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PREDICTIVE ANALYSIS OF BREAST CANCER FROM FULL-FIELD DIGITAL
MAMMOGRAPHY IMAGES USING RESIDUAL NETWORK

SI-YEONG KIM∗AND TAI-HOON KIM†

Abstract. Breast cancer has been a significant contributor to cancer-related mortality, but advancements in early detection
through regular mammography and improvements in treatment modalities have contributed to declining mortality rates in several
regions. This study presents a novel approach to cancer diagnosis utilizing Full-Field Digital Mammography images through
predictive analysis methods. By using predictive analytic techniques and mammography images, this study offers a novel way
to cancer detection. The research involves the application of deep learning techniques to extract valuable insights from cancer
images captured by mammography devices. The CBIS-DDSM (Curated Breast Imaging Subset of Digital Database for Screening
Mammography) dataset including images from patients with varying types and stages of cancer, is collected and pre-processed to
ensure uniformity and quality. Relevant features, including color, texture, and shape characteristics, are extracted, and a rigorous
feature selection process is employed to identify discriminative markers. The Residual Network (ResNet) model is selected and
trained on the dataset, with a focus on classification accuracy and robust predictive performance. Validation metrics, such as
accuracy, IoU (Intersection over Union) score, dice score, and ROC (Receiver Operating Characteristic) curve are employed to
evaluate the model’s efficiency. After analysis, the proposed method had the best degree of mass lesion detection accuracy, at
99.24%. This research contributes to the advancement of non-invasive and efficient diagnostic tools, potentially enhancing early
detection and intervention in cancer patients. The proposed method not only demonstrates promising results in terms of diagnostic
accuracy but also emphasizes interpretability, seamless integration into clinical workflows, and adherence to ethical standards.
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1. Introduction. Breast cancer is a recognized global health problem due to its impact on individuals
globally and its high occurrence. It is now the second most prevalent cancer worldwide and holds the distinction
of being the leading cancer among women. Incidence rates exhibit variability across regions, with higher oc-
currences reported in developed countries. The disease not only affects women also manifest in men, although
at a significantly lower frequency. Factors influencing breast cancer risk include age, genetic predisposition
of BRCA1 (Breast Cancer gene 1) and BRCA2 (Breast Cancer gene 2) mutations, family history, hormonal
factors, and lifestyle choices [1]. Screening programs, coupled with ongoing research on biomarkers and inno-
vative imaging technologies, play pivotal roles in the early identification of breast cancer, enhancing treatment
outcomes. Survival rates are closely linked to the stage at which the cancer is diagnosed, emphasizing the
critical importance of early detection initiatives. To obtain the most accurate and up-to-date information on
breast cancer statistics, referencing reputable sources such as the World Health Organization (WHO), American
Cancer Society, International Agency for Research on Cancer is imperative for a comprehensive understanding
of the current landscape of this pervasive disease [2].

Researchers are investigating novel technologies and methodologies to enhance the recognition and char-
acterization of breast cancers. Other modalities, including as CT, MRI, and Positron Emission Tomography
(PET) scans are frequently used for specialized cancer imaging. These imaging techniques aid in the diag-
nosis and staging of cancer by offering a more thorough assessment of the anatomy and pathology [5]. The
detection of cancer via mammography images necessitates a careful consideration of various algorithms, each
offering unique strengths and facing specific limitations. Traditional image processing algorithms, with their
well-established techniques, provide efficient tools for enhancing and segmenting images, though they may
struggle with adaptability to diverse patterns [6].
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Machine learning (ML) algorithms excel in learning complex patterns, but their effectiveness relies heavily
on large, labeled datasets for training. Deep learning (DL) algorithms, particularly Convolutional Neural
Networks (CNNs), showcase remarkable capabilities to capture the hierarchical features but demand substantial
computational resources and may lack interpretability [7]. Pattern recognition algorithms offer specialized
expertise in identifying specific structures, while hybrid models and ensemble learning aim to harness the
strengths of multiple approaches. Quantitative analysis algorithms focus on numerical assessments, and real-
time processing algorithms cater to the need for immediate decision-making during mammography [8]. The
selection of the algorithm is influenced by the specific diagnostic goals, available data, and computational
considerations. Researchers often explore hybrid approaches, combining traditional and modern techniques, to
enhance the accuracy and efficiency of cancer identification from mammography images. Ongoing advancements
in Artificial Intelligence (AI) and computational imaging promise continued refinement and innovation in this
critical domain of medical diagnostics. Furthermore, advancements in AI and ML have significantly contributed
to the refinement of cancer identification in mammography images [10].

