
S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 85�94. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSNETWORK SCHEDULING FOR COMPUTATIONAL GRID ENVIRONMENTSMARTIN SWANY∗ AND RICH WOLSKI†Abstra
t.The problem of data movement is 
entral to distributed 
omputing paradigms like the Grid. While often overlooked, the timeto stage data and binaries 
an be a signi�
ant 
ontributor to the wall-
lo
k program exe
ution time in 
urrent Grid environments.This paper des
ribes a simple s
heduler for network data movement in Grid systems that 
an adaptively determine datadistribution s
hedules at runtime on the basis of Network Weather Servi
e (NWS) performan
e predi
tions. These s
hedules takethe form of �spanning trees.� The distribution me
hanism is an enhan
ement to the Logisti
al Session Layer (LSL), a system foroptimizing data transfers using �logisti
s.�Key words.Grid 
omputing, data logisti
s, data staging1. Introdu
tion. As Computational Grid environments proliferate, the 
ommunity must 
onstantly evolvethe way in whi
h 
omputing systems are used. Distributed 
omputing on the Grid has enabled new ways ofharnessing 
omputing resour
es and yet, has exposed its own set of 
hallenges. One su
h problem is that of datamovement. Appli
ations that are drawn to the Grid be
ause of large resour
e requirements frequently 
onsume orgenerate large amounts of data. The problems of data lo
ality and data movement are be
oming more prominentand 
riti
al to the performan
e and deployability of Grid systems. Further, due to the dynamism inherent in Gridenvironments, it is 
lear that me
hanisms for data staging must be adaptive like the 
omputations themselves.AppLeS [8℄ demonstrated the beginning of a new way of thinking about programming the Grid�s
hedulingfrom the perspe
tive of the appli
ation. In this spirit, we propose to approa
h the problem of adaptivelys
heduling bu�ers in the network with proa
tive support from the appli
ation. This paper examines simpleoptimizations that we 
an fa
ilitate by thinking of Grid resour
es in terms of 
ooperating elements in a storageand 
omputing �overlay� network. By enabling this type of fun
tionality, using te
hniques su
h as the Logisti
alSession Layer (LSL) [34℄ or the Internet Ba
kplane Proto
ol (IBP) [28℄, the breadth of the servi
es o�ered bya Grid is improved.The goal of this work is to investigate s
heduling and routing te
hniques fo
used on optimizing data move-ment in Grid environments. In order to investigate su
h s
heduling we will draw on previous work as follows. TheLogisti
al Session Layer (LSL) [34℄ provides the basi
 platform for 
ooperative data forwarding that responds torequests from the s
heduler. The Network Weather Servi
e (NWS) [43℄ provides us with network performan
emonitoring and fore
asting 
apabilities. Finally, the NWSlapd [37℄, the 
a
hing and delivery subsystem of theNWS, 
a
hes network performan
e fore
asts and aggregates them into a form suitable for 
onsumption by thes
heduler.There has been a tremendous amount of work in this 
ommunity to optimize 
olle
tive operations for parallel
omputing [4, 27, 24, 5, 18, 39, 20, 40℄. Certainly, these approa
hes are all related at some fundamental level(and dis
ussed somewhat in Se
tion 6). However, our approa
h is fo
used on pre-runtime data distribution (orstaging) rather than 
olle
tive operations as su
h. Initial data distribution is an important 
omponent of a
tualGrid deployment. This fa
t is often obs
ured by pre-staged binaries or lo
ally-generated random input data,but for Grid systems to realize their potential, these issues must be addressed.Our approa
h to this problem is unique in a number of key ways:
• It treats Grid resour
es as a graph with edge values derived from 
urrent network performan
e fore
asts
• It adaptively builds distribution trees for arbitrary topologies by 
reating a s
hedule based on theMinimum Spanning Tree (MST) over that graph
• Cooperative forwarding among peers is a

omplished with the Logisti
al Session Layer (LSL), whi
huses 
as
aded TCP 
onne
tions.Grid environments are extremely dynami
. Network performan
e depends on ambient load. To best adaptour exe
ution at runtime, fore
asts based on 
urrent performan
e information are ne
essary. Distribution treesbased on this information will often vary wildly in shape. We need an extremely general tree 
onstru
tionme
hanism to a

