B, A) ≥ d(B, C) or d(C, A) ≥ d(C, B)
⇒ ¬is_
loser(B, A, C) or ¬is_
loser(C, A, B).(ii) l(S) − f(S) = N :If we have one group X that satis�es:

l − f > 1,then the same dis
ussion as (i) applies. In the remaining 
ase all the groups satisfy:
l − f = 1.Let X be any group. As in (i), 
onsider the l 
hains starting from a node in X . If all the l 
hains areentirely in X , two of them must merge in X , and the following argument is the same as (i). Thereforeea
h group has exa
tly one 
hain outgoing from the group. Then we have N inter-group edges, i.e.,

w(S) ≥ N . This implies, however, →n is appli
able be
ause f(S) ≥ 1 ⇒ F (S) ≥ 1 ⇒ w(S) ≥ N >

N − F (S).Theorem 3.7. Along any path of state transitions starting from any state I, we rea
h within �nite steps astate S∞ satisfying:1. w(S∞) ≤ N − F (S∞), and2. l(S∞) − f(S∞) ≤ N − 1.Proof: From Lemma 3.5, any transition path I = S0 → S1 → · · · is bounded, therefore rea
hes a state S∞in whi
h neither →n nor →t (or →, for that matter) is appli
able. Lemma 3.6 shows in this state we have bothof the above properties.Remark 1:. As a spe
ial 
ase where D = D (i.e., no edges are blo
ked inside a group of D), we have N = N .In this 
ase the theorem implies that, for su�
iently long transfers, the number of edges between groups rea
hesthe optimal N − F (S). Repli
ating a �le from F (S) groups to the rest will 
learly need N − F (S) inter-groupedges. For being 
lose to a list, the se
ond bullet of the theorem implies that the number of bran
hes, e�e
tively
al
ulated by l(S)−f(S), is the optimal N−1. To see this is optimal in general, 
onsider a network 
on�gurationshown in Figure 3.4, whi
h for
es inter-group edges to form a star.Remark 2:. Re
all that the theorem applies to any de
omposition derived from is_
loser. If the network hasmultiple levels of hierar
hies, (e.g., inside a 
luster, 
lusters inside a LAN, LANs in a 
ampus/
orporate area,and LANs in wide area), and is_
loser 
an des
riminate all of them, our algorithm simultaneously optimizesall the levels. For example, let us say we have N1 LANs and N2 
lusters and f(S) = 1 as the usual 
ase.If we assume is_
loser 
an des
riminate intra-
luster, inter-
luster but intra-LAN, and inter-LAN edges, andthe network 
on�guration allows all 
onne
tions, our algorithm 
onverges to a state in whi
h we have N1 − 1inter-LAN edges and N2 − 1 inter-
luster edges.4. Evaluation.4.1. Implementation. We have implemented the des
ribed algorithm in Java. This is exe
utable on
ommon 
omputers supporting Java and TCP/IPv4 proto
ol. We 
on�rmed the program runs on Solaris (spar
),Linux (x86), Windows (x86), and Tru64Unix (Alpha). Stopping some nodes in the middle of a distribution taskdid not prevent any of the remaining nodes from �nishing the task, 
on�rming its fault-toleran
e.
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Finished Node (and only it can be connected to by other’s group.)

