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AN ENHANCED RSA ALGORITHM TO COUNTER REPETITIVE CIPHERTEXT
THREATS EMPOWERING USER-CENTRIC SECURITY

VISHAL BALANI∗, CHAITANYA KHARYA †, SHIV NARESH SHIVHARE‡, AND THIPENDRA P. SINGH §

Abstract. The technology-driven modern age emphasizes the security and privacy of communication. Through this paper, we
delve deep into the need for user-centric security within cloud-based environments. The need for enhancement in encryption arises
due to the increasing cases of data breaches and insider threats in cloud-based environments recently. The focus is laid upon the
use of RSA encryption, end-to-end encryption, and anonymous messaging to address security-based concerns. The primary focus
of this research is to develop a comprehensive security system to ensure the confidentiality and authenticity of text-based messages
shared in the cloud. The proposed improved RSA algorithm, as suggested, incorporates three prime numbers in the key generation
process. To address repetitive ciphertext, the proposed algorithm involves adding the index of each character in the plaintext string
to the character’s integer value before encryption. Conversely, during decryption, the same index is subtracted. This proposed
algorithm has been utilized in a practical scenario, specifically in the implementation of a chat application. This paper presents
a proof-of-concept for the proposed enhanced version of the RSA algorithm, accompanied by a thorough comparison and analysis
of computational times across various bit lengths. Increase in data security at a cost of minor increase in computation time was
observed through this research.
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1. Introduction. In the ever-evolving landscape of digital communication, ensuring the security and pri-
vacy of sensitive information has become paramount. User authentication plays a crucial role in ensuring the
security of a system [29, 30]. One of the cornerstones of secure communication is the use of cryptographic tech-
niques, which have witnessed significant advancements in recent years [20]. The RSA cryptosystem is one of
the most generally utilized public-key cryptosystems. RSA algorithm utilizes mathematical operations, includ-
ing modular multiplication and exponentiation, making it an algorithm suitable for encryption and decryption
using asymmetric key pairs[16]. In this process, two keys are utilized: one public key and one private key.
Producing these keys includes complex calculations with large prime numbers, and the security of the RSA
cryptosystem depends on the difficulty of factoring these large prime numbers.

Though RSA encryption and decryption are acknowledged for their security, they come with inherent
performance limitations. Techniques such as fast modular multiplication, fast modular exponentiation, and the
use of the Chinese remainder theorem (CRT) [1] have been developed to accelerate RSA operations, but they
still lag behind symmetric-key encryption algorithms in terms of speed. Consequently, RSA encryption is often
employed for secure key transport and the encryption of smaller data elements [2].

Traditional multiplication methods have a time complexity proportional to the square of the operand bit
length. However, algorithms such as Karatsuba and the Toom-Cook method [5], which exploit recursive and
divide-and-conquer strategies, respectively, enable faster modular multiplication by reducing the number of
basic multiplication operations required. Exponentiation involves repeated modular multiplications, resulting
in a time complexity proportional to the exponent’s bit length. To expedite this process, techniques like square-
and-multiply and Montgomery exponentiation provide more efficient algorithms. Instead of performing modular
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exponentiation with the modulus N directly, CRT allows breaking the computation into smaller, independent
components, each modulo a prime factor of N . By performing these computations separately and combining
the results using the CRT, the overall execution time is significantly reduced.

Numerous research projects have been conducted in an effort to modify the RSA cryptosystem [17]. These
included both hardware and software solutions, as well as solutions optimized for specific platforms such as
.NET and Java. Hardware implementations include RNS Montgomery multiplication, use of the TMS320C54X
signal processor, and designing custom hardware circuits using field-programmable gate arrays (FPGA) to
perform the mathematical computations involved. Software implementations include salting, use of multiple
prime numbers for key generation, use of mixed-base representation for depicting encoded messages, use of
randomized exponentiation, RSA with elliptic curve cryptography, etc. These techniques have been observed to
enhance security in real-world environments but may compromise the time needed for computation. Ongoing
investigations are centered on addressing the diverse vulnerabilities present in the original RSA algorithm,
aiming to enhance its resistance to known deterministic encryption. In this context, we propose an enhanced
RSA algorithm to overcome such types of issues. The major contribution of this paper is threefold:

1. The proposed algorithm prevents repetitive ciphertext threats, such as frequency-based attacks and
dictionary attacks, which are significant vulnerabilities in traditional RSA by adding a buffer to each
character in the process of encryption.