Automated algorithms can assist in the detection of subtle abnormalities, reducing the reliance on manual
examination and potentially enhancing the efficiency of the diagnostic process. These algorithms are trained
on large datasets, learning intricate patterns associated with various stages and types of cancers [11]. Their
integration into clinical practice aims to provide not only accurate but also swift assessments, facilitating prompt
decision-making and intervention when needed. In the evolving landscape of mammography, ongoing research
focuses on improving the sensitivity and specificity of detection algorithms, refining their ability to discern
precancerous lesions and early-stage cancers. The goal is to enhance the diagnostic yield of mammography,
making it an even more valuable tool in cancer screening and surveillance [12]. Additionally, efforts are directed
towards developing standardized protocols for image interpretation and reporting, ensuring consistency across
different healthcare settings.

Predictive analysis of cancer using mammography images involves leveraging advanced data analytics and
ML methodologies to extract meaningful insights from medical images captured by mammography devices
[13]. The process begins with the collection of a diverse dataset, encompassing images from both cancer and
non-cancer cases, covering various types and stages of the disease. Subsequently, thorough preprocessing is
conducted to clean, normalize, and enhance the quality of the images. Relevant features such as color, texture,
and shape characteristics are extracted from the images. Feature selection techniques are then employed to
identify the most discriminative features. For classification, an ML model is selected, such as Support Vector
Machines (SVMs) or Neural Networks, then trained on a split dataset consisting of training and testing sets
[14]. Validation metrics, including accuracy and precision, are utilized to assess the model’s performance.
Continuous optimization, interpretability considerations, integration with clinical workflow, and adherence to
ethical standards form integral parts of the process. The collaboration with healthcare professionals ensures
the model’s clinical relevance and adaptability in real-world healthcare settings.

The proposed Residual Networks (ResNets) have produced significant performance improvement in cancer
prediction. It achieved or exceeded human-level performance in showcasing its potential. Residual Networks
(ResNets) can handle very deep architectures is crucial for capturing intricate hierarchical features associated
with cancerous tissues. ResNets improve the training efficiency of deep networks by reducing the vanishing
gradient issue through residual connections.

The paper is organized as follows. Section 2 is a literature review, Section 3 is a methodological description,
Section 4 is an explanation of the obtained results, and Section 5 is a conclusion to the research.

2. Literature Survey. A thorough review of the literature on predictive analysis methods for cancer
diagnosis indicates a wide range of research projects involving different approaches to data analysis and ML. In
order to increase cancer prediction models’ overall performance, prognostic potential, and diagnostic accuracy,
investigators have been diligently researching novel strategies. Here is an overview of some of the most significant
issues and important findings from this field.SVMs, Decision Trees, and Logistic Regression were among the
classical ML algorithms used in early research. SVM’s use to lung cancer diagnosis was demonstrated by Li et
al., 2019 [2]. SVM is effective in high-dimensional spaces and versatile for classification of cancer. Also, SVM
is robust to overfitting. The algorithm is sensitivity to noise and outliers. It is having limited scalability while
working with large datasets. In 2019, Zhang et al [11]. provided a model of the way to use Random Forests
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to forecast cancer patients’ probabilities of survival. The capacity to increase prediction accuracy attracted
attention to Random Forests and Gradient Boosting. Ensemble method reducing overfitting and robust and
versatile for various types of data. It is suitable for feature importance ranking. But Random Forest algorithm
increases the computational complexity. This may lead to less interpretability due to ensemble nature.

The integration of genomic data and clinical information has been investigated for accurate cancer pre-
diction. Dai et al., 2020 [14] illustrated the integrative analysis in breast cancer classification using Long
Short-Term Memory networks (LSTM). It has the ability to store medical data that varies over time. Pham
et al., 2020 investigated the use of LSTMs in outcome prediction. But LSTM requires a large amount of
data. Hence, it is computationally intensive and the algorithm may suffer from vanishing/exploding gradient
problems.

The interpretability of deep learning models in cancer pathology was the main emphasis of Yuan et al.’s
2019 study [4]. End-to-end learning is made possible by deep learning models, which make it possible to directly
link input data to predictions. Deep learning models, if not properly regularized, can be prone to overfitting,
especially when dealing with limited datasets. Overfitting may result in poor generalization to new, unseen data.
Zhang et al., 2019 [15] looked into the use of deep convolutional autoencoders in breast cancer prognosis. He
has investigated the use of deep learning architectures, including autoencoders, for feature learning in cancer
detection. Autoencoder is an unsupervised learning method for feature extraction. Hence, it can capture
complex patterns and representations. But it requires substantial data for training. Interpretability can be
challenging. Because of the dynamic nature of cancer, investigations frequently use survival analysis approaches.
Ching et al., 2018 [16] described a deep learning model for survival analysis that takes into account conflicting
risks in cancer prognoses.

Convolutional Neural Networks (CNNs) and other deep architectures have been explored for image-based
cancer diagnosis as deep learning has become more popular. Kooi et al., 2017 [3] showed the success of CNN
in analyzing mammograms. Research efforts now center on the integration of data from several sources, such
as genetic data, medical imaging, and clinical records. Integrative approaches are investigated for a thorough
understanding of cancer biology was proposed by Wang et al., 2020 [17]. Interpretability is becoming more
important when predictive algorithms are used in healthcare settings. As the use of predictive models in clinical
settings becomes more critical, there is a greater emphasis on interpretability. CNN algorithms are excellent
at capturing complex spatial patterns in images and suitable for learning hierarchical features. It can handle
large amounts of data. But CNN requires significant computational resources for training. The algorithm may
suffer from interpretability challenges.