Leaf Node

N = 4
l(S) = 4
f(S) = 1
l(S)-f(S) = 3 = N-1

Data Flow
GroupFig. 3.4. An example where the optimal value of l(S) − f(S) is N − 14.2. Single Cluster Experiments. First, we ran some experiments in a single 
luster. The 
luster
onsists of 16 nodes. Ea
h node has two Alpha CPUs and a lo
al hard-disk. Network 
ables of nodes are
onne
ted to a 100Mbps swit
h. Lo
al disk bandwidth is faster than network, so it does not reveal as abottlene
k. CPU is also fast enough.We initially let one node have 500MB �le, and others have no data. Sin
e there is only a single 
luster,NearParent optimization does not play any role in this experiment. So this experiment is to see the e�e
tof Tree2List. In addition to Tree2List, we ran the base algorithm without any optimization, 
hanging themaximum number of 
hildren ea
h node 
an serve, from one to �ve. They 
learly demonstrate how importantis it to make the transfer tree 
lose to a list.The time whi
h the distribution tasks spent is shown in Figure 4.1.In this result, it is 
lear that the average distribution time in
reases as the maximum number of 
hildrenin
reases. The graph also indi
ates that, in this parti
ular experiment, limiting the number of 
hildren to oneyields the best result. That is, restri
ting the shape of the transfer tree to a list in the �rst pla
e is better thanour Tree2List strategy whi
h �rst forms an arbitrary tree and then tries to develop it to a list. We believe,however, our strategy has several advantages. First, nodes may not be able to form a list in the presen
e of�rewalls et
. In su
h 
ases, one must fall ba
k to a tree. Se
ond, forming a list in the beginning may take mu
hlonger than forming a tree, espe
ially when the number of nodes be
omes large, sin
e a list 
an only grow onenode at a time.4.3. Multiple Cluster Experiments. Next, we made experiments in seven 
lusters illustrated in Fig-ure 4.2. They are all pla
ed in the 
ampus of University of Tokyo.

• An IBM Linux 
luster 
alled �istbs� 
ontains 70 nodes. We used all of them for the experiment. Nodeswithin a 
luster are 
onne
ted via 1Gbps links. A node in this 
luster is the sour
e node in thisexperiment. Bandwidth from/to other 
lusters below is poor 100Mbps.
• A SunFire15K SMP 
alled �istsun� has 70 CPUs, of whi
h we used 20. We used this ma
hine as if itwere 20 separate nodes. It has a 100Mbps NIC shared by all CPUs. Repli
ation of 300MB data among20 nodes inside istsun takes about 70 se
, where the throughput is about 34Mbps. This seems due todisk I/O bandwidth.
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Fig. 4.1. Performan
e in a single 
luster
• A 
luster of 
lusters 
alled �kototoi� 
ontains three 
luster ea
h having 16 nodes. Network speed is100Mbps inside ea
h 
luster. Throughput between two of the three is several hundreds Mbps. Havingmore than one 
onne
tion to a single 
luster easily saturates the link. No nodes outside kototoi 
annotdire
tly 
onne
t to inside it.
• An HP Alpha 
luster 
alled �oxen� 
ontains 16 nodes, whi
h is the same 
luster in Se
tion 4.2. Thereare two (and only two) gateway nodes that 
an 
onne
t to and 
an be 
onne
ted from outside the
luster.
• A Linux 
luster 
alled �marten� ea
h of whi
h runs Linux inside VMWare. Its 
on�guration is almostthe same as a 
luster in kototoi.
• For 
onne
tivity, any node 
an 
onne
t to istsun nodes and the gateways of oxen. Also, istsun andistbs are in the same virtual LAN, so nodes in the two 
lusters 
an dire
tly 
onne
t to ea
h other.Conne
tions to remaining nodes from other 
lusters are blo
ked.We 
ompared the following algorithms.Random tree: The base algorithm without any heuristi
s, with no limit on the number of 
hildren for ea
hnode.NearParent only: The base algorithm + NearParent. No Tree2List.Tree2List only: The base algorithm + Tree2List. No NearParent.NearParent + Tree2List: Use both Tree2List and NearParent.Manual: Fix the transfer route that we 
onsider will be the best, as follows; istbs 
onne
ts to istsun via oneinter-
luster edge. It is bran
hed into three inside istsun. They go to kototoi, oxen, and marten. Inside
lusters, there are no bran
hes. The throughput should be 
lose to 100Mbps / 3 = 33Mbps, determinedby the three outgoing edges from istsun, whi
h share a single 100Mbps NIC.In Figure 4.3, the results are presented. Not surprisingly, �Manual� is the fastest. NearParent + Tree2Lista
hieved an overhead of 50-100% to the manually tuned transfer and more than four times faster than therandom tree.Figure 4.4 shows that the number of inter-
luster edges and distribution time have a strong 
orrelation.This result 
on�rms that redu
ing inter-
luster (and inter-subnet) edges strongly a�e
ts performan
e ofrepli
ation among many nodes.
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istbs 70 nodes