2. The performance of the proposed algorithm is compared with that of traditional RSA, especially for
the total computation time required for varying key bit lengths.

3. The implementation and integration of the proposed enhanced algorithm with a chat application and
evaluated its calculation consistency.

2. Related Work. In present-day cryptography, the journey toward strengthening safety efforts while
enhancing computational productivity has prompted different investigations and variations of the conventional
RSA calculation. The purpose of the enhanced versions of RSA is to improve performance and security while
demonstrating novel approaches to the cryptographic landscape. In this direction, Nivetha et al. [11] modified
the RSA algorithm with multiple primes and four indivisible numbers inside the encryption system to reinforce
the modulus size, apparently increasing security by muddling factorization processes. The expanded intricacy of
key age and the board in frameworks utilizing numerous primes presents critical difficulties in true organization,
frequently offsetting the potential security upgrades. The modified RSA with Mixed-Base Representation
(MBR) computation streamlines execution by involving a mixed-base depiction for encoded messages [12].
Despite the fact that efforts have been made to reduce the time it takes to encrypt and decrypt as compared
to traditional RSA, there are still concerns about the chance of safety degradation brought about by this
streamlining. The focus of both research projects is on improving performance without jeopardizing security
integrity.

The Modified RSA with Randomized Exponentiation (MRE) estimation carries randomized exponentia-
tion into the encryption cooperation [14]. Even though this complexity is intended to deter adversaries from
attempting to separate sensitive data through known-plaintext situations, it results in computational overhead,
particularly in asset-obligated circumstances. Investigations consolidating RSA with elliptic curve cryptogra-
phy (ECC) look for improved security while diminishing key sizes [13]. Essentially, coordinating two particular
cryptographic frameworks presents significant execution intricacies and raises interoperability concerns among
the RSA and ECC conventions. Kapoor et al. [18] proposed a modified RSA method that was based on multiple
public keys and n prime integers. This method aimed to provide efficiency and enhances data sharing security
across networks. However, the authors observed that as the prime numbers increase, key generation time also
increases exponentially.

Moreover, Anagaw and Vuda [15] efficiently implemented of the RSA algorithm using two public key
pairs and mathematical logic. Separately delivering two public keys prevents attackers from learning about
the key and the message. A similar method was proposed by Jahan et al. [19] that utilizes two public key
pairs and mathematical logic instead of delivering one public key directly. This approach aims to enhance
security by making it more difficult for attackers to obtain the private key. Imam et al. [20] modified the
RSA algorithm for encryption using two public keys derived from four prime integers. This method aims to
enhance security by using dual modulus to eliminate flaws and improves the system’s security. Furthermore,
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Mezher [21] devised a method that employs multiple public and private keys, making the algorithm more secure
and immune to brute-force attacks. This modification technique takes nearly nine times more time to break
the traditional method when using alternative key sizes. The use of modified RSA with salt in cloud data
encryption aims to enhance security by introducing randomness. It addressed the fundamental aspects of cloud
security, focusing on data encryption and its pivotal role in safeguarding data within the cloud [17]. While
investigating the aforementioned modification in the traditional RSA algorithm, we observed that encryption
has certain limitations, especially in the context of cloud computing, which are highlighted as follows:

• Performance Overhead: Traditional RSA encryption can introduce performance overhead due to its
computational complexity, especially when dealing with large volumes of data in cloud environments.

• Key Management: The management of encryption keys in RSA encryption can be challenging, partic-
ularly in shared cloud environments where multiple users and organizations coexist. Ensuring secure
key exchange and management is crucial for maintaining data confidentiality and integrity.

• Vulnerability to Attacks: Traditional RSA encryption may be vulnerable to certain attacks, such as
brute-force attacks, especially if the encryption keys are not sufficiently random or complex. This
vulnerability can pose a significant risk to data security within the cloud.

To address these drawbacks and enhance cloud data security, the use of modified RSA with salting was
proposed. The modified approach incorporated salting (password-based encryption schemes) to add an extra
layer of randomness and complexity to the encryption process, making it more resilient against brute-force
attacks and other security threats [17]. A few hardware implementations of the modified RSA algorithms were
introduced by several researchers recently. The details are as follows:

• Use of RNS Montgomery multiplication for implementing RSA encryption involves converting the
large integers used in RSA encryption into a residue number system (RNS) and performing modular
multiplication using the Montgomery algorithm. This approach can improve the efficiency of RSA
encryption by reducing the number of operations required for modular multiplication [22, 23, 27].

