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AN ADAPTIVE FILE DISTRIBUTION ALGORITHM FOR WIDE AREA NETWORK

TAKASHI HOSHINO* , KENJIRO TAURA* , AND TAKASHI CHIKAYAMA*

Abstract. This paper describes a data distribution algorithm suitable for copying large files to many nodes in multiple clusters
in wide-area networks. It is a self-organizing algorithm that achieves pipeline transfers, fault tolerance, scalability, and an efficient
route selection. It works in the presence of today’s typical network restrictions such as firewalls and Network Address Translations,
making it suitable in wide-area setting. Experimental results indicate our algorithm is able to automatically build a transfer route
close to the optimal. Propagation of a 300MB file from one root node to over 150 nodes takes about 1.5 times as long as the best
time obtained by the manually optimized transfer route.
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1. Introduction. This paper describes a practical algorithm for copying large data (typically in a file)
from a source node(s) to many destination nodes in parallel. We seek a scalable solution suitable both within
a cluster and across many clusters in wide-area. By suitable within a cluster, we mean that it fully utilizes
the available bandwidth of LAN/cluster interconnect. For example, assuming 32 nodes are connected via a
sufficiently high-throughput switch, it should be able to copy a single large file to the 32 nodes in not much
more than the time it takes to copy the file to a single node. Such an algorithm must at least perform many
one-to-one transfers in parallel. By suitable in wide-area, we mean it makes a good choice in selecting transfer
routes. If many nodes in a cluster retrieve data from another cluster, a link across the two easily saturates.
Thus such an algorithm should have a mechanism to transfer data within a cluster where possible.

To be practical, it should work with a simple and small manual configuration that may not be very accurate.
It won’t be practical to assume, for example, that the user gives a complete and accurate information about
physical network topology, desirable paths for transferring data, or even logical network connectivity (i.e.,
network settings such as firewall and Network Address Translation (NAT)). Assuming such information is
not practical not only because the user may not want to write them, but also because such information may
change over time due to such events as node/network failures. The system therefore must tolerate inaccurate
information and adapt to the conditions observed at runtime. Such an adaptive system naturally supports fault
tolerance in the sense that even if some nodes fail, remaining nodes accomplish their work and nodes that once
failed can join the transfer again.

We believe such a fault-tolerant and adaptive file replicator is a mandatory building block for cluster and
Grid computing. It may be used for installing large program/data to many nodes. It may also be used in
file synchronizers [5] so they support synchronizing data among a large number of nodes in parallel. Perhaps
most important, replicating a large data to many nodes will be a practical technique to “reset” a distributed
computation; it simply reinitializes all the involved nodes, so as to recover from some broken /inconsistent states.
This observation accords with recent practices in large-scale cluster management, where reinstalling operating
systems from scratch is considered as a normal operation, rather than the last resort, to fix broken clusters [13].

To get an intuitive idea about how a good transfer route typically looks, consider a network in Figure 1.1.

There are two local area networks (LANs) named A and B, each including three clusters (A1, Ag, and As
in A and B, Bs, and Bs in B). Assume nodes can connect to each other via the TCP layer.

Suppose the data is on a node in cluster A; and should propagate to all other nodes. In the figure, a small
circle is a node, a rectangle a switch, and a line connecting a node and a switch a network cable that can transfer
data with 100Mbps.!

Intuitively, the best strategy is to form a transfer route like the one shown in Figure 1.2. Figure 1.3
represents the same route in the physical topology. Specifically, the following two properties are important.

e The number of connections that cross a LAN/cluster boundary is small; there is only one connection
across the two LANs and five connections across the six clusters.
e The entire transfer route forms a list. That is, no nodes serve data to two or more nodes.
The reason why the first property is important will be clear. A simple calculation will reveal that if nodes are
randomly connected without any effort to connect nodes close to each other, links across LANs/clusters will
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LOf course, this limit may not be due to the capacity of the cable per se, but due to NIC or switch.
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easily become a bottleneck. This is especially true in today’s typical network configuration where capacity of
long links (corporate-/campus-/wide- area) is similar to or at best only an order of magnitude larger or so than
typical local area links. For example, let us assume for the purpose of discussion that we have two 100Mbps
switched LANs connected via a 1Gbps link. In such settings, we should be able to transfer data among all
the nodes in the two LANs approximately at the LAN bandwidth (100Mbps), but if connections are randomly
chosen, a link across the two LANs can sustain only 10 such connections at best. Thus the 1Gbps link won’t
be enough for supporting 10 or more nodes in each side of it.

The second bullet may be less obvious. It is important for reducing the bottleneck in NICs. Suppose three
nodes A, B, and C are linked via a 100Mbps switch. If data go from A to B to C, the throughput will be
close to 100Mbps. If, on the other hand, A sends data both to B and C simultaneously, it can emit data at
50Mbps to each. Note that we assume A must send data to B and C separately, which we believe is a reasonable
assumption because B and C may want different portion of the entire data stream. This is important especially
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Fia. 1.3. Best transfer route according to our guidelines in typical network

when links across LANs are sufficiently powerful, so they won’t become bottlenecks as long as we maintain the
first property.

Our algorithm tries to build a transfer route close to such best routes. Note that it is not always possible
to connect all nodes in a list. For example, if firewalls do not allow some connections, it may be unavoidable
for some nodes to serve data to two or more children. Thus, our algorithm in general forms a transfer forest,
with some heuristics to connect nodes close to each other and to make the tree deeper. It may be a forest,
rather than a single tree, because there may be multiple nodes that have complete data in the beginning. In
such cases, a separate tree will be formed rooted at each source node.