Graph-based techniques, including Graph Convolutional Networks, have gained popularity. Graph Convo-
lutional Networks (GCN) for Breast Cancer analysis was carry out by Wang et al., 2021 [6]. This study uses
GCNs for histology image analysis. Interpretability in predictive models is critical for clinical application.

One growing topic in machine learning is transfer learning, which applies pre-trained models on large
datasets. It enables to use huge datasets with pre-trained models for relevant tasks. Even with little labeled
data, can improve performance. The performance of the algorithm depends on the similarity between the
source and target domains. Hence, fine-tuning can be challenging. Hou et al., 2020 [18] investigated the use
of pre-trained models in histopathological cancer classification. Lynch et al., 2018 provided a light on the
difficulties and ethical concerns associated with deploying predictive models in clinical practice. In medical
image analysis, transfer learning has been applied extensively. Bentaieb et al., 2019 investigated the transfer
learning techniques to improve pathology image classification [19].

Data augmentation is critical for developing robust models. Esteva et al., 2017 [20] investigated the
effects of various data augmentation techniques on skin cancer diagnosis. The problem of having little labeled
data for machine learning model training can be solved by using Generative Adversarial Networks (GANs) to
create artificial healthcare images. Augmenting datasets enhances model generalization. GANs facilitate the
translation of medical images from one modality to another, aiding in cross-modal image synthesis. Guibas et
al., 2017 [21] proposed the methodology to convert CT scans to MRI-like images. GANs can extract useful
characteristics from medical images. Conditional GANs, in particular, allow for the generation of images with
specified features. But, GANs might produce synthetic images that lack certain nuances present in real medical
images. The algorithm learns from existing datasets, inheriting any biases present in the data. If the training



Predictive Analysis of Breast Cancer from Full-Field Digital Mammography Images using Residual Network 5059

Fig. 3.1: Block diagram for predictive analysis of breast cancer of the proposed model.

data is biased, the generated images may also reflect those biases. It is sometimes referred to as black-box
models, which make it difficult to interpret learnt features and comprehend how decisions are made. The use
of synthetic data raises ethical considerations, as it may influence decisions in clinical settings. Ensuring the
ethical use of generated data is crucial.

Chen et al. (2013) demonstrated a hybrid deep learning model for lung cancer prediction [22]. This model
that combines deep learning and standard ML to predict lung cancer. Bharati et al., 2020 [23] introduced the
integration of multiple deep learning architectures to improved predictive accuracy and it is compared with
individual models. Combining the strengths of different models may enhance overall performance. Hybrid
models often involve more complex architectures, which can increase the computational and training resource
requirements. This complexity may also pose challenges in terms of model deployment and integration into
clinical workflows. The creation and evaluation of cancer prediction algorithms frequently entail benchmark
datasets and obstacles. Hoadley et al., 2018 described the Pan-Cancer Analysis of Whole Genomes (PCAWG)
that contributes to the understanding of cancer genomics [24].

3. Proposed Methodology. The development of a predictive analysis algorithm for cancer diagnosis
involves a systematic process rooted in ML methodologies. A comprehensive dataset, comprising patient records
with diverse clinical information and diagnostic results, is collected and subjected to meticulous preprocessing to
address data imperfections. Essential features contributing significantly to cancer prediction are then selected,
employing methods like recursive feature elimination or univariate selection. The dataset is strategically split
into training and testing sets to make assessing the effectiveness of the selected method easier. Subsequent
training of the ResNet model to enhance predictive accuracy. The proposed approach aims to produce a robust
and reliable predictive analysis algorithm capable of contributing to effective cancer diagnosis.

Figure 3.1 shows the block diagram for predictive analysis of breast cancer Full-Field Digital Mammography
(FFDM) images using a Residual Network (ResNet). The first step in utilizing a ResNet to predict breast cancer
from FFDM images is importing and processing the images. To improve clarity and uniformity, these photos
are scaled, normalized, and converted to grayscale. Subsequently, a ResNet model, a specialized neural network
intended to detect patterns indicating of benign or cancerous tissues, analyzes them. By using skip connections
to facilitate effective learning, the ResNet model uses convolutional layers to extract information from the
images. The model is trained on an identified image dataset, and its performance is assessed to see how well
it can identify between benign and malignant instances. After undergoing validation, the model is applied to
forecast the probability of cancer in fresh photos, providing a potent instrument for prompt identification and
diagnosis.