• Use of Texas Instruments TMS320C54X signal processors for implementing RSA encryption involves
optimizing the RSA algorithm for the architecture of the TMS320C54X family of signal processors,
which can improve the performance of RSA encryption in hardware environments [22, 23].

• VLSI design using FPGA for implementing RSA encryption involves designing custom hardware circuits
using field-programmable gate arrays (FPGAs) to perform the modular arithmetic operations required
for RSA encryption. This approach can improve the performance of RSA encryption in hardware and
reduce power consumption [22, 24].

On the other hand, various software implementations of RSA encryption have been proposed, including
.NET [25, 26] and Java [28]. These software implementations involve optimizing the RSA algorithm for spe-
cific software platforms, which can improve the performance of RSA encryption in software [22]. Bonde and
Bhadade [22] provide insights into the advantages and limitations of each implementation method, highlighting
the importance of selecting the appropriate implementation method based on the specific requirements of the
application. For example, hardware-based approaches such as VLSI design using FPGA and Texas Instru-
ments TMS320C54X signal processors can improve the performance of RSA encryption in hardware, while
software-based approaches such as .NET and Java can improve the performance of RSA encryption in software.
Topics closely related to modified RSA algorithms have been the subject of recent research, which has made
a significant contribution to the field of cryptography. Encrypted chat applications using RSA encryption
plans [7, 8, 9, 10] feature the pragmatic parts of cryptography methods in real-time applications. In addition,
comprehensive literature reviews on big data management techniques in the Internet of Things (IoT) [6] provide
insights into managing massive amounts of data generated by interconnected devices, highlight obstacles, and
suggest directions for future research.

Thus, the range of enhanced RSA algorithms offers novel strategies for enhancing performance or strength-
ening security. However, their practical implementation faces challenges due to complexities, potential vulner-
abilities, and interoperability concerns. Comprehensive evaluations and standardization efforts are imperative
to advance cryptography techniques. Table 2.1 summarizes and highlights several recent and relevant research
work based on the RSA algorithm.
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Table 2.1: Description of the referenced research papers in Related Work Section

Author(s) Methodology Advantages Limitations
Nivetha et al. [11] Modified RSA with Multi-

ple primes, 4 Keys
Increased complexity of
modulus factorization

Computational overhead

Guo and Zhang [12] Mixed-Base representation
for encoded messages

Increased decryption time
in brute-force attacks

Computational overhead

Wang and Tang [13] RSA with Elliptic Curve
Cryptography

Improved security with
smaller key sizes

Complex execution in real
world use cases and inter-
operability concerns

Lee and Kim [14] Modified RSA with Ran-
domized Exponentiation

Increased decryption time
in known-plaintext attacks

Computational overhead

Anagaw and Vuda [15] Modified RSA with 2 pub-
lic keys

Prevents attackers from
decoding key and message

Minor security enhance-
ment

Kaur and Aarju [17] Modified RSA with Salt Enhance security due to
randomness

Computational overhead

Kapoor [18] Modified RSA with n
primes, multiple public
keys

Enhanced data sharing se-
curity across networks

Exponential computation
overhead in key generation

Jahan et al. [19] Modified RSA with 2 pub-
lic keys

Prevents attackers from
decoding key and message

Minor security enhance-
ment

Imam et al. [20] Modified RSA with 2 pub-
lic keys, 4 primes

Enhance Security using
dual modulus

Computational overhead

Mezher [21] Modified RSA with multi-
ple public and private keys

Immune to brute-force at-
tacks

Computational overhead

Bonde and Bhadade [22] VLSI design using FPGA
for implementing RSA

Improved performance
in hardware and reduced
power consumption

Complex Hardware and
platform dependent

Nozaki et al. [23] RSA using RNS Mont-
gomery Multiplication

Computational Efficient Vulnerable to known-
plaintext attacks

Markovic et al. [24] RSA optimization for
TMS320C54X Signal
processor

Improved performance in
hardware environments

Hardware dependent

Kumar and Chaudhary [25] Modified RSA using n
primes and bit stuffing

Enhanced security due to
randomness

Computational overhead

Sharma et al. [28] RSA using modified Sub-
set Sum cryptosystem

Resistant against modulus
factorization, brute-force
and Shamir attacks

Computational overhead

3. Proposed Methodology. In existing RSA cryposystem, a character generates the same ciphertext
each time it is encrypted in a message. This leads to vulnerability and the threat of frequency-based attacks,
which can compromise the application. The enhanced RSA discussed below deals with this vulnerability,
hence enhancing security while minimizing computation time differences as compared to traditional RSA. The
following steps delineate the methods employed to modify the traditional RSA encryption and decryption
algorithms.

