
S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 107�115. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSNON-DEDICATED DISTRIBUTED ENVIRONMENT: A SOLUTION FOR SAFE ANDCONTINUOUS EXPLOITATION OF IDLE CYCLESR. C. NOVAES∗ , P. ROISENBERG∗ , R. SCHEER∗ , C. NORTHFLEET∗ , J. H. JORNADA∗, AND W. CIRNE†Abstra
t. The Non-Dedi
ated Distributed Environment (NDDE) aims to muster the idle pro
essing power of intera
tive
omputers (workstations or PCs) into a virtual resour
e for parallel appli
ations and grid 
omputing. NDDE is novel in the sensethat it allows for safe and 
ontinuous use of idle 
y
les. Di�erently from existing solutions, NDDE appli
ations run inside avirtual ma
hine rather than on the user environment. Besides safe and 
ontinuous 
y
le exploitation, this approa
h enables NDDEappli
ations to run on an operating system other than that used intera
tively. Our preliminary results suggest that NDDE 
an infa
t harvests most of the idle 
y
les and has almost no impa
t on the intera
tive user.Key words. Grid Computing, Virtual Ma
hines, Idle Cy
les.1. Introdu
tion. Modern desktop 
omputers and workstations have powerful 
omputational 
apabilitiesthat are used primarily to provide short response times to the user's daily a
tivities like word pro
essing,spreadsheet 
al
ulations or web page rendering. Most of the time, however, this pro
essing power is idle,waiting for o

asional user inputs or requests. During this unused periods that 
an range from fra
tions of ase
ond (e.g. between user keystrokes) to hours, the operating system normally exe
utes an "idle" pro
ess, whi
his a dummy pro
ess with the lowest priority on the system, so it runs only when there is no other pro
ess orservi
e needing to be exe
uted. The pro
essing 
apa
ity used to run this idle pro
ess is in fa
t being wasted.The Non-Dedi
ated Distributed Environment (NDDE) aims to potentially use all of this fragmented idletime from most or all the ma
hines 
onne
ted to a network. This will 
reate a very low 
ost virtual resour
ewith only minimal interferen
e on the normal operation of the intera
tive users. Su
h a virtual resour
e 
an bedire
tly used to run parallel appli
ation or 
an be a 
omponent of a large 
omputational grid.Of 
ourse, this is not a new idea. Systems like Condor [1℄ and SETI�home [2℄ are 
lassi
 examples ofsu

essful exploitation of idle 
y
les to do useful 
omputation. NDDE di�ers from these in the sense that itallows for safe and 
ontinuous use of idle 
y
les. It is safe be
ause it is mu
h harder for a mali
ious guestappli
ation to tamper with user data and environment. It is 
ontinuous be
ause it avoids the �intera
tive versusidle� resour
es di
hotomy. That is, NDDE enables both environments to run 
on
urrently so the workstationdoes not need to be totally idling to make its resour
es available. It 
an exploit idle resour
es in a mu
h �nergrain.Safe and 
ontinuous idle exploitation is possible be
ause NDDE appli
ations run inside a virtual ma
hinerather than on the user environment. Note that, additionally, this approa
h enables NDDE appli
ations to runon operating system other than that used intera
tively.We have 
ondu
ted some initial experiments to (i) gauge how mu
h of the idle 
y
les NDDE 
an in fa
tdeliver for a parallel or grid appli
ation, and (ii) measure its impa
t on the intera
tive users. In a nutshell,NDDE 
an in fa
t harvests most of the idle 
y
les and has almost no impa
t on the intera
tive user. However,it displays a noti
eable overhead for I/O intensive appli
ations.The reminder of this paper is organized as follows. The next se
tion surveys the state of the art in exploringidle 
y
les. Then, we introdu
e NDDE, presenting its features and ar
hite
ture. Finally, we give a performan
eoverview of this environment and 
on
lude with an outlook on future work.2. Exploiting Idle Cy
les. The use of many resour
es to ta
kle a single problem dates ba
k (at least)to the 1970's. The 
onventional approa
h sin
e then has been to use dedi
ated platforms for running parallelappli
ations. These platforms are generally assembled as parallel super
omputers (su
h as IBM SP2 and CrayT3E) or dedi
ated Beowulf 
lusters [3℄.On the other hand, there are also appli
ations that 
an use non-dedi
ated resour
es, running opportunis-ti
ally when resour
es are idle. Sin
e non-dedi
ated resour
es are mu
h 
heaper than dedi
ated resour
es,mu
h e�ort has been spent to ease using su
h idle resour
es. Therefore, we have seen in the 1980's the intro-du
tion of systems su
h as Condor, whi
h enabled parallel appli
ations to e�e
tively bene�t from 
y
les that
∗Hewlett-Pa
kard Brazil {reynaldo.novaes, paulo.roisenberg, roque.s
heer, 
aio.north�eet, joao.jornada}�hp.
om.
†Federal University of Campina Grande. walfredo�ds
.uf
g.edu.br.107