3.1. Dataset. The CBIS-DDSM dataset consists of digital mammography images, including both Full
Field Digital Mammography (FFDM) and digitized film mammography [25]. Images stored in the CBIS-DDSM
database have been converted to the DICOM standard format. The dataset, which included 2478 mammography
images from 1249 women, was uploaded on the CBIS-DDSM website. The details of the structured description
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Table 3.1: Details of the dataset [25].

Field Description Example
Patient ID The first 7 characters of images in the case file, used to uniquely

identify each patient.
P123456

Density Category Describes the breast tissue density, typically categorized according
to the BI-RADS scale (1 to 4).

3

Breast Indicates whether the mammogram is of the left or right breast. Left
View Indicates the view of the mammogram image. CC or MLO
Number of Abnormalities The number of abnormalities present in the image. 2
Mass Shape Describes the shape of the mass (when applicable). Oval
Mass Margin Describes the margin of the mass (when applicable). Circumscribed
Calcification Type Describes the type of calcification (when applicable). Punctate
Calcification Distribution Describes the distribution of calcifications (when applicable). Clustered
BI-RADS Assessment BI-RADS score indicating the likelihood of malignancy. 4
Pathology Indicates whether the abnormality is Benign, Benign without call-

back, or Malignant.
Malignant

Subtlety Rating Radiologists’ rating of the difficulty in viewing the abnormality in
the image (1 to 5).

3

Path to Image Files The directory path where the image files are stored. /path/to/images

Fig. 3.2: Sample input images with malignant tumors in the CBIS-DDSM database [25] (a) Original Image, (b)
Synthetic Image.

incorporating the patient details and image metadata from the CBIS-DDSM dataset is shown in Table 3.1.
In this investigation, every perspective was handled as a single image. Randomly divide the CBIS-DDSM

dataset 80:20 at the patient level to produce separate test and training sets. An independent validation set was
created by further splitting the training data, 85:15 this time. Combined, the training, validation, and testing
sets had 1903 images. The CBIS-DDSM database contains the pixel-level annotations for the ROIs together
with their pathologically verified labeling (malignant or benign). Additionally, it designates each ROI as a bulk
or calcification. The GPU memory size limitation was the driving force behind the downsizing. Two patch
datasets were created by sampling image patches from background areas and ROIs. Every patch had the same
dimensions—224 x 224—and was sufficient to cover most of the ROIs that had been labeled. Five types of
patches were identified: background, benign mass, malignant calcification, benign calcification, and malignant
mass. The sample CBIS-DDSM database images are shown in Figure 3.2.

3.2. Preprocessing. The CBIS-DDSM database’s Full-Field Digital Mammography (FFDM) images con-
taining malignant tumors must pass through a preprocessing pipeline that includes many crucial steps to
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guarantee consistency, quality, and appropriateness for deep learning research. To reduce variances brought
on by various imaging settings, images are normalized to standardize pixel intensity levels. After the process
of normalization, noise reduction methods, including median filtering, are utilized to eliminate artifacts and
improve the quality of the image. This is a critical step in enhancing the features’ visibility and improving
the clarity of images used for analysis. Furthermore, methods of data augmentation are utilized to artificially
expand the dataset, such as rotations, flips, scaling, and translations. The images are consistently improved
and prepared by using this preprocessing pipeline, which makes them appropriate for further deep learning
research to precisely identify and categorize malignant tumours.

3.2.1. Normalization. Normalization adjusts pixel values to a standard scale, typically between 0 and 1
or using a mean and standard deviation approach. The min-max normalization of the image is as follows.

Normalizedpixelvalue =
Pixelvalue−Minvalue

Maxvalue−Minvalue
(3.1)

where Min value and Max value are the minimum and maximum pixel values in the image respectively.
3.2.2. Noise Reduction. Median filtering replaces each pixel’s value with the median of neighboring

pixel values within a defined window. The median filter operation F(i,j) at pixel (i,j) is computed as follows.

F (i, j) = median(pixels in window centered at (i, j)) (3.2)

3.2.3. Data Augmentation. Techniques such as rotation, flipping, scaling, and translation introduce
variations in the dataset. For example, scaling involves resizing an image by a factor α.

Scaled image = α×Original image (3.3)

where α can be a random factor between predefined limits.
3.2.4. Contrast Enhancement. Histogram equalization adjusts the image’s intensity distribution to

enhance contrast. The transformation function T is defined as follows.

T (rk) =

∑k
j=0 nj

N
× L (3.4)

where rk is the intensity level, nj is the histogram of pixel intensities, N is the total number of pixels, and L is
the maximum intensity level of 255 for 8-bit images.

3.2.5. Edge Detection. Canny edge detection identifies edges based on intensity gradients. The edge
strength(x,y) at pixel(x,y) is computed using gradients Gx and Gy is as follows.

EdgeStrength(x, y) =

√
Gx(x, y)

2
+Gy(x, y)

2 (3.5)

Images from the CBIS-DDSM must be preprocessed using these procedures in order to be ready for further
analysis. Each phase advances the interpretability of precise diagnosis and improves image quality.