3.1. Selection of Prime Numbers (Key Generation).
• Traditional RSA: The conventional RSA algorithm utilizes two prime numbers, p and q, to generate the

public (e, n) and private (d, n) keys. However, to fortify the encryption system, larger prime numbers
significantly contribute to the increased complexity of n = p× q.

• Enhanced RSA: To substantially increase the value of n, the modification incorporates three large prime
numbers. Hence, the value of n becomes n = p× q× r. While this increases computational complexity,
it significantly fortifies the encryption. The optimal balance in the number of prime numbers used to



An Enhanced RSA Algorithm to Counter Repetitive Ciphertext Threats Empowering User-centric Security 4673

generate n is under study, aiming for lower computational complexity and higher protection against
common brute-force attacks against RSA.

3.2. Index Increment in Each Character Before Encryption.
• Traditional RSA: Plaintext is encrypted using the equation:

C = (me) mod n (3.1)

The vulnerability in this method arises from the generation of the same ciphertext for repeated char-
acters in the message, making RSA encryption susceptible to attacks.

• Enhanced RSA: To mitigate this vulnerability, the enhanced RSA method increments each character
by its index in the original message before encryption, transforming the encryption equation to:

C = ((m+ index)e) mod n (3.2)

This slight modification significantly enhances the security of the RSA encryption algorithm, making
it arduous for attackers to decrypt the message, even with access to the private key.

3.3. Index Decrement in Each Character After Decryption.
• Traditional RSA: Ciphertext is decrypted using the equation:

m = (Cd) mod n (3.3)

If the private key is leaked, it may lead to the release of sensitive information in the message.
• Enhanced RSA: To ensure seamless decryption of ciphertext encrypted using enhanced RSA, the inverse

of the steps performed during encryption are applied to the decryption algorithm. The decryption
algorithm is as follows:

m = ((Cd) mod n)− index (3.4)

In the event that the private key is leaked, attackers will be unable to obtain sensible information from
the decrypted text, producing gibberish as the message. The application of the Chinese Remainder
Theorem in the modified decryption algorithm leads to reduced computation time.

The following are the detailed implementation steps for the changes explained above:
1. Choose 3 Prime Numbers (p, q, and r): Generate three distinct, large prime numbers: p, q, and r.

Random numbers of bits (ranging from 45 to 52 due to system computation limitations) are used to
generate large prime numbers.

2. Compute Modulus (n): After selecting p, q, and r, multiply them to obtain the modulus, n.

n = p× q × r (3.5)

This modulus is a fundamental component of both the public and private keys, serving as the basis for
encryption and decryption.

3. Computation of Euler’s Totient Function (ϕ(n)): Compute the Euler’s Totient Function using the
prime numbers, p, q, and r, required to derive the value of d, a part of the private key.

ϕ(n) = (p− 1)× (q − 1)× (r − 1) (3.6)

The totient function is crucial in selecting the public exponent to ensure the existence of a unique
modular multiplicative inverse in the decryption process.

4. Select Public Key Exponent (e): Choose the public key exponent denoted as e. It should be a positive
integer that is relatively prime to ϕ(n) (i.e., GCD(e, ϕ(n)) = 1).

5. Generate Public Key (e, n): The formation of the public key comprises the concatenation of ’e’ and ’n’,
serving the purpose of encrypting plaintext messages. The encryption process involves incrementing
each plaintext character ’m’ by its corresponding index within the message. The equation representing
this process is:

C = ((m+ index)e) mod n (3.7)
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6. Compute Private Key (d): Obtain the private key exponent, d, by finding an integer that satisfies the
equation:

(d× e) mod ϕ(n) = 1 (3.8)

7. Generate Private Key (d, n): The private key is formulated by combining ’d’ and ’n’. The decryption
process involves decrementing the index of the decrypted text to obtain the original message. The
decryption formula can be expressed as follows:

m = (Cd mod n)− index (3.9)