108 R. C. Novaes, P. Roisenberg, R. S
heer, C. North�eet, J. H. Jornada and W. Cirnewould otherwise be wasted. More re
ently, SETI�home showed that this approa
h 
ould s
ale up to planetaryproportions.However, in traditional idle harvesting systems as 
an be seen in Condor and SETI�home, the guest parallelappli
ation runs in the user environment (i.e., as a pro
ess in the user operating system). This 
reates a se
urity
on
ern. Sin
e the parallel appli
ation runs as a normal pro
ess inside the user's environment, it may be ableto exploit some se
urity brea
hes and 
ause damage. There are two possible solutions for this problem. The�rst is to exe
ute the guest appli
ation in an emulated platform, like Java. The se
ond is to reboot the ma
hineand run a 
ompletely independent operating system from where the guest appli
ation has no a

ess to the userenvironment.Systems like HP's I-Cluster [4℄ and vCluster [5℄ implement a solution based on reboot motivated by se
urity
on
erns. These systems, upon dete
ting that there is no user a
tivity, reboot the ma
hine, entering in adi�erent, separated operating system, in whi
h the guest appli
ation runs. This approa
h requires a separatedpartition to hold the parallel environment and it addresses the se
urity 
on
erns providing a separated operatingsystem and �le system, preserving user data. As an extra advantage, the parallel appli
ation 
an run on anoperating system di�erent from the one that serves the intera
tive user. For example, in I-Cluster and vCluster,Windows 
aters for intera
tive users, while parallel appli
ations run on Linux.One drawba
k of this approa
h is that it requires a reboot to swit
h between the two operating systemsand this operation has an impa
t on the intera
tive user. This is be
ause swit
hing between operating systemsis not instantaneous. It takes tens of se
onds, in the best 
ase. In order to minimize su
h an impa
t, I-Clusterand vCluster keep tra
k of the usage of the ma
hine to try to predi
t when the intera
tive user will need itagain. This predi
tion is used to avoid rebooting the ma
hine into 
luster mode when the user is expe
ted togo in a
tivity soon, as well as to reboot ba
k into intera
tive mode in anti
ipation of the user's need. Of 
ourse,any user a
tivity also prompts the swit
h ba
k to the intera
tive operating system.Other systems, whi
h run guest appli
ations 
on
urrently with lo
al user appli
ations like SETI�home, usea di�erent approa
h for harvesting idle 
y
les. They monitor user a
tivity using operating system features, likea s
reensaver.However, no matter whi
h approa
h the system uses, it will always try to minimize the impa
t in the inter-a
tive user. Therefore, the predi
tion of the user idleness is 
ru
ial for swit
hing and 
on
urrent approa
hes. Ina perfe
t world, the user should not noti
e the exploitation of idle 
y
les. An issue that 
ompli
ates matters isthat sometimes the user is not intera
ting with the ma
hine but she is waiting for a task to be 
ompleted, likea download. This means that idleness dete
tion me
hanism must monitor many of the system's parameters to
orre
tly dete
t user a
tivity.Unfortunately, the above approa
hes impose a limit on how many idle 
y
les one 
an harvest. First, foridleness predi
tion based systems, idle 
y
les will be really wasted be
ause in order to 
ause minimal impa
t onthe user, the system has to be somewhat 
onservative, keeping the system in intera
tive mode. Se
ondly, fors
reensaver-based systems, the user might be intera
ting with the 
omputer, but using only a small fra
tion ofits pro
essing power (e.g., when the user is typing text) but the system will be seen as a
tive. In both 
asesidle 
y
les will be being wasted.In short, using the s
reensaver or rebooting the ma
hine to safely exploit idle 
y
les seems to be e�e
tivewhen there are big 
hunks of idle time. Su
h s
hemes are not e�e
tive at harvesting fragmented idle time.The NDDE addresses these problems. It allows for the safe exploitation of idle 
y
les, just as I-Cluster andvCluster, but is also able to harvest fragmented idle time, unlike I-Cluster and vCluster. Another feature thatdistinguishes our approa
h from the implementations listed above is that, being based on a virtual ma
hine, it
an provide a more homogenous exe
ution environment.3. NDDE. The NDDE is part of a group of proje
ts hosted by HP Brazil that aim to provide simplesolutions for exploiting unused 
omputational resour
es for grid or 
luster usage. The target resear
h subje
ts arenon-dedi
ated 
omputers in 
orporations and edu
ational institutions. This resear
h in
ludes the developmentof environment swit
hing pro
esses using reboot or in 
on
urrent mode, like the solution presented here.NDDE improves upon original I-Cluster and vCluster proje
ts. It presents a di�erent approa
h to exploreidle time, based on the premise that there are unused 
y
les even when the user is intera
ting with the 
omputer.The NDDE implements a virtual ma
hine inside the user's system, running a separated operating system thathas its own address spa
e and �le system. The parallel appli
ations run 
on
urrently with the user's appli
ations.Although the 
ore of this idea (grid 
omputing using virtual ma
hines) is not new, as we 
an see in paper of