ommodate the diversity of Grid systems. Finally, as we use LSL for our distribution platform,
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86 Martin Swany and Ri
h Wolskiwe get the bene�ts of performan
e-enhan
ing bu�ering in the network, and the reliability and deployability ofTCP.In this paper we will �rst des
ribe the assumptions in our approa
h to s
heduling. Next, we will des
ribea simple s
heduling approa
h, based on spanning tree, that is general enough to address our needs. Finally, wedes
ribe the enhan
ements to LSL ne
essary to implement a s
hedulable distribution me
hanism and evaluatethe performan
e improvements that even simple s
heduling 
an a�ord in this spa
e.2. Problem. The general problem that this work addresses is that of the �logisti
s� of data movement inComputational Grid environments. In fa
t, the logisti
s of data movement are the main reason why 
omputing�power� is not a fungible resour
e like ele
tri
al power. Users need 
omputations to be performed on spe
i�
bits of data, whereas ele
tri
ity 
an be 
onsumed regardless of the lo
ation or means of its generation. Theproblems of data lo
ality and movement are universal and are a 
riti
al 
onsideration in Grid systems.There has been mu
h re
ent work 
onsidering 
ooperative data sharing between networked peers [30, 33, 6,28, 22℄. These 
ooperative approa
hes have had impa
t in both the parallel pro
essing and network 
omputingdomains. In this spirit, we 
onsider an environment in whi
h Grid resour
es are enabled to utilize and provide
ooperation of this sort. Our goal is to 
onsider s
heduling these resour
es and examine potential performan
eoptimizations that might emerge. This work builds on the ideas of �Logisti
al� [34, 6, 28℄, �overlay� [3, 38, 17℄and �peer-to-peer� [30, 33, 22, 44℄ networking to treat the problems of 
ommuni
ation in Grid systems in a novelmanner.The GrADS [7℄ proje
t is a large, multi-institution proje
t whose goal is to investigate 
omprehensivesoftware environments for developing Grid appli
ations. As su
h, the GrADS environment is fo
used on programdevelopment and 
ompilation as well as runtime Grid support. Before exe
ution, a Con�gurable Obje
t Programis prepared by the 
ompilation systems. When the program is to be laun
hed, the S
heduler/Servi
e Negotiator(S/SN) intera
ts with a variety of runtime servi
es provided by the Grid fabri
 and dis
overs the �state� of theGrid at that time. The S/SN uses this state information to make de
isions about program 
on�guration ands
heduling. In parti
ular, the system requires 
urrent short-term fore
asts of resour
e performan
e levels sothat it 
an make proa
tive s
heduling de
isions. The NWS generates su
h fore
asts automati
ally, but to beuseful, they have to be delivered to the S/SN (through the Globus [13℄ infrastru
ture) qui
kly and reliably.Considering the problem of initial data distribution, our assumptions 
an be 
aptured by the followings
enario. Let us imagine that a user is laun
hing a program in a Grid environment su
h as the GrADS [7℄proje
t's testbed. In the GrADS ar
hite
ture, the Con�gurable Obje
t Program, or COP, is distributed by theAppli
ation Manager in the �rst phases of exe
ution. This is not, of 
ourse, unique to GrADS. In many Gridparadigms a user has a set of program exe
utables that need to be distributed to the resour
es before exe
ution
an begin.In other Grid usage models, end-users utilize resour
es through previously existing software infrastru
ture.This software exports servi
es through appli
ation interfa
es using remote pro
edure 
alls, or RPC. NetSolve [11℄is an example of su
h a system. The problem that these systems fa
e is similar to the program distributionproblem in that some amount of data must often be sent from the user to Grid resour
es prior to the beginningof any meaningful exe
ution. This problem is strongly related in that it 
on
erns initial data distribution andthus, it 
an be modeled similarly.These problems are equivalent to some degree in that either prior to runtime or during an initial phase ofruntime, some data has to be sent to the ea
h 
omputational node before any real appli
ation progress 
an bemade. Often, we 
hoose to abstra
t this problem away with �le-sharing te
hniques. In fa
t, network �le systems(e.g. NFS) 
an be used within a single site so that we only need to transfer on
e to nodes that share �les thisway, but there are many 
ases where systems do not share �les in this fashion. Further, NFS 
an su�er frompoor performan
e and sin
e data (programs or user data) is to be moved over the network, we prefer to dealwith the asso
iated overhead expli
itly. Certainly, there are many situations and s
enarios that di�er in simpleways from this basi
 model, but this 
aptures our assumptions and, in fa
t, models real Grid systems quite well.2.1. Problem Modeling. Consider the simple depi
tion of these data transfers in Figure 2.1. In thesegraphs, the value along the edge denotes some 
ost. In this 
ase it is the time to transfer some amount of data.Figure 2.2 obviously demonstrates a distribution pattern (or tree) with a lower overall 
ost.Further, in Grid environments, resour
es are often lo
ated in groups or 
lusters, so the potential performan
eimprovement from su
h optimizations be
omes more obvious. Figure 2.3 illustrates the fa
t that in many real
ases, a hierar
hi
al distribution s
heme 
an greatly redu
e the overall 
ost of the paths through the network.
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Fig. 2.1. Cost tree for default distribution strategy