kototoi 16x3 nodes

istsun 20 nodes

Root

Max 100Mbps Data Route

oxen 16 nodes

marten 14 nodes

Internet

Gateway Node

Fig. 4.2. Condition of 7 
lusters5. Related Work.5.1. Minimum Spanning Tree Constru
tion. MST 
onstru
tion is a 
ommonly used te
hnique foroptimizing �ows in networks. There have been a number of published algorithms and their appli
ations [2, 6, 1℄.It is 
ompelling to model our problem by a general weighted graph, with the goal being a tree that has a smallweight and a small number of bran
hes.We 
onsidered approa
hes along this line and then abandoned them for several reasons. First, from theoreti
alpoint of view, minimizing the two 
riteria at the same time is impossible for general weighted graphs, so we mustmake a di�
ult (and somewhat arbitrary) de
ision about how to trade one for the other. From the pra
ti
al side,building an MST for general weighted graph in fault-tolerant and self-stabilizing manner is already 
omplex toimplement. Finally, typi
al real networks have a relatively simple stru
ture we 
an (and should) exploit. Thatis, nodes 
lose to ea
h other in terms of physi
al proximity 
an logi
ally 
onne
t to ea
h other at some leveland below. Therefore these nodes should be able to form a list entirely within the 
lique. We have shown thisis in fa
t possible with a very simple hill-
limbing with fault-toleran
e and adaptiveness.5.2. Appli
ation-Level Multi
ast and CDN. Our work is in spirit similar to a number of work onappli
ation-level multi
ast and 
ontent distribution networks (CDN). Our optimization 
riteria are di�erentfrom them, parti
ularly in that we try to redu
e the number of bran
hes.ALMI [9℄ uses a 
entralized tree management s
heme and makes MST for good performan
e. End SystemMulti
ast [7℄ takes both laten
y and bandwidth into a

ount when making a tree of end-hosts. In [12℄, CAN [11℄is used for the infrastru
ture of multi
ast. Bayeux [15℄ uses Tapestry [14℄ that is also 
ontent-addressablenetwork. Over
ast [8℄ is a multi
asting system that a
hieves both small laten
ies and high throughput. Themain appli
ation of these systems is multimedia streaming to widely distributed nodes. In su
h settings, it isimportant to bound laten
ies be
ause the appli
ation may be an intera
tive multimedia appli
ation. Also inCDNs, the main 
riteria are laten
ies and tra�
 load balan
ing, rather than delivering as mu
h bandwidthas possible. So resear
hes about CDN su
h [10, 4, 3℄ mainly 
on
ern how to allo
ate repli
as of 
ontents,and how to redire
t user requests to appropriate repli
as. On the other hand, it is less important for su
happli
ations to squeeze the available bandwidth of lo
al area networks, be
ause there are typi
ally a smallnumber of parti
ipating nodes within ea
h network. In 
ontrast, our �le repli
ation does not have to optimize
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luster edges and distribution timelaten
ies aggressively, be
ause the �rst priority is on the 
ompletion time of transferring large �les. It is alsovery important to utilize LAN bandwidth as mu
h as possible, as the typi
al usage will be to 
opy large �lesto many nodes in 
lusters. These di�eren
es lead them to di�erent optimization 
riteria, with ours in
luding aunique Tree2List heuristi
s.
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ribed a large �le distribution algorithm that realizess
alability, adaptiveness, fault-toleran
e, and e�
ient use of bandwidths. It is based on a simple distributedalgorithm with simple lo
al heuristi
s to optimize transfers. We formalized and proved the properties of ouralgorithm and argued that this gives a good result in pra
ti
al settings. Our system will be useful for settingup a number of 
lusters and preparing wide-area distributed 
omputations with a large data. Evaluationsshow that our implementation is e�e
tive in real environment 
onsisting of over 150 nodes a
ross seven 
lusters
ampus-wide.Our 
urrent implementation of the proto
ol is not se
ure. Any mali
ious node 
an parti
ipate in the repli
a-tion and breaks the integrity. To be a useful tool for distributed 
omputing, we must use a suitable authenti
ationwhen nodes 
onne
t to ea
h other. While introdu
ing se
ure authenti
ations is possible, this may in
rease the
ost of deploying su
h tools, whose very purpose will be to help maintain a large number of nodes easily. Wemust study how to maintain ease of installation and use of this tool while a
hieving a reasonable level of se
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tion we abbreviate is_
loser to C.A.1. Lemma 3.1. Let V be the set of all nodes. We introdu
e an unknown xAB for ea
h A, B ∈ V . Forea
h triple (A, B, C) su
h that C(A, B, C) is true, we generate a 
onstraint xAB < xAC . We then unify xABand xBA for all A, B ∈ V , repla
ing all o

urren
e of one with the other. We are going to show there are noloops of 
onstraints xAB < xCD < · · · < xAB, thus the 
onstraints are satis�able. When we have proved this,we let d(A, B) = xAB, for all A, B ∈ V .To begin with, we show the following:
xAB < · · · < xY Z