Non-dedi
ated Distributed Environment 109Figueiredo et al. [6℄, our 
ontribution is that we propose to in
rease the availability of a non-dedi
ated ma
hineto the grid or 
luster using as many idle 
y
le as possible, with minor impa
t on the intera
tive user's a
tivities.Using this approa
h the system does not require any spe
ial a
tion, like rebooting, to be
ome an a
tive
luster resour
e. The guest operating system runs in a user-mode virtual ma
hine, whi
h has restri
ted a

essto user's system resour
es, thus parallel appli
ations 
an be safely exe
uted. In order to isolate the user'senvironment, the virtual ma
hine 
an only a

ess data inside its �le system that is entirely 
ontained inside asingle �le on user's ma
hine. The main advantages on this approa
h are:1. The guest environment is isolated from the user environment. The appli
ations running on the guestOS have their own address and storage spa
e and the a

ess to system resour
e is made through asoftware layer provided by the virtual ma
hine.2. There is no noti
eable swit
hing time between the two di�erent environments (user and parallel).3. There is no instru
tion set 
onversion, only system 
alls 
onversion. So the overhead for CPU intensiveappli
ations is minimum.4. The user does not need to be aware about exploitation of idle 
y
les. The only requirement may bethat the user should leave the ma
hine always turned on.5. It in
reases the availability of the node to be exploited as a 
luster resour
e. Any idle time, no matterhow small it is, 
an be used to perform 
luster tasks.Fig. 3.1 shows the basi
 ar
hite
ture model for the solution. The virtual ma
hine a
ts like a native ap-pli
ation and runs 
on
urrently with other appli
ations on the user's ma
hine. The virtual ma
hine 
an beimplemented using open sour
e tools like Plex86 [7℄ or 
ommer
ial produ
ts like VMware [8℄. Another optionis to use User-Mode Linux for Windows (Umlwin32) [9℄, but it la
ks the se
urity o�ered by the virtual ma
hineimplementations. In all 
ases, the user ma
hine's resour
es are shared between the native appli
ations and thevirtual ma
hine.The virtual ma
hine runs its own instan
e of an operating system, 
alled 'guest system', that provides a

essto the virtual ma
hine's emulated storage spa
e and 
ontrols the use of other resour
es like virtual memory spa
eand network a

ess. All parallel appli
ation a

esses to system resour
es are made through the Host SystemCall 
onverter, whi
h 
onverts the virtual ma
hine system 
alls to equivalent host operating system 
alls. CPUintensive appli
ations (the typi
al appli
ation on parallel environments) run near native ma
hine speed sin
ethere is no ma
hine instru
tion emulation. The parallel appli
ations are loaded in the virtual ma
hine addressspa
e and feel as if they are on a dedi
ated ma
hine. Note also that parallel appli
ations 
ompatible with theguest operating system do not need to be 
hanged or re
ompiled to run on this environment.To improve the se
urity, we 
ould also restri
t or 
ompletely eliminate the virtual ma
hine's ability toa

ess the network. A trusted appli
ation on the host OS would be responsible for transferring 
ode and datain and out from the guest �le system. This solution is very similar to Entropia [10℄ that o�ers a "sandboxed"environment for safe task exe
ution.
Host System resources


Guest System kernel


Host System call converter


Guest

Application 1


Guest

Application 2


Guest

Application n


...