The paper is organized as follows. Section 2 describes a model of the network and the goal of this research.
Then, we propose our algorithm and proof of efficiency in Section 3. And validation and evaluation are shown
in Section 4. In Section 5, we explain related work. Finally, we conclude and summarize this research and
remark to future work in Section 6.

2. Problem Description. In this section, we define goals of the algorithm and formalize the problem.

2.1. Goals.

Tolerate faults and adapt to resource conditions: Copying a large file to many nodes takes a long time.
Therefore our solution must tolerate temporal /permanent network faults and node crashes. When a
node crashes, nodes receiving data from the crashed node must find a substitute so that the remaining
nodes finish their tasks. When a node recovers, it must be able to join the transfer network and continue
its job, without waiting for the ongoing operation to finish and then restarting from scratch. In addition
to being fault-tolerant, it must adapt to changes in network conditions; it should change the transfer
route depending on changes of conditions.

Both of these requirements preclude a simplistic solution that statically constructs a route in the
beginning and tries to retain the same route until they finish. Nodes must continuously search for a
better transfer route.

Make an efficient transfer route automatically: As motivated in Section 1, our general criteria for “good”
transfer route are (1) using a small number of “long” connections (i.e., connections that travel a large
number of hops, such as inter-subnet connections), and (2) having a small number of nodes that serve
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data to multiple (more than one) children. This is based on our assumption that a bottleneck is typically
caused by an inter-subnet edge or a node. Examples for the latter are disks and network interfaces.
Our algorithm tries to optimize the number of long connections and the number of children for each
node, with a very simple local search heuristics.

Work on today’s typical network configurations: Today’s typical network configurations do not allow

each node to connect to all other nodes. Firewalls may block connections between LANs. Inside a
LAN, it is common to place all cluster nodes but one (a master node) behind a NAT router, so that
accesses to clusters need go through the master. With DHCP, it may even be impractical to assume all
nodes to have persistent names.
In short, we must model the network as a general graph where allowed connections are represented
by its edges. Yet it is impractical to assume such a graph is given by the user (or the administrator)
either offline or in the beginning of the algorithm. Altogether, we must design an algorithm that begins
with a minimum amount of global information (e.g., participating nodes) and a local knowledge of the
network (e.g., neighbors) in each node.

Do not assume physical network topology: Knowing physical network topology would help us to opti-
mize transfer routes. Designing the algorithm assuming a complete knowledge about it is, however,
impractical for many reasons discussed so far. First it is cumbersome for the user or the administra-
tor to maintain such information. We may be able to obtain such information by using tools such
as traceroute, but such tools tend to be unavailable these days for security considerations. It is also
difficult to obtain the topology of the network behind a single router with traceroute. Second, even
if topology information is available, dynamically probing the network is always necessary to make the
algorithm fault-tolerant and adaptive. Algorithms based on probing connectivity and proximity at
runtime naturally work without detailed knowledge about network topology.

Of course, we could always use physical topology as hints to our algorithm, among many other hints
such as IP address prefix, latency, and observed throughput.

To achieve these goals, each node involved in our algorithm continuously seeks a parent, a node that serves
data to the node. When it faces such events as parent crashes or disconnections, it tries to find a new parent.
Even without such events, they continuously search for a better parent to optimize the transfer route. The
criteria for a better parent are that (1) the closer a node is to itself the better, and (2) the fewer children a node
has the better.

Our algorithm is a simple local search algorithm that converges to a satisfactory transfer in typical network
configurations of today. Ideally, we desire an algorithm to find a globally optimal solution for any given network.
A plausible definition of the optimal would be to minimize the sum of selected edge weights and the number of
branches (or equivalently, the number of leaves) in the graph. The two criteria may conflict for general weighted
graphs and even if they do not, they will require a complex global optimization algorithm (e.g., fault-tolerant
MST counstruction) whose practical importance may not be very clear. In the following, we formulate our
problem and prove our simple algorithm has a property which translates to “a sufficiently good” transfer route
in typical real network configurations.

2.2. Problem Formulation. As usual, we model the network by a directed graph G = (V, E), where V is
a set of nodes participating in the replication. E represents possible connections between nodes; (a,b) € E <~
a knows b’s name and the current network status allows a to connect to b.

The graph is for modeling purposes only; in practice, the network status may change over time, so each
node cannot know the complete status of the network. It may even be impractical to assume each node knows
all the neighbors it can connect to. In our implementation, each node begins with knowing information about
a few of its neighbors and receiving a command that instructs it to participate in the replication of a file. They
learn other node names on the fly by propagating information along established connections. This way, they
learn other connections they may be able to make. They learn whether a particular connection is allowed or
not by trying to establish a connection only when necessary. Nodes never maintain information about edges
they are not adjacent to.

Below, we prove our optimization algorithm eventually reaches a transfer forest that has some desirable
properties, assuming that the graph is fixed at some point. Note that our algorithm correctly finishes its job
without this assumption. The assumption is essential only for stating the property of the forest our algorithm
converges to.
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To define the “goodness” of a transfer forest, we must introduce a notion of distance between nodes. One
plausible formulation would be to give edges arbitrary weights, and to aim at reducing the total weights of
selected edges (i.e., minimum spanning forest). We do not use this formulation but introduce a stronger
assumption about the distances between nodes which we believe is a practical approximation of real networks,
and show a simpler local search obtains sufficiently good results.

We assume nodes can be decomposed into groups so that nodes close to each other constitute a group. Our
optimization algorithm does not assume that each node knows the decomposition explicitly, but only assumes
that each node can somehow compare relative distances from the local node to other nodes. We show in
Section 3.3 such a comparison induces a decomposition. It is such a decomposition for which our algorithm tries
to reduce the number of inter-group edges. Again, the replication correctly finishes with inaccurate information,
thus an implementation can use any sufficiently accurate measurement. Our current implementation is given in
Section 3.2.1.