3.3. ResNet (Residual Neural Network) architecture. In the context of cancer diagnosis, the ResNet
architecture, known for its ability to model channel interdependencies effectively, can be adapted as a powerful
tool for medical image analysis. To employ ResNet for cancer diagnosis, a representative dataset comprising
medical images related to the specific cancer type of interest must be gathered. Following dataset preparation,
preprocessing techniques, including resizing and normalization, ensure the uniformity and quality of the images.
The ResNet model is then fine-tuned on this medical imaging dataset, leveraging transfer learning with pre-
trained weights, typically from a large dataset like ImageNet. During training, an appropriate loss function
and metrics are selected, and hyperparameter tuning is conducted to optimize model performance. Validation
on a separate dataset assesses the model’s generalization capabilities, while testing on a held-out set evaluates
accuracy and reliability. Interpretability methods are crucial for understanding the model’s decision-making
process, especially in medical applications where trust is paramount. If applicable, the trained ResNet model can
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be integrated into the clinical workflow, with continuous monitoring and updates to ensure ongoing improvement
and adaptation to evolving data patterns. Collaboration with healthcare professionals is essential throughout
the development and deployment phases to align the model with clinical needs and standards.

The core of ResNet consists of bottleneck blocks, each comprising a series of convolutional layers with
varying filter sizes. These blocks enable the network to capture complex hierarchical features essential for
accurate image classification. Additionally, ResNet introduces a Feature Pyramid Network (FPN), facilitating
the aggregation of features from different scales. This approach enhances the model’s ability to discern both
local and global contextual information, contributing to its robust performance. This nested structure allows the
model to capture multi-level contextual information efficiently. Furthermore, the split-attention mechanism is
employed, dividing feature maps into groups and enabling the network to attend to distinct parts independently.
This innovative design enhances the model’s capacity to learn diverse and complementary information within the
feature maps. Ultimately, the architecture concludes with an output layer that produces the final predictions,
making ResNet well-suited for image classification tasks, including cancer prediction. While a detailed diagram
offers a more comprehensive understanding, this textual overview highlights the key components and strengths
of ResNet in leveraging attention mechanisms and hierarchical features for enhanced performance in complex
classification tasks.

3.4. Algorithm to detect breast cancer using ResNet. Algorithm to detect cancer from mammogra-
phy Images using ResNet is described as follows. This algorithm outlines the major steps involved in detecting
cancer from mammography images using a ResNet model. It includes data loading, preprocessing, model
building, training, evaluation, prediction on new data, and post-processing steps. The specific implementation
details, such as the ResNet model architecture and preprocessing functions must be determined by taking into
account the demands of the cancer detection as well as the deep learning framework of choice.

Algorithm 1 Algorithm to detect breast cancer using ResNet
Input: Mammography images (Array of mammography images)
Output: Predicted labels (Array of predicted labels for each image)
Step 1: Import necessary libraries and modules and perform preprocessing
Step 2: Load and preprocess mammography images
Step 3: Split the dataset into training and testing sets
Step 4: Build the ResNet model for breast cancer detection
Step 5: Compile the model
Step 6: Train the model on the training set
Step 7: Evaluate the model on the test set
Step 8: Make predictions on new mammography images
Step 9: Post-processing and visualization of results
Step 10: Output the predicted labels for cancer presence in mammography images

3.5. ResNet Model Architecture. The quick training process, flexibility to different image sizes, and
shown cutting-edge performance in computer vision tasks all contribute to their usefulness in cancer prediction.
Furthermore, the transfer learning capability of pre-trained ResNets on huge datasets enables the leveraging of
knowledge from general image classification tasks, making them valuable tools for medical image analysis.

The residual block structure in Resnet is shown in Figure 3.3. This schematic diagram highlights the
ResNet model’s unique architecture for analyzing Full-Field Digital Mammography (FFDM) images by outlining
its layers and linkages. The architecture demonstrates the incorporation of residual blocks, which provide
efficient learning of complex properties essential for detecting putative malignant areas. The ResNet framework’s
components are all expertly designed to maximize breast cancer detection accuracy, showcasing the framework’s
potential as an effective tool for medical image analysis.

As ResNets remain at the forefront of advancements in deep learning for accurate and reliable cancer predic-
tions from medical imaging data. The inclusion of skip connections in ResNets enhances model generalization,
preventing overfitting and ensuring robust performance on diverse patient populations.
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Fig. 3.3: The residual block structure in Resnet

Fig. 3.4: The architecture of Resnet for breast cancer detection

The architecture of Resnet for breast cancer detection is shown in Figure 3.4. These blocks are key
components that enable the effective transmission of information across the network, hence facilitating deep
learning. The network can learn residual mappings from each residual block’s skip connections, which enables
it to extract and use significant characteristics from Full-Field Digital Mammography (FFDM) images.

Input. As shown in Figure 3.3, the architecture starts with the input layer, representing the input image
or feature map. Let Xbe the input tensor corresponding to a mammography image to the ResNet block.