Guest file system


Native applications


Virtual Machine


Fig. 3.1. NDDE basi
 ar
hite
tureTo not interfere with the regular users of the 
omputers, the virtual ma
hines will be made to run as thepro
ess with one of the lowest priorities on the system, having only slightly higher priority than the operatingsystem's own �idle� pro
ess. This way the virtual ma
hine will be exe
uted by the operating system onlywhen there is no other pro
ess or servi
e able to run, but will be 
hosen to be run by the operating system



110 R. C. Novaes, P. Roisenberg, R. S
heer, C. North�eet, J. H. Jornada and W. Cirneinstead of the operating system's own �idle� pro
ess. When there are regular appli
ations running, the NDDEenvironment, 
omposed by the virtual ma
hine and its own appli
ations, will be automati
ally preempted andmaintained by the host operating system in a �ready-to-run� state, so it 
an 
ontinue to run as soon as there isno regular pro
esses or servi
es running.4. Performan
e Evaluation. In order to verify the usability of the NDDE two sets of tests were per-formed. The �rst one gauges the performan
e an appli
ation 
an attain via NDDE. The se
ond one measuresthe impa
t on the regular intera
tive usage of the ma
hine.4.1. Ben
hmark Environment. The test environment 
onsisted of a pair of HP e-PC 42, a Pentium 41.7 GHz ma
hine with 256MB of memory. The host operating system was Mi
rosoft Windows 2000 Professional.The guest operating system was Linux Red Hat 8.0 and used OpenSSI version 0.9.6r3 [11℄ as the basi
 parallelpro
essing environment.At the beginning two implementations for running the guest environment were 
onsidered: Umlwin32 andVMware. The VMware was 
hosen due to the UMLWin32's early development stage. In the tests des
ribedhere, the guest operating system runs under VMware Workstation version 3.2.0 
on�gured with 128 MB ofmemory.4.2. Performan
e of Parallel Appli
ations. The tests aim to measure the overall performan
e NDDEmakes available for the guest appli
ations. LLCBen
h, whi
h is a 
ombined set of syntheti
 ben
hmarks, wasused to make these tests. It is the 
ombination of BLASBen
h [12℄, MPBen
h [13℄, and Ca
heBen
h [14℄.MPBen
h is used to measure the 
ommuni
ation performan
e of MPI [15℄. Ca
heBen
h has been 
hosen todetermine the virtual ma
hine's memory subsystem performan
e. Finally, BLASBen
h is used to measure theperforman
e of a CPU-bound appli
ation.In order to evaluate the performan
e impa
t, a baseline test was performed. These tests, referred as 'NativeLinux' in the graphs, use ma
hines exe
uting OpenSSI in native mode, without any emulation.The idea behind these tests was to verify the performan
e penalties imposed by this approa
h, that is, anexe
ution environment running 
on
urrently with a 
ompletely di�erent operating system. For sure these testsare generi
 and only basi
 usability issues are addressed.The following tests were performed: one group of tests for memory a

ess simulation, shown in Fig. 4.1,Fig. 4.2 and Fig. 4.3, one test for simulating CPU intensive appli
ations, shown in Fig. 4.4 and, �nally, a testregarding the network bandwidth, shown in Fig. 4.5.These graphs show the average results of ea
h test after several runs.The Fig. 4.1, Fig. 4.2 and Fig. 4.3 show that VMware has some in�uen
e on 
a
he operation that is almost
onstant for all 
a
he size. We spe
ulate that this performan
e loss is probably due to page fault handling inthe virtual ma
hine but further investigation is required to 
on�rm this theory.The BLAS performan
e test, shown in Fig. 4.4, also shows that VMware adds little overhead to the guestenvironment for CPU intensive appli
ations.The Fig. 4.5 shows that the network operations su�er noti
eable losses imposed by the I/O hardwareemulation implemented by virtual ma
hine. This happens be
ause the guest appli
ation sees a �double OS� onevery a

ess to network devi
es, that needs to be handled �rst by the guest OS and later again by the host OS.The same situation happens for all �le a