We say a decomposition is complete if nodes in each group form a clique (a complete subgraph) of G.
That is, nodes inside a group can connect to each other without being blocked by, e.g., firewalls. For any
decomposition which may or may not be complete, one can derive a complete decomposition by dividing its
incomplete group into a number of groups so each of them is a clique. We call such a complete decomposition a
complete subdivision of the original decomposition. Given a decomposition D, a complete subdivision that has
the minimum number of groups is called the coarsest subdivision of D.

Given a decomposition, the goal would be to make a transfer forest close to the following best desirable,
which has

1. the minimum number of edges connecting nodes in different groups, and
2. the minimum number of branches.

Our algorithm converges to the optimal if each node can connect to any other node (i.e., the entire graph
is complete, or in practical terms, firewall, NAT, or DHCP do not deny any connection against us). In more
general graphs, our algorithm has the following property. Let D the decomposition induced by a heuristics used
to measure the relative distance between nodes, and D the coarsest complete subdivision of D. Our algorithm
achieves (1) the number of inter-group connections < N — F and (2) the number of branches < N — 1, where
N is the total number of groups in D and F' the number of groups in D containing at least one finished node,
a node which has received the entire data.

Our claim that the above property translates to a good result in practice is based on the following obser-
vations.

e A simple measurement can reasonably approximate the “closeness” between nodes. For example, given
a node in the same LAN as the local node and another not in the same LAN, it will be relatively easy
for the local node to judge if one node is closer to the other, thus should be preferred. Therefore, one
can obtain a decomposition each group of which has nodes close to each other.
e In typical network configurations, nodes close to each other tend to be allowed to connect to each other.
Most typically, nodes within a LAN can connect to each other. Making a group of nodes close to each
other thus tends to yield a subgraph that is nearly complete.
The first bullet implies that, if we group nodes based on a reasonably accurate measurement of distances between
them, we will have groups each of which consists of nodes close to each other. Each such group will be nearly
complete (bullet #2), therefore N will be close to N. Together, the number of connections crossing a group
boundary will be close to N — F', and the number of branches close to N — 1.

3. Algorithm. The algorithm has several features that we should remark.

A simple, self-stabilizing distributed algorithm: Each node works based on information about its neigh-
bors and optimizes transfer routes with a small amount of local information. Each node continuously
seeks a closer node that may serve data faster. This mechanism naturally makes our algorithm fault-
tolerant and allows nodes to join or leave computation at any time.

Parallel and pipelined transfer: Transferring data from node A to B and from C to D can occur in parallel.
Moreover, transferring a piece of data from A to B and transferring another piece of data from B to
C' can also take place in parallel (pipelined transfer). This is especially important for replicating large
files in switched networks.

A simple transfer loop avoidance: The algorithm naturally avoids deadlock due to a transfer loop simply by
letting each node become a parent of another only when it has more data than others. This mechanism,
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together with the self-stabilizing nature of the algorithm, is enough to make it deadlock-free; when a
node crashes, its children will eventually learn there is no progress for a long time, in which case they
try to connect to another node that is ahead of it.

/* Starting or After Recovered */
offset — current filesize on disk;

parent = invalid; /* the node self is getting data from.

candidate — null;
is_sending giveme = false;
children = none; /* nodes self is giving data to */
siblings — none; /* used for Tree2List Suggestion */
neighbors = list of neighbors (dead or alive);
while (true) {
/********** Searching for Parent **********/
(candidate == null && parent == invalid) =
candidate = a node in neighbors;
send(candidate, ask(id, offset));
/* NearParent Heuristics */

(candidate == null && a node in neighbors satisfies

is_ closer(self, node, parent)) =
candidate = node;
send(candidate, ask(id,offset));
/* Tree2List Heuristics */

(candidate == null && a sibling in siblings satisfies

lis closer(self, parent, sibling)) =
candidate = sibling;
send(candidate, ask(id,offset));
received(ask(wid, woffset)) =
if ((offset > woffset) &&
(MAX_NODE > number of children)) {
add this node (wid, woffset) to children;
send(wid, ok(id, offset));
} else {
send(wid, ng(id));
}

received(ok(wid, woffset)) =
if (woffset > offset) {
parent = wid; candidate = null;
}

received(ng(wid)) =
if (wid == candidate) {
candidate = null;
} else if (wid == parent) {
parent — invalid;

41:
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62:
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64:
65:
66:
67:
68:
69:
70:
71:
72:
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74:
75:
76:
77:
78:
79:
80:
81: }

/********** Data Transfer **********/
(parent !— invalid && offset < filesize &&
lis_sending giveme) =
1s_sending _giveme — true;
send(parent, giveme(id, offset));
received(giveme(child, woffset)) =
if (offset > woffset) {
size = max(BLOCKSIZE, offset woffset);
buf = load(filename, woffset, size);
send(child, data(id, woffset, size, buf));
} else {
send(child, ng(id));
}

received(data(wid, woffset, size, buf) =
if (woffset == offset) {
is_sending giveme — false;
save(filename, woffset, size, buf);
offset += woffset;

}
(offset == filesize && parent = null) =
if (parent != invalid)

send (parent, disconnect(id));
parent = null;
received(disconnect(child)) =
delete the child from children;
JRRREAAKIR TroeBList Suggestion **FFExEkES /
(having more than one child) =
foreach child in children {
send(child, suggestion(id, children));
}

received(suggestion(parent, new_ siblings)) =
siblings = new_ siblings;
JRREERRAS Fault Hapdling ** %66 xxxk )
(timeout(data, ng) from parent) =
parent = invalid;
(timeout(giveme, disconnect) from child) =
delete the child from children;
(timeout(ok, ng) from candidate) =
candidate = null;