Residual Block. The output is computed as F (X) +X, where F (X)is the output of the residual function.

Output = ReLU (W2 . (W1.X + b1) + b2) +X (3.6)

Here W1 and W2 represent the weight matrices. b1 and b2 are the bias terms, and the activation function for
rectified linear units is known as ReLU.

Loss Function. The binary cross-entropy loss is a widely used measure for binary classification, and it is
calculated as follows.

Binary cross− entropy loss = − 1

N

N∑
i=1

[yi · log(ŷi) + (1− yi) · log(1− yi)] (3.7)

Here, yi is the true label (1 for cancer, 0 for non-cancer). ŷi is the predicted probability, and N represents the
number of samples.

Backward Pass (Backpropagation). Final layer produces the output of the network, which could be the
predicted class probabilities in the case of an image classification task. Calculate the gradients of the loss in
relation to the final output as follows.

∂L

∂Output
=

∂L

∂H(X)
+

∂L

∂X
(3.8)
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Fig. 3.5: Segmented masses through the proposed Resnet architecture. (a) Ground truth, (b) segmented results,
(c) Final segmented result.

Backpropagate these gradients through the ResNet block. ∂L
∂H(X) influences the gradients through the ReLU

and the linear transformation, and ∂L
∂X directly influences the gradient through the skip connection.

Update Weights (Gradient Descent). Update the weights using the gradients computed during backpropa-
gation. W2 and b2 are updated based on ∂L

∂H(X) . W1 and b1 are updated based on ∂L
∂X .

Optimization. Gradient descent or its variants, such as Adam or RMSprop, are commonly used optimization
algorithms in deep learning. The general update rule for weights W is given as follows.

Wnew = Wold − α.△W Loss (3.9)

where α is the learning rate, and △W Loss is the gradient loss in relation to the weights. Learning rate plays
a crucial role in the optimization process. Too high a learning rate may cause the model to converge slowly or
even diverge, while too low a learning rate may result in slow convergence. Adaptive learning rate algorithms,
dynamically adjust the learning rate during training based on the historical gradients.

Regularization. Regularization techniques, such as L2 regularization, may also be applied.

Losstotal = Lossoriginal + λ. ∥ Wi ∥22 (3.10)

where λ is the regularization strength and ∥ Wi ∥22 represents the squared L2 norm of the weights.

Convolutional Layer. The convolutional layer uses spatial filtering, shown in Figure 4, to extract low-level
information from the input image. LetWconv denote the convolutional filters, tbconv the biases, and σ is the
convolution operation. Then the convolutional output is denoted as follows.

Convolutional Output = σ(Wconv ∗X + bconv) (3.11)

Batch Normalization (BN). Batch normalization is used to keep deep neural networks stable and train
them faster. It normalizes the inputs to a layer to reduce internal covariate shift. The mathematical operations
of batch normalization include normalizing the inputs µ and σ the mean and standard deviation, scaling and
shifting the normalized inputs using learnable parameters (γ and β).

Batch Normalization Output (x) = γ.
Convolutional Ouput− µ√

σ2 + ϵ
+ β (3.12)

Activation Function (ReLU). The activation function imparts nonlinearity into the output. In this instance,
the Rectified Linear Unit (ReLU) is frequently utilized.

ReLU Output (Y ) = max(0, Batch Normalization Output) (3.13)

The ReLU function outputs the elemenet-wise maximum of 0 and the Batch Normalization output. Figure 3.5
depicts the contours of their ground-truth images, as well as the contours of the ResNet segmentation output
images.
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Table 4.1: Inputs applied for evaluation of the proposed method.

Input Description Value
Age Age of the patient at the time of imaging. 45 years
Gender Gender of the patient. (Usually female for breast cancer). Female
Tumor Size Size of the detected tumor in the mammogram image. 1.5 cm
Tumor Shape Shape characteristics of the tumor (e.g., round, irregular). Irregular
Tumor Margin Margin characteristics of the tumor (e.g., circumscribed, spiculated). Spiculated
Calcification Presence and type of calcifications within the breast tissue. Microcalcifications
Mass Density Density of the mass observed in the imaging. High Density
Breast Composition Overall composition of the breast tissue (e.g., fatty, dense). Dense
Learning Rate Learning rate schedule and initial value. 0.001 with Step Decay
Loss Function Loss function used for training (e.g., cross-entropy loss). Binary Cross-Entropy
Epochs Number of epochs for which the model is trained. 60
Batch Size Number of samples per batch during training. 32
Dropout Rate Dropout rate for regularization to prevent overfitting. 0.5