Fig. 2.2. Less 
ostly distribution treeThis modeling approa
h allows us to think about the problem of data distribution as a graph and o�ersobvious 
han
es for optimization.3. S
heduling Algorithms. The 
rux of this work is the observation that by treating the resour
es ofthe Grid as a �network�, we 
an s
hedule the 
ooperation of these resour
es in the formation of a single-sour
e,data distribution tree. This s
hedule 
an be 
omputed dynami
ally, based on 
urrent performan
e information.A distribution tree must be able to dire
t the data to ea
h node, or �span� the tree.Consider a dire
ted graph G with verti
es and edges: G = (V, E). Ea
h edge has a weight or 
ost cij forea
h (i, j) ∈ E. A spanning tree (T ) is a graph with T ⊆ G su
h that ∀V there is a (u, v) ∈ T that is in
identon it (i.e., T spans the set V ).The Minimum Spanning Tree MST (G) = T where ∑
(u,v)∈T c(u, v) has the minimum 
ost of all spanningtrees.A traditional, and provably optimal, approa
h to the solution of MST is known as Prim's algorithm [29℄.This algorithm uses a greedy approa
h in the 
onstru
tion of the solution tree. Brie�y, the algorithm pro
eedsas follows.To �nd the MST (T ), we 
reate an empty tree T and move the starting node of the tree (vstart) from V to

T :
vstart ∈ T | T ∩ G = ∅ (3.1)Then, we iterate while |V | > 0. At ea
h step we examine edges in the �
ut� (edges that begin in T and endin V ) and sele
t the minimum 
ost edge:

min(e) ∈ E′ | e(u, v) u ∈ T and v ∈ V (3.2)Node v is then moved to T and we examine the newly added node and edge to see if its addition has o�ereda better path to nodes already in T .While the spanning tree problem is at the heart of this approa
h to s
heduling, there are additional fa
torsthat must be 
onsidered in our model. In the previous se
tion, we 
onsidered extremely simple graphs. Obviouslyfor Internet hosts, the time to transmit data to a number of hosts is not linear with the number of hosts. Multipleoutgoing edges interfere with one another � they are not independent. In terms of the network, the more streamsthere are sharing the resour
e of outgoing network 
apa
ity, the less ea
h stream gets. This 
ould 
ompli
atethe model signi�
antly. In fa
t this problem is very similar to what is known as the �weighted graph minimum-energy broad
ast problem�, whi
h has been shown to be NP-hard [41℄. Further work in the same problem
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Fig. 2.3. A distribution tree for 
lustersspa
e [12℄ shows that the problem remains NP-hard even when realisti
 bounds are pla
ed on transmissionlevels (redu
ing them to a small �xed set), but gives hope for polynomial-time solutions if a solution exists.Another potential 
ombinatorial problem arises in our situation as well. The �Steiner Network� is di�erentfrom the MST problem in that only a subset S of G must be spanned. This problem has been shown to beNP-hard [19℄. This problem is the heart of the problem of �minimum spanners� [10℄ again demonstrated to beNP-
omplete. However, we note that sin
e the set with whi
h we are 
on
erned is not a subset of G that weavoid the di�
ulties asso
iated with these problems.These previous results treat their realm of dis
ourse to be in �metri
 spa
e,� meaning that the triangleinequality holds. Internets are not, in general, in metri
 spa
e. This makes the problem more tra
table initially,but ultimately 
ompli
ates the model. In parti
ular, rather than power levels, our spanning-tree problem hasthe above des
ribed 
onstraint that we 
an refer to as �lateral inhibition.� The more edges (streams) that arein
ident on a node, the less well any of them perform. In the extreme, the interferen
e between streams isunique for every stream 
on�guration. This 
ombinatorial spa
e implies that the optimal solution for su
h aproblem is NP-hard. However, we note that this approa
h is not ne
essarily 
on
erned with an optimal solution,rather we wish to empiri
ally determine the e�
a
y of this general 
lass of solution.The MST problem is known to be related to many problems in distributed data movement. While we do notdeal with it dire
tly in this work, the minimum 
ost path and all-pairs minimax problems [2℄ provide a basis formulti-hop forwarding of the sort proposed by LSL [34℄ and IBP [28℄. Parallel streams with diverse paths allowus to 
ou
h routing in terms of maximum �ow algorithms. However, utilizing parallel streams between identi
allo
ations, with default paths, only serves to in
rease the value of a single ar
. This would 
ertainly in
rease theobserved bandwidth, but our treatment of the single-stream 
ase still holds without loss of generality.4. System Ar
hite
ture. To deploy and test this s
heduler on a Grid system, we rely on various 
ompo-nents of Grid software. Spe
i�
ally, this software depends on the Network Weather Servi
e, the NWS's 
a
hingLDAP delivery system and the Logisti
al Session Layer.4.1. Network Weather Servi
e. The Network Weather Servi
e [43, 42℄ is a system developed to provideperforman
e monitoring and online performan
e predi
tion to Grid s
hedulers su
h as ours. Grid environmentsare extremely dynami
 and in order to manage this dynamism, a s
heduler must have near-term performan
epredi
tions upon whi
h to base runtime de
isions. The NWS measures, among other things, TCP bandwidthand laten
y between hosts in a s
alable and unintrusive manner. By applying various non-parametri
 statisti
alte
hniques on the timeseries produ
ed by these ongoing measurements, the NWS is able to produ
e fore
aststhat greatly improve predi
tion over naive te
hniques. Further, these measurements 
an be 
ombined with pastinstrumentation data to produ
e a

urate estimates of bandwidth [36℄ or transfer time.An additional 
omponent of the NWS, 
alled the NWSlapd [37, 35℄, provides ne
essary fun
tionality aswell. First, this system 
a
hes performan
e predi
tions near querying entities making it possible to s
ale theperforman
e information infrastru
ture and provide ubiquitous fore
asts to network-aware s
hedulers. This partof the system also assembles measurement information into a network �view� that 
an be easily and qui
klyqueried. Note, however, that the NWS does not a
tually initiate measurements between every pair of hosts (n2
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hy of measurements that the NWS does take and �lls in a
omplete matrix of fore
asts (as des
ribed in [35℄.)The 
omplete matrix of fore
asts provides us with the node-node adja
en
y matrix representation of ournetwork. The adja
en
y matrix is populated by the observed bandwidth (and/or laten
y) between host i andhost j in the (i, j)th element. Note that the graph that this matrix represents is fully-
onne
ted as every hoston the Internet 
an rea
h every other host with some bandwidth.1 This provides the initial graph G upon whi
hour s
heduler operates.4.2. S
heduler Implementation. Our initial s
heduling approa
h is simply to des
ribe a spanning treefor the nodes in our resour
e pool. To do this, we simply use Prim's algorithm as des
ribed in Se
tion 3.In order to produ
e a minimum spanning tree, we need a metri
 where a smaller value is �better�. Sin
ewe are operating with bandwidth fore
asts, we 
onvert the bandwidth estimates �transfer time� estimates by
onsidering 1/bandwidth as the �value� of an edge.
Fig. 4.1. Simple Illustration of Tree DepthOne simple te
hnique that we have implemented allows us to minimize the depth of the spanning tree. Ourgoal is to minimize the number of hops that a stream must pass through as ea
h hop adds some amount ofoverhead. Consider the graph in Figure 4.1. Stri
tly speaking, the minimum spanning should in
lude the ar