Fia. 3.1. Pseudo-code of our algorithm

Figure 3.1 shows the local algorithm running on each node. Prior to running this algorithm, each node

knows its neighbors (neighbors) and the size of the file each node must eventually have (filesize). In actual
implementation, each node may begin with an incomplete list of neighbors. Nodes propagate their neighbors to
other and learn from others.

condition = action

Inside the main while loop (line 9 81) is written as a list of the following form:

where condition is a precondition (or a guard) in which the action can take place. The predicate received(X)
evaluates to true if a message that matches X is in the incoming message queue of the node. Each iteration of
the loop waits for at least one guard to become true, and executes the corresponding action. If multiple guards
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are true, any one of them is chosen arbitrarily.
First, we explain the base part of this algorithm in Section 3.1. We continue with the route optimization
heuristics in Section 3.2

3.1. The Base Algorithm. Each node repeats the following until it gets the entire data.

e It seeks a node that is ahead of itself (i.e., has more data than itself). Let us call such a node its parent.
A parent may change over time.

e Once it finds a parent, it asks the parent to send the data that should come next to the data it currently
has. For example, if a node has the first 1000 bytes of a file, it will ask the parent to send some amount
of data from offset 1000.

e In addition,

— Each node, except ones that have obtained the entire data, seeks a node that is closer to its current
parent. Details are in Section 3.2.1.

— Each node having two or more children tries to resolve this situation, by suggesting children to
connect to one of its siblings.

When a node receives an instruction to participate in a replication, each node checks how much data it
has (line 2), searches for a candidate node that has data grater than itself by connecting to some nodes in
its neighbors list. Variable offset indicates the size of data at that time, and satisfies the inequality 0 <
offset < filesize. During data transfer, the invariant child’s offset < parent’s offset is maintained (line 25, 33,
and 48).

A node searching for a parent sends an ask message carrying its offset (data size) to a candidate (line 11 13).
If the receiver has more data than the sender, it sends an ok message to the node sender (line 24 28, 32 35).
At that time, the relation between parent-child is established. After that, the child sends a giveme message to
the parent (line 43-46) and the parent sends a chunk of data to the child (line 47-51). This repeats until the
child either catches up the parent in data size (line 52-54), finds a better candidate than the current parent, or
receives an error. If the receiver of ask does not have more data than the sender, it sends an answer ng (line
29 31) to the sender. Receiving an ng message (line 36 41), the node continues to search for a parent.

A node can be a parent of some nodes and a child of another at the same time. In effect, we achieve a pipeline
transfer through all nodes.

When a parent becomes unreachable from its child (due to a parent crash or a network failure), the child
merely searches for a new parent. When a node recovers, it can participate in the transfer from the offset at
the time it has failed. Hence, this algorithm is fault-tolerant (line 74 80).

3.2. Adaptive Transfer Route Optimization. Now, we explain optimizing heuristics on top of the
base algorithm (line 14 23, 67 73).

\ is_closer(A,B,C) \

® o © par ent

par e@\candi date > /

F1a. 3.2. NearParent Operation

3.2.1. NearParent Heuristics. Each node periodically tries to connect to a node that is closer to its
current parent (candidate in Figure 3.2, line 15-18 in Figure 3.1). If the candidate node turns out to have more
data than the local node (line 32-35), it selects the new node as the new parent. Figure 3.2 shows how this
heuristics modifies a part of the transfer tree.
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Note that even if each node has connected to its parent, it searches for an even closer candidate periodically.
We have not conducted an extensive study about the best frequency. Frequent measurements will allow us to
find a good transfer route fast at the cost of increased network traffic. Our current implementation guarantees
that there is at most one traffic from each node for the measurement. It also guarantees each node performs a
measurement at most once every 100ms. This will hardly affects CPU or network load.

The predicate to judge if a node B is closer than C from the local node A4, is_closer(A, B, C), currently uses
the following criteria in the listed order.

Throughput observed in the past: Each node records throughput from each of the nodes that have been
chosen as its parent. If A has chosen both B and C' as its parent before, whichever produced a better
throughput is considered closer.

Observed latency: The above criterion is not applicable when either B or C has never been chosen one as
A’s parent. In this case A uses latencies it takes to connect to B and C.

The length of the matching IP address prefix: When observed latencies are too close to discriminate, we
use IP addresses of A, B, and C. We compare the lengths of the common prefixes of IP addresses of A
and B to that of A and C.

For the purpose of proving the theoretical property of the algorithm mentioned in Section 3.3 (also stated as

Theorem 3.7), is_closer can be any predicate that satisfies the following properties.

e is closer(4, B,C) and is_closer(A, C, B) do not become true at the same time.
e For a given A, the binary relation:
Ra(B,C) def is_closer(4, B,C)
is transitive. That is,

is_closer(A, B,C) Ais_closer(A,C, D)
= is_closer(A, B, D)

e is closer(4, B,C) =is_closer(B, A, C)
It will be clear that any reasonable definition of relative distance and an accurate measurement of it, including
the ones listed above, will satisfy the first two bullets. The third property may not sound very obvious. Examples
that satisfy the property include:
e A definition based on the bottleneck edge on trees. That is, assume nodes are connected via a weighted
tree and let is_ closer(A, B, C) be true iff the minimum weight on the path between A and B is larger
than that on the path between A and C.
e A definition based on the distance on trees. That is, assume nodes are connected via a tree and let
is_closer(A, B,C) be true iff the path between A and B is shorter than A and C.
e A definition based on address prefixes. That is, assume nodes are assigned integer addresses and let
is closer(A, B, (') be true iff the length of the matching address prefix between A and B is larger than
that between A and C.