4. Results. The ResNet architecture layer construction has specific requirements. The convolution layer
is typically used to implement the feature learning model. In addition to the convolution layer, the ResNet
design contains layers for batch normalization, activation, and pooling. After the convolution layer, batch
normalization is utilized, followed by the activation layer, which employs the ReLu function. The convolution
layer in each ResNet architecture is divided into five layers by residual blocks. Only at the start of feature
learning, or after the first convolution, and at the end of feature learning, or after the previous convolution, are
pooling layers implemented before being included in the classification layer. The confusion matrix was performed
on the Resnet patch classifiers, as illustrated in Figure 6. With the highest likelihood, patch classifiers predicted
that all five classes would fall into the appropriate categories. The background class was the simplest to classify,
whereas malignant calcifications were the hardest. Malignant masses were more likely to be misdiagnosed
as malignant calcifications than benign calcifications. The most common misidentifications were of benign
calcifications as background, then malignant calcifications. Malignant tumors were more likely to be mistakenly
identified as benign masses and benign masses as malignant masses or background, depending on the patch
classifier.

Table 4.1 shows the list of inputs and hypothetical values for evaluating breast cancer prediction from
Full-Field Digital Mammography (FFDM) images using a Residual Network (ResNet).

In order to derive significant insights, the performance of the ResNet model was examined using the CBIS-
DDSM dataset. The IOU score, Dice score, accuracy, and other quantitative indicators provide a numerical
evaluation of the model’s overall efficiency. More granularity was provided by taking into account the precision-
recall curve and area under the ROC curve (AUC-ROC), which provided an in-depth understanding regarding
the compromises between sensitivity and specificity at various categorization thresholds.

One of ResNet’s major achievements is that it can conduct enhanced feature extraction because of its skip
connections and deep layers, which enable low-level and high-level features to be learned simultaneously. This is
important for cancer imaging because precise identification of minute variations in tissue properties is required.
Furthermore, ResNet’s skip connections make it easier to train extremely deep networks by guaranteeing that
gradients may pass through the network without decreasing, which promotes steady and effective training
procedures.

ResNet offers notable benefits for applications like as digital mammography-based breast cancer prediction
because to its residual connection deep design. It can use many layers to capture complex patterns in breast
cancer images because it can solve the vanishing gradient problem and efficiently train very deep networks.
Compared to shallower topologies, ResNet may be able to attain greater accuracy because of its depth.

Moreover, learnt features may be reused across layers but not in ResNet due to skipping connections.
This feature reuse helps to lessen overfitting while also improving the network’s capacity to retrieve pertinent
characteristics suggestive of breast cancer. ResNet contributes to the creation of models that generalize well
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Fig. 4.1: Confusion matrix analysis of patch classification for Resnet.

to new data by enabling more steady gradient flow during training, which is a crucial need in medical image
analysis.

The confusion matrix analysis of patch categorization carried out using the ResNet model is shown in
Figure 4.1. The accuracy and incorrectness of the model’s classification of image patches is shown graphically
in this matrix. With regard to the accuracy and dependability of the ResNet model in differentiating between
several types of breast tissue patches, it provides a comprehensive understanding through the counts of true
positives, true negatives, false positives, and false negatives.

The segmentation and classification are assessed using the F1-score, commonly referred to as the Dice
similarity score. Eqn. (9) which displays this score, is a combined average of the intersection between areas
and the total areas. The IoU score, sometimes referred to as the Jaccard score, is an additional assessment
measure that is explained in eqn. (10). When all of the masses’ surrounding pixels are accurately segmented,
a binary mask with a high Dice and IoU score is created from the segmented contour of the mass lesions. This
represents an acceptable segmentation performance.

Dice Score(X,Y ) =
2× (X ∩ Y )

X + Y
(4.1)

IOU Score(X,Y ) =
A ∩B

A ∪B
(4.2)

To evaluate the proposed system based on accuracy metric as the mean IoUscore for correctly identified
ROIs in accordance with a 90% overlap criterion, referred to as the IoU90 score in eqn. (4.11). According to
the definition given, the final accuracy is the end-to-end accuracy for the two steps is given in eqn. (4.12).

IOU90Score(X,Y ) =

{
mean(IOUScores(X,Y ∀ROI), ifIOUScore(X,Y )90

}
(4.3)

Accuracy = Detected Accuracy Rate× IOU90Score(X,Y ) (4.4)

The segmentation performance across different methods is shown in the Table 4.2. Tsochatzidis et al.’s UNet
achieved intermediate IOU and Dice scores, indicating that it is successful but still has space for development.
In comparison to UNet, Deeply Supervised U-Net (DS U-Net) performs better, with higher IOU and Dice
scores. R-UNet and Conditional Residual UNet show improvements in segmentation accuracy by enhancing
IOU and Dice scores even more. In comparison to all other approaches given, the proposed ResNet obtained the
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Table 4.2: Comparison of the proposed architectures and state-of-the-art methods.