The key pairs, the public key (e, n) and the private key (d, n), are the basis of RSA encryption. The public key
allows anyone to encrypt messages, while only the holder of the private key can decrypt them. The security of
RSA relies on the computational complexity of factoring the modulus n into its prime factors p, q, and r. Our
proposed system utilizes the enhanced RSA algorithm for secure communication within the chat application.
On the sender’s side, text messages are encrypted using the recipient’s public key, retrieved from the cloud
database. This public key encryption ensures that the message remains unreadable while stored on the cloud
server, mitigating potential security risks during data transport. The encrypted message is then transmitted to
the receiver, who possesses the corresponding private key stored locally on their device. This private key is used
for decryption of the message using the enhanced RSA algorithm, enabling retrieval of the original content.

4. Experimental Results. In this segment, we present the outcomes we got from the assessment of the
enhanced RSA calculation. Centered around surveying the calculation’s adequacy by analyzing the distinctions
in encryption results compared with the conventional RSA approach. Furthermore, we investigate the com-
putational times expected for encryption, decryption, and key decryption processes. The essential goal is to
exhibit the effect of the adjustments on encryption quality and computational proficiency.

4.1. Algorithm for Enhanced RSA. To demonstrate the effectiveness of the proposed enhanced RSA
we have successfully implemented it in chat application. For detailed understanding of the algorithm, please
refer to Algorithm 1 where a detailed pseudo-algorithm is provided.

4.2. Proof of Algorithm. Sample Text: ”HELLO”
Step 1: Prime Number Generation. Generate three large prime numbers, p, q, and r, each of length bits:
p = 61, q = 53, r = 67 (arbitrary values for demonstration purposes)
Step 2: Modulus Calculation. n = p× q × r = 61× 53× 67 = 216611
Step 3: Euler’s Totient Function Calculation. ϕ(n) = (p− 1)× (q − 1)× (r − 1) = 60× 52× 66 = 205920
Step 4: Public Key Generation. Choose an integer e such that: 1 < e < ϕ(n), gcd(e, ϕ(n)) = 1. Let

e = 65537, the public key is represented as < 65537, 216611 >
Step 5: Private Key Calculation. Calculate the private key component d using the equation: (d × e)

mod ϕ(n) = 1 Let d = 187, 217 The private key is represented as < 40193, 216611 >
Step 6: Encryption Process. Encrypt the message ”HELLO”:

C = (m+ index)e mod n

Assuming ASCII values for each character and index are starting from 0:

CH = (72 + 0)65537 mod 216611 = 112922

CE = (69 + 1)65537 mod 216611 = 61752

CL = (76 + 2)65537 mod 216611 = 151883

CL = (76 + 3)65537 mod 216611 = 140326

CO = (79 + 4)65537 mod 216611 = 57641

Encrypted message: < 112922, 61752, 151883, 140326, 57641 >
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Fig. 3.1: Flow diagram illustrating the Encryption and Decryption processes in Enhanced RSA

Step 7: Decryption Process. Decrypt the ciphertext:

m = (Cd mod n)− index

mH = (11292240193 mod 216611)− 0 = 72

mE = (6175240193 mod 216611)− 1 = 69

mL = (15188340193 mod 216611)− 2 = 76

mL = (14032640193 mod 216611)− 3 = 76

mO = (5764140193 mod 216611)− 4 = 79

Decrypted message: ”HELLO”
The algorithm successfully encrypted the message ”HELLO” and decrypted it back to the original text.

This demonstrates the correctness of the RSA encryption and decryption processes for the given sample text.
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Algorithm 1 The proposed Enhanced RSA Algorithm
procedure GeneratePrimes(bits)

p← GeneratePrime(bits)
q ← GeneratePrime(bits)
r ← GeneratePrime(bits)

end procedure
procedure ModulusCalculation(p, q, r)

n← p× q × r
end procedure
procedure EulersTotientFunction(p, q, r)

ϕn ← (p− 1)× (q − 1)× (r − 1)
end procedure
procedure GeneratePublicKey(ϕn, n)

e← ChooseRandomInteger(1 < e < ϕn)
while GCD(e, ϕn) ̸= 1:

e← ChooseRandomInteger(1 < e < ϕn)
end while
return (e, n)

end procedure
procedure Encrypt(m, e, n)

C ← (m+ index)e mod n
end procedure
procedure PrivatekeyCalculation(e, ϕn)

d← ModInverse(e, ϕn)
return (d, n)

end procedure
procedure Decrypt(c, d, n)

m← (cd mod n)− index
end procedure

4.3. Analysis: Differences in Encryption. A comprehensive comparison was conducted between the
encryption mechanisms of enhanced RSA and traditional RSA, implemented without the use of predefined
cryptographic libraries. This analysis aimed to demonstrate the encryption disparities, particularly focusing on
the handling of sample alphanumeric text such as ”tt,” ”11,” and ”@@”. 50-bit long prime numbers were used
to generate the public and private keys in both traditional RSA and enhanced RSA.