Therefore we expect that our current implementation of is_closer based on measured bandwidths between
nodes, measured latencies between nodes, and the length of IP address prefixes, will satisfy the third property
provided measurements are accurate.

Note that implementing such a predicate does not require any a priori notion of groups. Just defining/mea-
suring the relative closeness between nodes will suffice, as long as such a definition/measurement satisfies the
above properties. In Section 2.2, we show such a predicate in general implicitly induces a distance between
nodes, which in turn induces a decomposition of nodes based on the distance. Our algorithm reduces the
number of inter-group edges for a decomposition derived this way.

3.2.2. Tree2List Heuristics. NearParent heuristics reduces the number of edges that cross group bound-
aries. It however is not useful for reducing the number of branches. Another optimization, called Tree2List
heuristics, comes into play to make the transfer route closer to a list.

A node that has two or more children sends its children list to every child (line 68 71). When a node receives a
suggestion message, which effectively contains its current siblings, it chooses one in the list as the next candidate
if the current parent is not closer to it (lines 72-73, 20-23). Figure 3.3 shows how Tree2List heuristics modifies
a part of the transfer tree. Intuitively, Tree2List pushes branches in a transfer tree downwards, hoping the tree
eventually becomes a list.
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lis closer(C,A,B)
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~"Sub __.-‘Sub “, o Tree

Fia. 3.3. Tree2List Operation

An important property about Tree2List, proved in the next section, is that it never increases the number of
inter-group edges. This guarantees that applying Tree2List does not impede the NearParent’s effort of reducing
the number of inter-group edges. In the next section, we state and prove properties of transfer forests after
applying both heuristics in an arbitrary order.

3.3. Properties of the Route Optimization Algorithm. Let is_closer satisfy the properties stated
in Section 3.2.1. We first show the following, that says is closer(A, B, C) is equivalent to comparing a distance
between A and B and between A and C, for some definition of a distance.

LEMMA 3.1. Foris_closer satisfying the property stated in Section 3.2.1, there exists a distance function d
that satisfies the following.
e For all nodes A and B, d(A,B) = d(B, A).
e For all nodes A, B, and C,

is closer(4, B,C) < d(A,B) < d(A,QC).

Proof: See Appendix A.1.

The following Lemma is important for guaranteeing Tree2List is applicable when we have many branches.

LeEMMA 3.2. For any d satisfying the condition in Lemma 3.1,

max(d(4, B),d(A,C)) > d(B,C)
is true for all nodes A, B, and C. Proof: See Appendix A.2.

A distance function d and a threshold ¢ define a natural decomposition of a graph. That is, we remove all
edges (x,y) such that d(z,y) > t from the original graph, and let a group be a connected component of the
graph. We call such a decomposition is derived from is_closer. Many decompositions can be derived from a
single definition of is_ closer, depending on the choice of d and t.

We model our route optimization heuristics as a process of rewriting the transfer forest according to Near-
Parent, Tree2List, or finishing the transfer to a node.

DEFINITION 3.3. A state of computation is a forest among participating nodes, induced by their parent
pointers. Let S and S’ be states. We define relations —.,,, —, —y, and — by:

d
1. §$—, 95 <éf> S’ is obtained by applying NearParent to S (Figure 3.2),

d
2.8 —, 5 <:ef> S’ is obtained by applying Tree2List to S (Figure 3.3),

def

e
3.8 —; 8 < 9 is obtained by finishing a node and making its parent pointer null, and

de
4. — :f—>nU —+ U —¢. That is,

d
S — 5 <:ef> (S —=nS") or (S—¢ 8" or (S—y 5.

Next, we define some quantities of states. Below, we fix a decomposition D derived by is closer, and let D
be the coarsest subdivision of D. Let d and ¢ the distance function and the threshold that induced D. Let N
be the number of groups in D. When we say a group, it always means a group of D. Nodes in a single group
by definition form a clique.
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DEFINITION 3.4.

e Let w(S) be the number of edges in forest S that cross group boundaries. For technical convenience, we
consider an invalid parent pointer to cross a group boundary, and a null parent pointer not to cross
any group boundary.

o Let f(S) be the number of finished nodes (having parent = null) and F(S) be the number of groups
that have at least one finished node. We say such a group is finished. Note there may be unfinished
nodes in a finished group.

e Let I(S) be the number of leaves (i.e., nodes that are not pointed to by any parent pointer).

LemMA 3.5. Transition paths are bounded. That is, the length of a path Sg — S1 — Sy — -+ is bounded.
Proof: Define SUMDIST(S), SUMDEPTH(S), and Q(S) as follows.

SUMDIST(S) =3, . hode d(x,2’s parent),
SUMDEPTH(S) =3 . 1ode depth(z),and
Q(S) = (f(S),—SUMDIST(S), SUMDEPTH(S)),

where depth(x) is the number of hops from the root of the tree x belongs to. d(z,z’s parent) is the distance
between x and its parent. Again for technical convenience, if z’s parent pointer is invalid we consider it has
a value larger than any other d(y, z) for z # invalid. Similarly, if 2’s parent is null, it takes a value smaller
than any other d(y, z) for z # null.

If we introduce a lexicographical order among triples Q(S), it is easy to see Q(S) strictly increases by a single
transition step. That is,

S — 8 = Q(S) < Q).