A → B, and that from B → C. However, it redu
es the depth by a level and in
reases the overall 
ost of thetree to span via the ar
 from A → C.This has an e�e
t in pra
ti
e. Due to small variations in measurements through time, ma
hines withfun
tionally similar 
onne
tivity have slightly di�erent fore
asts. To keep the trees more simple, we would liketo 
onsider measurements within some ǫ of one another as the same. A perfe
t 
hoi
e for this value is thehistori
al fore
asting error from the NWS.The s
heduler performs as expe
ted. When presented with the results of a performan
e query from NWS
ontaining information about the GrADS testbed [14℄, the system was 
learly able to dis
ern separate 
lusters atthe University of Tennessee and University of Illinois and suggest a distribution tree taking that into a

ount.Figure 4.2 depi
ts spanning tree produ
ed by the s
heduler, and this graph is generated from that outputusing GraphViz [15℄, a graph plotter. The initial set of results (in Se
tion 5) utilize this host pool and similardistribution s
hedules.
torc0

msc01 torc1 torc2 torc3 torc4 torc5 torc6 torc7 torc8 opus0

msc02 msc03 msc04 msc05 msc06 msc07 msc08 opus1 opus2 opus3 opus4 opus5 opus6 opus7 opus8Fig. 4.2. Spanning TreeNote that Figure 4.2 is 
reated automati
ally. Other than guessing based on the names of the hosts (noton the domain name), there is no way to dis
ern these 
lusters at the network level. In some 
ases, onlyempiri
al performan
e measurements show these relationships, as shown previously by E�e
tive Network Views
1With the ex
eption of hosts behind �rewalls. While our te
hniques are even more natural in those 
ases, a dis
ussion of thatappli
ation beyond the s
ope of this work.
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h Wolski(ENV) [32℄. It is interesting to note that we have re
overed the stru
ture of the network with our s
hedulerte
hnique alone.
Fig. 4.3. Distribution re
ords in a tree4.3. Logisti
al Session Layer Data Distribution. The s
heduler produ
es a distribution tree whi
his given to the Logisti
al Session Layer [34℄ (LSL) to 
ontrol the data distribution. LSL is a system for 
oop-erative forwarding and bu�ering of network tra�
 that has been shown to greatly in
rease end-to-end networkperforman
e. LSL utilizes TCP, so questions of �friendliness� are not an issue and data integrity guarantees arethose of TCP. 2 However, LSL endeavors to allow TCP to perform better by keeping the round-trip time onany sublink to a minimum. This use of TCP also fa
ilitates in
remental deployability, yet takes advantage ofimproving transport-layer performan
e.For this parti
ular experiment, we have implemented a new message option in the LSL sta
k. Ea
h optionde�nes a distribution tree in
luding information about the 
hildren of that node. The hierar
hy of distributionheaders is re
ursively en
oded and de
oded so that only the relevant portions of the subtree are transmittedto downstream neighbors until ultimately, the leaf nodes get a distribution tree with a single entry. Figure 4.3illustrates this.The a
knowledgment of data re
eipt at the ultimate destination is impli
it with the 
losing of the TCPso
ket. At ea
h LSL node, ne
essary data is sent out all outgoing so
kets and the sending side of ea
h of thoseso
kets is 
losed. Ea
h daemon then waits for ea
h downstream neighbor to 
lose its so
ket, signaling that alldestinations have re
eived the data. At the leaf nodes, the so
kets are 
losed normally on
e all data is writtento the �lesystem. We note that dire
t noti�
ation from destination to sour
e may be more desirable in many
ases and su
h a modi�
ation is straightforward.Internally, the implementation is not aggressively optimized, and further performan
e improvements are
ertainly possible. There is also no se
urity model at this time. Our te
hnique 
ould easily work over SSH-en
rypted and authenti
ated tunnels and this is one implementation possibility that we are investigating.5. Results. To test the e�
a
y of our system, we have deployed it a
ross the GrADS testbed [14℄. This setof Grid resour
es ranges from 50 to 100 nodes a
ross the U.S. lo
ated primarily at the University of California,San Diego, the University of Illinois, Champaign-Urbana, and the University of Tennessee, Knoxville. The sitesare 
onne
ted by Internet2's Abilene [1℄ ba
kbone and enjoy relatively high-speed 
onne
tivity.To evaluate the di�eren
e between dire
t distribution (the dire
t approa
h) and our s
heduler in as fair amanner as possible, we have modeled the dire
t distribution within our software infrastru
ture. That is, thedire
t distribution version is simply a �at tree. This allows for overlapping 
ommuni
ation among the streamsand is not terribly ine�
ient. At any rate, the data movement is not serialized among the nodes as it often isin daily use. 3Two sets of tests were run. The �rst set 
ontains 18 nodes lo
ated at two sites. The se
ond set 
ontains52 nodes in 6 
lusters at 3 sites. In all 
ases the sour
e of the data was lo
ated at the University of California,Santa Barbara. Again, this models situations that are demonstrably realisti
.Figure 5.1 shows the distribution time, in se
onds, for �les of various sizes. This test utilized the 18 nodepool des
ribed above. We 
an see that this 
ase illustrates remarkably well how hierar
hi
al, 
ooperative datadistribution 
an improve performan
e and redu
e distribution time. Figure 5.2 shows �le distribution times forthe larger (52 node) host pool. Again, the performan
e improvement from making simple s
heduling de
isions