The enhanced RSA encryption notably reveals that the repetition of a character generates distinct cipher-
texts for each instance of the repeated character, enhancing its resistance against certain attacks.

From Table 4.1, we can observe that, in the process of encrypting plain text, any instances of repeated
alphanumeric characters do not show repetitions in the resulting cipher text. This intriguing phenomenon
suggests that the encryption algorithm employed successfully obfuscates patterns associated with repeated
characters, adding an extra layer of complexity and security to the encrypted data.

4.4. Computational Time Analysis. In order to conduct a thorough analysis of the computational
performance of both traditional RSA and enhanced RSA, an experimental setup was established. The compu-
tational performance was measured on an Apple MacBook Air equipped with an Apple M1 Chip, featuring an
8-core CPU and 256 GB storage. The analysis was conducted consistently in the same environment for varying
bit lengths. The encryption process was applied to an alphanumeric text message of 2150 characters in length
to gauge the encryption time for both algorithms. The aim was to evaluate and compare the computational
efficiency of the encryption process.

To visually depict the variation in total execution times for different bit lengths, a graphical representation
illustrating the relationship between the number of bits and total execution time is presented below.

Fig. 4.1 is plotted over the total computation time analysis between RSA and enhanced RSA. It was
observed that enhanced RSA takes nearly the same amount of time as compared to RSA when the number of
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Table 4.1: Comparative analysis of encrypted text using traditional RSA implementation against enhanced
RSA

Message Traditional RSA Enhanced RSA
”tt” [181844379188961449504 [18002359892956836267

845017918, 411631437,
181844379188961449504 690275116192347687

845017918] 130973236]
”11” [22033378719534016886 [55516472188940232831

4840524335, 03454432,
22033378719534016886 51394845794638362351

4840524335] 98996570]
”@@” [94936396234867089130 [46127618662307524800

247824364, 47847462,
94936396234867089130 88996113696926382227

247824364] 11964142]

Fig. 4.1: Graph for comparative analysis of Total Execution Time for varying Bit Length of Keys

bits is less than 1024. But when the number of bits is over 1024, we see a drastic increase in computation time
for enhanced RSA over traditional RSA. The key generation time, encryption time, and decryption time are
measured in milliseconds.

Tables 4.2 and 4.3 provide a detailed analysis of the computational time for various bit lengths using both
traditional RSA and enhanced RSA.

5. Real World Implementation. To validate the practical applicability of the enhanced RSA algorithm,
we integrated it into a chat application developed using the Flutter SDK and utilizing Firebase for database
functionality. The primary aim was to fortify the security of communication within the application while
ensuring seamless usability.

5.1. Algorithm Integration. The adjusted RSA encryption procedure was flawlessly embedded inside
the chat application’s messaging functionality. This joining took into account the encryption and decryption
of messages traded between clients, improving the general security of correspondence channels.
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Table 4.2: Traditional RSA Computation Time Data

No.
of
bits

Prime 1 Prime 2 Key
Generation
Time (µs)

Encryption
Time (µs)

Decryption
Time (µs)

Total Time
(µs)

64 15808577391726329629 14260400995176596597 385 7952 70754 79091
128 16280253345026454025

1595760900762820863
12363353070787334987
7909917480968910557

1951 12207 252890 267049

256 54915321636266941842
71320098812504412225
53033631960833420736

04232952887679949

68311923525130379525
39481945040563280386
58197328192474348705

21880628413936897

76224 26992 1690030 1793246

512 98356773358620330950
93005857861743182529
60197054195808932527
50743731019041094821
65450541927319703

06555870732303586737
66064905148767772
85579416228325331729

23421960722030594014
83227193370002797353
48912721639030161663
22273766147682444332
74630955985944367939
99121593656536479919
06746104265782978716