In fact, — increases f(S), —, does not change f(S) and increases —SUMDIST(S), and —; does not change
f(S), never decreases —SUMDIST(S), and increases SUMDEPTH(S).
Since all quantities of the triples are clearly bounded above, we have proved transition paths are bounded. 5
LeMMA 3.6.
1. If S satisfies w(S) > N — F(S), then —,, is applicable to S. That is, there exists S' such that S —, S'.
2. If S satisfies 1(S) — f(S) > N, f(S) > 1, and —,, is not applicable to S, then — is applicable to S.
Proof:
1. If w(S) > N — F(S) (= the number of unfinished groups), either of the following must hold.
e There is an unfinished group having more than one outgoing inter-group edges.
e There is a finished group having an outgoing inter-group inter-group edge.
An outgoing edge is a parent pointer pointing to a node outside the group. In the former case, let two
of such edges be (4, B) and (C, D). A and C belong to one group, say X, while neither B nor D belong
to X. Thus, a transition by —,, that either makes A one of C’s children or vice versa, is applicable. In
the latter case, let one such edge be (A4, B) and one finished node in the group be P. Thus, a transition
by —, that makes A one of P’s children is applicable.
2. We split the proof into two cases, (i) I(S) — f(S) > N, and (ii) I(S) — f(S) = N.
(i) () - (S) > N:
We have at least one group X that satisfies:

I—f>1

where [ and f denote the number of leaves in X and the number of finished nodes in X, respectively.
Let a1,a2, - Q be the leaves in X (l Z 2) Let a; 1 = a; and 61 = (aiyl,ﬁiﬁg, cee ,aiym) (’L = 1, ce ,l) be
chains of parent pointers starting from a;. That is, a; ; is a child of a; j41) for all ¢ and j (1 <37 </,
1<j<n;—1).

We argue by contradiction that all but one of such chains must be entirely in X. Let us assume w.o.l.g.
neither of @; nor @ are in X. Then there are j and k (1 < j <n; —1and 1 <k <ng — 1) such that
ai,; and az; € X, and aq j+1 and ag k1 € X. Then a transition by —,, that connects a1 ; and ag
should be applicable. This contradicts the assumption that —,, is not applicable in S.

Now we have [ — 1 chains entirely in X. Since [ — f > 2 (=1—12> f+ 1), at least two of them must
merge at some node in X. Let a node at which two merges be A, and B and C the children of A on the
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two chains. It remains to show we have either (—is_closer(B, A, C)) or (—is_ closer(C, A, B)), so either
B or C can trigger —;. By Lemma 3.2, we have

max(d(A, B),d(A,C)) > d(B, (),

from which we can derive:

max(d(4, B),d(A,C)) > d(B,C)

& d(A,B) > d(B, ) or d(A,C) > d(B,C)
< d(B,A) >d(B,C) or d(C,A) > d(C, B)
= ﬁlsicloser( ,A,C) or —is_ closer(C, A, B).

(i) () — /(S) = N:

If we have one group X that satisfies:
l—f>1,

then the same discussion as (i) applies. In the remaining case all the groups satisfy:
l—f=1

Let X be any group. As in (i), consider the [ chains starting from a node in X. If all the [ chains are
entirely in X, two of them must merge in X, and the following argument is the same as (i). Therefore
each group has exactly one chain outgoing from the group. Then we have N inter-group edges, i.e.,

w(S) > N. This implies, however, —,, is applicable because f(S) > 1 = F(S) > 1= w(S) > N >
N — F(S).

O

THEOREM 3.7. Along any path of state transitions starting from any state I, we reach within finite steps a
state Seo satisfying:
1. w(Ss) £ N — F(S4), and
2. 1(Se) — f(S00) < N — 1.
Proof: From Lemma 3.5, any transition path I = Sy — S; — --- is bounded, therefore reaches a state S
in which neither —,, nor —; (or —, for that matter) is applicable. Lemma 3.6 shows in this state we have both
of the above properties.

Remark 1:. As a special case where D = D (i.e., no edges are blocked inside a group of D), we have N = N.
In this case the theorem implies that, for sufficiently long transfers, the number of edges between groups reaches
the optimal N — F(S). Replicating a file from F(S) groups to the rest will clearly need N — F(S) inter-group
edges. For being close to a list, the second bullet of the theorem implies that the number of branches, effectively
calculated by I(S)— f(.9), is the optimal N —1. To see this is optimal in general, consider a network configuration
shown in Figure 3.4, which forces inter-group edges to form a star.

Remark 2:. Recall that the theorem applies to any decomposition derived from is_closer. If the network has
multiple levels of hierarchies, (e.g., inside a cluster, clusters inside a LAN, LANs in a campus/corporate area,
and LANs in wide area), and is_ closer can descriminate all of them, our algorithm simultaneously optimizes
all the levels. For example, let us say we have N; LANs and Ny clusters and f(S) = 1 as the usual case.
If we assume is_closer can descriminate intra-cluster, inter-cluster but intra-LAN, and inter-LAN edges, and
the network configuration allows all connections, our algorithm converges to a state in which we have Ny — 1
inter-LAN edges and Ny — 1 inter-cluster edges.

4. Evaluation.

4.1. Implementation. We have implemented the described algorithm in Java. This is executable on
common computers supporting Java and TCP /IPv4 protocol. We confirmed the program runs on Solaris (sparc),
Linux (x86), Windows (x86), and Tru64Unix (Alpha). Stopping some nodes in the middle of a distribution task
did not prevent any of the remaining nodes from finishing the task, confirming its fault-tolerance.
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. Fi ni shed Node (and only it can be connected to by other’s group.)
O Leaf Node

G oup
— Data Fl ow

Fia. 3.4. An ezample where the optimal value of I(S) — f(S) is N —1

4.2. Single Cluster Experiments. First, we ran some experiments in a single cluster. The cluster
consists of 16 nodes. Each node has two Alpha CPUs and a local hard-disk. Network cables of nodes are
connected to a 100Mbps switch. Local disk bandwidth is faster than network, so it does not reveal as a
bottleneck. CPU is also fast enough.