Authors Methods IOU Score(%) Dice Score (%)
Tsochatzidis et al., [9] UNet 72.2 56.5
Ravitha et al., [26] DS U-Net 79 83.2
Dhungel et al., [27] Deep structured output learning 82.9 66.87
Abdelhafiz et al., [28] R-UNet 90.5 89.1
Li et al [29] Conditional Residual UNet 92.72 82.65
Proposed Method ResNet 99.16 98.88

Fig. 4.2: Performance comparison of Accuracy (ACC) measures with competitive methods.

highest IOU Score of 99.16% and Dice Score of 98.88%, demonstrating higher accuracy in properly segmenting
malignant tumors.

Table 4.2 illustrates the remarkable efficacy of the ResNet model when it pertains to breast cancer identi-
fication on the CBIS-DDSM dataset. The model’s overall accuracy provided a general measure of its ability to
correctly classify mammograms into normal and abnormal cases, reflecting a solid foundation in capturing the
dataset’s inherent patterns

The model’s predictions were broken down into true positives, true negatives, false positives, and false
negatives in the confusion matrix, demonstrating the granularity of the analysis. This indicated particular
instances of misclassification in addition to demonstrating the model’s accuracy in identifying positive and
negative situations. Examining false positives and false negatives at the individual instance level unearthed
patterns and potential sources of error, contributing to a targeted strategy for model refinement. Figure 4.2
depicts an analysis of the proposed technique, which yielded 99.24% accuracy (ACC) of for mass lesions.

The area under the ROC curve (AUC-ROC), shown in Figure 8 depicted the robust discrimination between
positive and negative cases across various classification thresholds. This metric is particularly valuable in
assessing the model’s consistency in assigning higher probabilities to true positive cases than to true negatives,
indicative of its ability to handle imbalanced datasets and prioritize sensitivity.

ResNet is potential enough to identify subtle patterns indicative of breast cancer is enhanced by a larger
dataset, which enables it to learn from a more comprehensive and diverse group of samples. The model’s
capacity to provide accurate predictions on new and unknown data is enhanced by training it on a broad range
of scenarios, which teaches it to extract characteristics that are useful in a variety of circumstances.

ResNet can efficiently learn hierarchical representations of features, ranging from simple edges and textures
to more intricate patterns and structures pertinent to breast disease, by utilizing a deep network structure with
numerous layers. This depth enables the model to incorporate minute characteristics found in mammograms,
including architectural deformities or microcalcifications, which are essential for precisely detecting malignancy.
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Fig. 4.3: AU-ROC cure analysis of the proposed method vs. competitive methods.

The accuracy of the ResNet model in detecting breast cancer on the CBIS-DDSM dataset is demonstrated
by the performance of the Receiver Operating Characteristic (ROC) curve in conjunction with other assessment
criteria. Plotting the true positive rate against the false positive rate across several categorization thresholds,
the ROC curve demonstrated the model’s continuously strong discriminatory performance. This discriminative
capability was further measured using the Area Under the ROC Curve (AUC-ROC), which demonstrated the
model’s capacity to discern between normal and abnormal situations. The robust AUC-ROC score substantiated
the model’s consistent prioritization of true positive cases over false positives, a critical characteristic in medical
scenarios where sensitivity is paramount. The CBIS-DDSM dataset performance evaluation of the ResNet model
showed a stable and flexible system with good accuracy. The model is positioned as a potential tool for breast
cancer diagnosis in medical applications due to its thorough evaluation and quantitative measurements.

The proposed research has the potential to completely transform the way that cancer is identified, making
it easier to use and more convenient than existing diagnostic procedures. In the field of cancer diagnosis
and therapy, the combination of mammography with predictive analysis creates new opportunities for early
identification and intervention, which enhances patient outcomes.

5. Conclusion. Predictive analysis of Full-Field Digital Mammography images using ResNet holds im-
mense promise for the future of cancer screening and diagnosis. ReNet algorithm can learn from large datasets
of labeled Full-Field Digital Mammography images, achieving higher accuracy in distinguishing benign from
malignant lesions compared to traditional methods. This can reduce the need for invasive biopsies and unnec-
essary procedures. By addressing the challenges and ensuring responsible development and implementation,
it allows for earlier identification and better treatment results for cancer patients. This method of diagnosis
has a possibility to safeguard lives. In the context of predictive modeling, ResNet is often used as a predictive
model. It is especially well-known for its performance in image classification tasks, in which the objective is
to anticipate the category or class of a new image. By reducing the impact of the vanishing gradient issue,
residual connections facilitate the training of extremely deep networks. In conclusion, the analytical results
of the ResNet model on the CBIS-DDSM dataset involved a meticulous exploration of quantitative metrics.
This comprehensive approach aimed not only to assess the model’s performance but also to extract actionable
insights, fostering a continuous improvement cycle for its deployment.Deep neural networks, like ResNet mod-
els, are by nature complicated models. It is difficult to comprehend how they make their predictions, which
is significant in clinical settings where choices have an influence on patient care. Although they can improve
interpretability, strategies like Layer-Wise Relevance Propagation (LRP) and attention mechanisms could not
completely meet physicians’ needs in this regard.
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