52975323707519

365257 72662 10109813 10547733

1024 10355998648560940987
27092965761783229667
20395857109009322685
61659118546269093253
85088799470693958881
77329807438352949386
60060463518448572052
76452305136483739217
57590342129819059764
37808011906700354151
94726256048803078161
22108815497814938714
62924911682402363706
05505558781893824713
86767184600957743663

7112030671

39148147267121377819
10286948821470529041
78158252062897094683
47314743134675306148
91593869246492872524
96091173158070672912
56583249341876986423
52650181325432493304
66741436724948960560
67863791743752062517
64230066013725583353
70355522320760408466
75130880056359126227
96300759283619254300
63129887075536565596

57669171

2828727 217127 69200421 72246275

2048 12563266109853096901
99916653303456054288
30509139373717777485
46384772136585991102
58671022761918320299
15276125355827220880
57194105006759205680
73624603565786467987
61534876686066076067
62924576040597505747
55457558959628261583
45723667311286588641
24743030762050179463
48847378760151827073
20885866172142137134
80960066029817857140
93574578628051666551
26659509067815295005
58181814171883616694
23832142054945279729
30659285531433751503
03670915018084158180
78232492595748126726
88336158766204060292
96794457629898452211
53452424974327557126
58974579713235175862
66491755660662823381
83847474806973184804
06473303734232627139

26481784020868677

90763046492552192551
57329503811314928313
34091228495335408774
49474919009579699525
84770786322442195699
80529915778506240260
59132540888865403117
79984473711383271992
62359764153428497501
11908292855266770526
06335733980909969844
49444013204608169716
97000225898240808434
94118538561055060744
49970650506877411735
97459125721859425160
44442539843032920826
20780605737002769854
30981333442061625374
72893541401747304441
93645979710675974605
42060367631145539167
72233811111118118302
69463112145077209176
26493666685841294323
39092568175680607842
54954952468574266196
47953070099623707704
68556144526290460555
92442632082209095287

220790518451

23165632 726211 524119375 548011218
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Table 4.3: Enhanced RSA Computation Time Data

No.
of
bits

Prime 1 Prime 2 Prime 3 Key Gen-
eration
Time
(µs)

Encryp
tion Time

(µs)

Decryp
tion Time

(µs)

Total
Time
(µs)

64 10951074626344098541 9168151004544505097 2250792364417928861 1217 12204 148285 161706
128 25970864924525562003

2862220217273076359
29996469542284176256
9803344431246112881

13950203453132120552
7998564580848000771

2707 24711 705942 733361

256 72481285327005353993
74662317306967758874
65015687063623652353
50842066777319911

94444064820623919173
45609078643514822194
95824232929798252462
12261296197524349

46465316631097120841
06046925878081484752
66299596424889339420
98803130755444939

77715 42810 3977039 4097564

512 13247934241092971526
20453797975448190132
63225234721427513853
14183401981757094736
87836876776108493786
06889993694706923129
89686442751917263133

444136575853711

18728837919366120687
26293450120394268619
25925981009450358690
97051957272886870979
59367854682668720879
86157581391777329813
74422646569422304944

98376010335381

11606870030724497024
33665505726456389181
76560707306416264115
32810654165823635755
16339542782451752872
53065804089691050732
10952786552922870908

128126741214899

314509 146666 30507855 30969030

1024 99638769104583257053
90585286325058921923
35440940357303185774
02541274600676873562
12995362505851826491
02337003621392051724
39693860412757617797
26035738387070481210
11266668900033394669
58175467257712486494
32897275708355354183
42201870065714914226
70142495510591583507
98248834374558596979
99187456623300017272

897589

67517690780836936173
74286485902384283063
91110079395884759077
35894301492075920260
60821209527712737243
25106373938946831699
77377018397456431008
34441211666489538652
07581745806818137074
68314347988465332310
70895906874078208216
61574293804683660508
90166896486415700074
52687750240014746183
57103490720789495327

37244017

15046623347357680613
07794130623702155040
29219869549417470587
27852925025128085122
14864796289846292504
10202012456420659503
76678237272754573535
66845863746727485847
41552959420245712549
01555153693986033250
75930161305381341388
63275845190260875779
57090075352877977504
06445315609864336007
62370779605060462732