We initially let one node have 500MB file, and others have no data. Since there is only a single cluster,
NearParent optimization does not play any role in this experiment. So this experiment is to see the effect
of Tree2List. In addition to Tree2List, we ran the base algorithm without any optimization, changing the
maximum number of children each node can serve, from one to five. They clearly demonstrate how important
is it to make the transfer tree close to a list.

The time which the distribution tasks spent is shown in Figure 4.1.

In this result, it is clear that the average distribution time increases as the maximum number of children
increases. The graph also indicates that, in this particular experiment, limiting the number of children to one
yields the best result. That is, restricting the shape of the transfer tree to a list in the first place is better than
our Tree2List strategy which first forms an arbitrary tree and then tries to develop it to a list. We believe,
however, our strategy has several advantages. First, nodes may not be able to form a list in the presence of
firewalls etc. In such cases, one must fall back to a tree. Second, forming a list in the beginning may take much
longer than forming a tree, especially when the number of nodes becomes large, since a list can only grow one
node at a time.

4.3. Multiple Cluster Experiments. Next, we made experiments in seven clusters illustrated in Fig-
ure 4.2. They are all placed in the campus of University of Tokyo.

e An IBM Linux cluster called “istbs” contains 70 nodes. We used all of them for the experiment. Nodes
within a cluster are connected via 1Gbps links. A node in this cluster is the source node in this
experiment. Bandwidth from/to other clusters below is poor 100Mbps.

e A SunFirel5K SMP called “istsun” has 70 CPUs, of which we used 20. We used this machine as if it
were 20 separate nodes. It has a 100Mbps NIC shared by all CPUs. Replication of 300MB data among
20 nodes inside istsun takes about 70 sec, where the throughput is about 34Mbps. This seems due to
disk I/O bandwidth.
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Plot of Experiments changing Children Limit in One Cluster
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Fic. 4.1. Performance in a single cluster

A cluster of clusters called “kototoi” contains three cluster each having 16 nodes. Network speed is

100Mbps inside each cluster. Throughput between two of the three is several hundreds Mbps. Having

more than one connection to a single cluster easily saturates the link. No nodes outside kototoi cannot
directly connect to inside it.

e An HP Alpha cluster called “oxen” contains 16 nodes, which is the same cluster in Section 4.2. There
are two (and only two) gateway nodes that can connect to and can be connected from outside the
cluster.

e A Linux cluster called “marten” each of which runs Linux inside VMWare. Its configuration is almost
the same as a cluster in kototoi.

e For connectivity, any node can connect to istsun nodes and the gateways of oxen. Also, istsun and
istbs are in the same virtual LAN, so nodes in the two clusters can directly connect to each other.
Connections to remaining nodes from other clusters are blocked.

We compared the following algorithms.

Random tree: The base algorithm without any heuristics, with no limit on the number of children for each
node.

NearParent only: The base algorithm + NearParent. No Tree2List.

Tree2List only: The base algorithm + Tree2List. No NearParent.

NearParent + Tree2List: Use both Tree2List and NearParent.

Manual: Fix the transfer route that we consider will be the best, as follows; istbs connects to istsun via one
inter-cluster edge. It is branched into three inside istsun. They go to kototoi, oxen, and marten. Inside
clusters, there are no branches. The throughput should be close to 100Mbps / 3 — 33Mbps, determined
by the three outgoing edges from istsun, which share a single 100Mbps NIC.

In Figure 4.3, the results are presented. Not surprisingly, “Manual” is the fastest. NearParent + Tree2List
achieved an overhead of 50-100% to the manually tuned transfer and more than four times faster than the
random tree.

Figure 4.4 shows that the number of inter-cluster edges and distribution time have a strong correlation.

This result confirms that reducing inter-cluster (and inter-subnet) edges strongly affects performance of
replication among many nodes.
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oxen 16 nodes

marten 14 nodes

kot ot oi 16x3 nodes

i stbs 70 nodes

Max 100Mops Data Route

Fic. 4.2. Condition of 7 clusters

5. Related Work.

5.1. Minimum Spanning Tree Construction. MST construction is a commonly used technique for
optimizing flows in networks. There have been a number of published algorithms and their applications [2, 6, 1].
It is compelling to model our problem by a general weighted graph, with the goal being a tree that has a small
weight and a small number of branches.

We considered approaches along this line and then abandoned them for several reasons. First, from theoretical
point of view, minimizing the two criteria at the same time is impossible for general weighted graphs, so we must
make a difficult (and somewhat arbitrary) decision about how to trade one for the other. From the practical side,
building an MST for general weighted graph in fault-tolerant and self-stabilizing manner is already complex to
implement. Finally, typical real networks have a relatively simple structure we can (and should) exploit. That
is, nodes close to each other in terms of physical proximity can logically connect to each other at some level
and below. Therefore these nodes should be able to form a list entirely within the clique. We have shown this
is in fact possible with a very simple hill-climbing with fault-tolerance and adaptiveness.

5.2. Application-Level Multicast and CDN. Our work is in spirit similar to a number of work on
application-level multicast and content distribution networks (CDN). Our optimization criteria are different
from them, particularly in that we try to reduce the number of branches.