⇒ C(A, B, Z) or C(A, B, Y ),by indu
tion on the length (the number of inequalities) of the lefthand side n.



An Adaptive File Distribution Algorithm for Wide Area Network 831. n = 1:Observe we must have A = Y , A = Z, B = Y , or B = Z sin
e this 
onstraint was generated from C.When A = Y , xAB < xY Z ⇒ xAB < xAZ ⇒ C(A, B, Z). Other 
ases are similar.2. Assume the 
laim holds up to n − 1 and now we have
xAB < xCD < · · · < xY Zof length n. By indu
tion hypothesis, we either have:(a) C(C, D, Z), or(b) C(C, D, Y ).By xAB < xCD, we either have:(i) A = C and C(A, B, D),(ii) A = D and C(A, B, C),(iii) B = C and C(A, B, D), or(iv) B = D and C(A, B, C).Sin
e (a) and (b) are similar we only prove the 
ase (a) by analyzing the four 
ases (i)�(iv).(i) C(A, B, D) and C(A, D, Z)

⇒ C(A, B, Z)(ii) C(A, B, C) and C(C, A, Z)
⇒ C(A, B, C) and C(A, C, Z)
⇒ C(A, B, Z).(iii) C(A, B, D) and C(B, D, Z)
⇒ C(B, A, D) and C(B, D, Z)
⇒ C(B, A, Z) ⇒ (A, B, Z).(iv) C(A, B, C) and C(C, B, Z)
⇒ C(B, A, C) and C(B, C, Z)
⇒ C(B, A, Z) ⇒ (A, B, Z).Now we prove by 
ontradi
tion there are no loops:

xAB < · · · < xY Z < xAB .By the above indu
tion, we either have:(a) C(A, B, Z) or,(b) C(A, B, Y ).By xY Z < xAB, we either have:(i) Y = A and C(A, Z, B),(ii) Y = B and C(B, Z, A),(iii) Z = A and C(A, Y, B), or(iv) Z = B and C(B, Y, A).We see 
ombining any of (a)�(b) and any of (i)�(iv) will lead to 
ontradi
tion. We only prove 
ase (a) sin
e (b)is similar.(i) C(A, B, Z) and C(A, Z, B)
⇒ false.(ii) C(A, B, Z) and C(B, Z, A)
⇒ C(B, A, Z) and C(B, Z, A)
⇒ false.(iii) C(A, B, Z) and Z = A ⇒ false.(iv) Same as (iii).A.2. Lemma 3.2. Analyze the three 
ases, (i) d(A, C) < d(A, B), (ii) d(A, B) < d(A, C), and (iii)

d(A, B) = d(A, C). Prove ea
h 
ase by 
ontradi
tion.(i) Let us assume d(A, C) < d(A, B) < d(B, C). Then,
d(A, C) < d(A, B) and d(A, B) < d(B, C)
⇒ d(A, C) < d(A, B) and d(B, A) < d(B, C)
⇒ C(A, C, B) and C(B, A, C)
⇒ C(A, C, B) and C(A, B, C)
⇒ false.



84 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama(ii) Similar to (i).(iii) Let us assume d(A, B) = d(A, C) < d(B, C). Then,
d(A, B) = d(A, C) and d(A, C) < d(B, C)
⇒ d(A, B) = d(A, C) and d(C, A) < d(C, B)
⇒ d(A, B) = d(A, C) and C(C, A, B)
⇒ d(A, B) = d(A, C) and C(A, C, B)
⇒ d(A, C) = d(A, B) and d(A, C) < d(A, B)
⇒ false.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 3, 2003.A

epted: September 1, 2003.