2Whether this is su�
ient or not is another matter, as we have done no harm.
3The authors speak from experien
e. What Grid developer hasn't iterated through a �le 
opy to ea
h node of some set?
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Fig. 5.1. Distribution Times for 18 Hosts

Fig. 5.2. Distribution Times for 52 Hostsis quite signi�
ant. We note that 
lusters represent the best 
ase for distribution te
hniques su
h as this and
lusters are frequently 
omponents in a Grid.Figure 5.3 depi
ts the delivered bandwidth that we observe in data transfers to the 18 node host pool.Figure 5.4 shows this same metri
 for the larger host pool. We have initiated a data transfer that has anaverage performan
e more than the physi
al link to whi
h the ma
hine is atta
hed (12.5MB/se
).6. Related Work. There are many aspe
ts of resear
h that are similar and related. LSL is part of themore general inquiry of Logisti
al Networking [28, 6℄. This work investigates a more ri
h view of storage in thenetwork and our s
heduling approa
h is appli
able to either infrastru
ture.Globus GASS [9℄ and GridFTP [16℄ are data movement and staging servi
e for Grid systems that 
ouldbe s
heduled using the te
hniques that we have des
ribed. The MagPIe [20, 40, 21℄ proje
t has investigatedperforman
e optimizations for 
olle
tive operations. Improving the performan
e of 
olle
tive operation has beeninvestigated in many di�erent 
ontexts [4, 27, 24, 5, 18, 39℄, although primarily the fo
us has been MPI.S
heduling appli
ation a
tivity based on the state of the network is seen many pla
es in
luding REMOS [23℄,Topology-d [26℄ and the Network Weather Servi
e [42℄.
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Fig. 5.3. Delivered Bandwidth of Distribution Tree (18 Hosts)

Fig. 5.4. Delivered Bandwidth of Distribution Tree (52 Hosts)Our approa
h is quite similar to re
ent work by Malou
h, et. al [25℄, whi
h treats multi
ast proxies asnodes in a network optimization problem. We note that their ar
 in
iden
e 
onstraints are di�erent than thosethat we propose. Further, their simulations were aimed at evaluating various heuristi
s, while our goal is tounderstand the performan
e improvements from simple s
heduling in real networks.Over
ast [17℄ is a network overlay based multi
ast system. Over
ast uses node to node proto
ols to buildand evaluate the distribution trees. Our approa
h 
reates distribution trees at runtime and assumes no statein the network. Rather, we assume the availability of network performan
e fore
asts to determine distributiontrees. Our 
on
erns about node failure are also quite di�erent given our utilization of TCP as a transport layer.Re
ent work in appli
ation-level multi
ast explores the appli
ability of peer-to-peer networks [31℄ for thispurpose. They note a bene�t of their work is the la
k of a 
onstantly-running routing proto
ol, a bene�t that weshare. In 
ontrast to their approa
h, however, we don't in
rease the time to distribute data, rather we de
reaseit.
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lusion. We have fo
used on the problem of initial data distribution in Grid environments. Bybuilding on previous system 
omponents, su
h as the NWS and LSL, we have developed a novel system for datadistribution. We have developed a s
heduler that is able to instantiate 
ooperative data forwarding based on LSLand performan
e data from NWS. This s
heduling te
hnique and infrastru
ture allow us to form distributiontrees that greatly in
rease performan
e and redu
e time to distribute data. Te
hniques su
h as this will onlybe
ome more important as Grids proliferate. REFERENCES[1℄ Abilene. http://www.u
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