963691467

2715002 472767 220340486 223528255

2048 19631991671866701083
64582752465255119955
13813017470752829730
38502983025596559323
30807295752724975737
35948890915305729781
57269964843949614815
64858609917271707653
25057277925222402758
43079064200597759861
90439804902875939744
94760995909755595494
86894023062663886189
73742797465346055131
05714223972408051965
61223047520274153447
61537088074647250578
35466115298803023066
28548926762660092973
53430397217406810571
11297758815307065790
68666702416393023343
39617376633890886287
83455148793826595748
55670181255177666953
67294352922541701305
78909097431456438968
93611070915536243802
24569056227110477656
11056662215296497456

901483687589

72048155387323709166
60848707930336074888
91566798644692843080
67794585306592790502
81367373094090014810
68667418538424923895
35546783227570110037
39554233344776413617
24440179822776849936
96123730683833200096
06075968434171131935
37191614338757283716
76468281405320268072
65426614226829887130
92783537647339329695
30366247098854944951
84165933602502430046
76482920541359418804
85164085567795469978
81107062399963138470
50847264409549977811
51796286958504880002
98402434762454804739
92614034485308847645
98758643667639502489
40852372158380574099
89610932125158799787
31162299442144629181
31673891835568409149
00281829062685080531

1594344303

29630662596132586125
10722504963395548258
61233355569709440363
10973584073054997481
32713366742526667518
21036572790927651729
93760836300359435459
65634272701189539927
10112526004080759815
92415385162991240552
22035670674309040232
70037325856084145438
59496762731252232496
64406901498206980230
38175506355495692251
66427796755397154788
58219604169042434990
61096173789247159594
74874776568633375546
82325250872944412496
35383241018669613903
77755965918617524349
15893246017175644700
59815188744442483658
36933345250450555878
18578570002746785166
01871197021747517027
03527642345159922750
27242850417002297606
58084590689586451062

8309

57348009 1519540 1625294097 1684161647
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Fig. 5.1: Encryption and decryption process flow within the app

5.2. Platform Testing. Extensive testing across different Android versions (going from 10 to 14) was
led to guarantee the enhanced RSA execution’s reliable presentation and functionality across various platforms.
The thorough testing was meant to identify and address any compatibility or operational issues that could arise
across various Android versions.

5.3. Enhanced Functionality and Security. The incorporation of the enhanced RSA algorithm brought
forth a significant enhancement in the security aspect of the chat application. This upgrade assured users
of secure encryption methods, providing a secure environment for sharing sensitive information through the
messaging application.

5.4. Process Visualization. For a more clear comprehension of the encryption and decryption processes
inside the application, a definite interaction flowchart is shown in Fig. 5.1. This visual guide effectively clarifies
how the adjusted RSA calculation is utilized inside the application, showing the means engaged with the
encryption and decryption of messages.

5.5. Accessibility and Further Exploration. The complete process flow diagram for exploring and
understanding the enhanced RSA feature within the chat application is available. Feel free to access the
application available on Google Play named EncryptoSafe Private Messaging.
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6. Conclusion. The development of this enhanced RSA and secure chat application has showcased promis-
ing results in the realm of digital messaging encryption. Employing three integers within the enhanced RSA
algorithm has introduced an additional layer of complexity to the encryption procedure. Consequently, the
resultant chat application demonstrates resilience against potential threats such as eavesdropping and unau-
thorized access to chats, thereby significantly contributing to the domains of cryptography and cybersecurity
by ensuring the protection of sensitive information exchanged between users. During app development, several
challenges were faced. These included ensuring secure key management, maintaining real-time data transfer
capabilities, and implementing user authentication protocols. Additionally, limitations in the scope of the
project prevented the inclusion of file encryption functionalities for multimedia content such as audio, video,
and images. The collaborative effort and advancements made in this work signify a substantial leap forward in
establishing secure communication frameworks, laying a foundation for continued research and innovation in
securing digital interactions.

The app was provided to multiple users for user testing, the reviews received have been summarised as
follows. The chatting was seamless, with messages being sent and received in real-time. But issues were faced in
sending media files like photos, videos and audios, only text and emoticons were supported by the application.
User can initiate chat with any other user of the app, regardless of whether they are in the user’s contact list
or not. While the implementation has demonstrated considerable success, there are several avenues for future
enhancements and improvements in the chat application. Key generation processes can benefit from leveraging
parallel processing and hardware acceleration techniques to optimize performance. As user numbers increase,
scaling the performance and security aspects becomes crucial. Moreover, ensuring resistance against modern
quantum attacks is imperative for the enhanced RSA algorithm.
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