ALMI [9] uses a centralized tree management scheme and makes MST for good performance. End System
Multicast [7] takes both latency and bandwidth into account when making a tree of end-hosts. In [12], CAN [11]
is used for the infrastructure of multicast. Bayeux [15] uses Tapestry [14] that is also content-addressable
network. Overcast [8] is a multicasting system that achieves both small latencies and high throughput. The
main application of these systems is multimedia streaming to widely distributed nodes. In such settings, it is
important to bound latencies because the application may be an interactive multimedia application. Also in
CDNs, the main criteria are latencies and traffic load balancing, rather than delivering as much bandwidth
as possible. So researches about CDN such [10, 4, 3] mainly concern how to allocate replicas of contents,
and how to redirect user requests to appropriate replicas. On the other hand, it is less important for such
applications to squeeze the available bandwidth of local area networks, because there are typically a small
number of participating nodes within each network. In contrast, our file replication does not have to optimize
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Plot of Experiments using Verious Transfer Tree on 7 Clusters
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latencies aggressively, because the first priority is on the completion time of transferring large files. It is also
very important to utilize LAN bandwidth as much as possible, as the typical usage will be to copy large files
to many nodes in clusters. These differences lead them to different optimization criteria, with ours including a
unique Tree2List heuristics.
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6. Summary and Future Work. We have described a large file distribution algorithm that realizes
scalability, adaptiveness, fault-tolerance, and efficient use of bandwidths. It is based on a simple distributed
algorithm with simple local heuristics to optimize transfers. We formalized and proved the properties of our
algorithm and argued that this gives a good result in practical settings. Our system will be useful for setting
up a number of clusters and preparing wide-area distributed computations with a large data. Evaluations
show that our implementation is effective in real environment consisting of over 150 nodes across seven clusters
campus-wide.

Our current implementation of the protocol is not secure. Any malicious node can participate in the replica-
tion and breaks the integrity. To be a useful tool for distributed computing, we must use a suitable authentication
when nodes connect to each other. While introducing secure authentications is possible, this may increase the
cost of deploying such tools, whose very purpose will be to help maintain a large number of nodes easily. We
must study how to maintain ease of installation and use of this tool while achieving a reasonable level of security.
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Appendix A. Omitted Proofs. In this section we abbreviate is_closer to C.

A.1. Lemma 3.1. Let V be the set of all nodes. We introduce an unknown x4 for each A, B € V. For
each triple (A, B, C) such that C(A, B,C) is true, we generate a constraint zap < xac. We then unify z4p
and zpa for all A, B € V| replacing all occurrence of one with the other. We are going to show there are no
loops of constraints xa4p < xop < --- < Tap, thus the constraints are satisfiable. When we have proved this,
we let d(A,B) = xap, forall AABeV.

To begin with, we show the following:

A < - < Tyyz
= C(A,B,Z) or C(A,B,Y),

by induction on the length (the number of inequalities) of the lefthand side n.
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1. n=1:
Observe we must have A=Y, A= 272, B=Y, or B = Z since this constraint was generated from C.
When A=Y, zap <xyz = zaB < zaz = C(A, B,Z). Other cases are similar.

2. Assume the claim holds up to n — 1 and now we have

TAB < Top < - < ZXyygy

of length n. By induction hypothesis, we either have:
(a) C(C,D,Z), or
(b) C(C,D,Y).

By zap < xcp, we either have:

(i) A=C and C(A4, B, D),

A= D and C(4,B,(C),

iii) B=C and C(4, B, D), or

)
(11)
(iv) B=D and C(4A, B,(C).
Sinc
)

ince (a) and (b) are similar we only prove the case (a) by analyzing the four cases (i) (iv).
(i) C(A,B,D) and C(A, D, Z)
= C(A,B,2)
(ii) C(A,B,C) and C(C, A, Z)
= C(A,B,C) and C(A,C, Z)
= C(A,B, 7).
(ili) C(A, B, D) and C(B, D, Z)
= C(B,A,D) and C(B, D, Z)
=C(B,A,Z)= (A,B,2).
(iv) C(A,B,C) and C(C, B, Z)
= C(B,A,C) and C(B,C, Z)
= C(B,A,Z)= (A,B,2).
Now we prove by contradiction there are no loops:

TAB < -+ < Tyz < TAB-

By the above induction, we either have:
(a) C(A, B, Z) or,
(b) C(A,B,Y).
By zyz < xap, we either have:
(i) Y =Aand C(4, Z, B),
(ii) Y =B and C(B, Z, A),
(iii) Z= A and C(A,Y,B), or
(iv) Z =B and C(B,Y, A).
We see combining any of (a) (b) and any of (i) (iv) will lead to contradiction. We only prove case (a) since (b)
is similar.
(i) C(A,B,Z) and C(A, Z, B)
= false.
(ii) C(A,B,Z) and C(B, Z, A)
= C(B,A,Z) and C(B, Z, A)
= false.
(i) C(A,B,Z) and Z = A = false.
(iv) Same as (iii).

A.2. Lemma 3.2. Analyze the three cases, (i) d(4,C) < d(A,B), (ii) d(4,B) < d(A,C), and (iii)
d(A, B) = d(A, C). Prove each case by contradiction.
(i) Let us assume d(A,C) < d(A, B) < d(B,C). Then,
d(A,C) < d(A, B) and d(A, B) < d(B,C)
= d(A,C) < d(A,B) and d(B, A) < d(B,C)
= C(A,C,B) and C(B, A,C)
= C(A,C,B) and C(4, B,C)
= false.
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(ii) Similar to (i).

(iii) Let us assume d(4, B) = d(A,C) < d(B,C). Then,
d(A,B) =d(A,C) and d(A,C) < d(B,C)
= d(A,B) =d(A,C) and d(C, A) < d(C, B)
= d(A, B) = d(A,C) and C(C, A, B)
= d(A, B) = d(A,C) and C(A, C, B)
= d(A,C) = d(A, B) and d(A, C) < d(A, B)
= false.
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