ess, as des
ribed by Sugerman et al. [16℄.These tests show that the virtual ma
hine solution is best suited for CPU-intensive appli
ations but maynot be suited for network or I/O intensive tasks.4.3. Impa
t on the User. In order to evaluate the impa
t of NDDE on normal intera
tive usage, weele
ted editing a huge �le with Mi
rosoft Word 2000 as ar
hetypi
al representative of a ma
hine's intera
tiveusage. This huge �le had 151MB in size, with 2,623,919 words in 14,211 pages. Considering that we were usinga ma
hine with 256 MB of memory and VMware was 
on�gured to emulate a ma
hine with 128 MB of memory,this �le size (151 MB) is expe
ted to 
ause Mi
rosoft Word Pro
essor to generate some swapping a
tivity.In the guest operating system, two test appli
ations were developed. One is a CPU 
onsuming appli
ation,whi
h exe
utes a 
ontinuous loop. The other appli
ation is both CPU and memory 
onsuming. This appli
ationallo
ates 100 MB and exe
utes a 
ontinuous loop tou
hing every page by 
hanging the 
ontents of a few byteson ea
h of them to for
e the pages to be marked as dirty. So, the guest operating system needs to save their
ontents to the swap �le in 
ase it needs to release pages to make room for user appli
ations.The tests were grouped in four distin
t s
enarios:



Non-dedi
ated Distributed Environment 111

435

440

445

450

455

460

465

470

475

480

256 512 1024 2048 4096 8192 16384 32768 65536 131072

M
B

/S
ec

Vector Length in Bytes

Native Linux
Linux on VMware

Fig. 4.1. Ca
heBen
h Read Performan
e1. A baseline ma
hine just with the user appli
ation (Mi
rosoft Word 2000 editing the 151 MB �le)2. A ma
hine with the same user appli
ation and just the guest operating system exe
uting in VMware(no appli
ation exe
uting on it)3. Same as s
enario 2, but exe
uting a CPU bound appli
ation in the virtual ma
hine4. Same as s
enario 2, but exe
uting a CPU and memory bound appli
ation in the virtual ma
hineIn ea
h s
enario, four operations were exe
uted:1. Starting of the appli
ation (Mi
rosoft Word) and huge do
ument load2. Go to the end of the do
ument3. Sele
t the �statisti
s� tab option in do
ument properties4. Repla
e a 
hara
ter at the end of do
ument and measuring the time to save itThe 
ompletion time for ea
h operation was measured, a

ording to Table 4.1.Table 4.1Average resulting time (min:se
)Baseline VMware only CPU bound CPU + memory boundLoad 0:39 0:41 0:41 0:48Go to end 5:47 5:56 5:57 6:02Properties 4:18 4:25 4:26 4:26Save 3:00 3:10 3:12 3:26The results shown in Table 4.1 are the mean value of several exe
utions. There is only minor impa
t on theregular user operation for most s
enarios, and even the impa
t of the 
on
urren
y for memory was a

eptablein this test. Considering the gain of allowing the ma
hine to a
t as a 
luster node 
on
urrently with normalma
hine operation, the impa
t on the regular user side seems to be a

eptable.It is interesting to point out that literature reports 
ases where the 
ompetition for memory introdu
ed byguest appli
ation 
ause serious problems for the intera
tive use of the ma
hine [17℄. This would o

ur whenthe intera
tive appli
ations are sleeping and thus 
an get swapped out to disk when the guest appli
ation needsto allo
ate more memory. We 
ould not reprodu
e su
h a behavior. We 
onje
ture that this is due to the



112 R. C. Novaes, P. Roisenberg, R. S
heer, C. North�eet, J. H. Jornada and W. Cirne

1600

1700

1800

1900

2000

2100

2200

2300

256 512 1024 2048 4096 8192 16384 32768 65536 131072

M
B

/S
ec

Vector Length in Bytes

Native Linux
Linux on VMware

Fig. 4.2. Ca
heBen
h Write Performan
e

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

256 512 1024 2048 4096 8192 16384 32768 65536 131072

M
B

/S
ec

Vector Lenght in Bytes

Native Linux
Linux on VMware

Fig. 4.3. Ca
heBen
h Read/Modify/Write Performan
e



Non-dedi
ated Distributed Environment 113

0

100

200

300

400

500

600

700

800

2 4 8 16 32 64 128

M
flo

ps
/S

ec

Problem Size

Native Linux
Linux on VMware

Fig. 4.4. BLASBen
h Performan
efa
t VMware's memory was limited to 128 MB. In previous experiments reported in the literature, the guestappli
ations had no expli
it memory limit.5. Con
lusions. In this arti
le we des
ribed NDDE, an alternative way to explore the idle time of in-tera
tive 
omputers, turning a set of su
h 
omputers into a virtual resour
e for parallel appli
ations and grid
omputing. NDDE is novel be
ause it allows for safe and 
ontinuous use of idle 
y
les. It is safe in the sensethat it is mu
h harder for a mali
ious guest appli
ation to tamper with user data and environment. It is 
ontin-uous be
ause it 
an also harvest fragmented idle time. Moreover, sin
e NDDE appli
ations run inside a virtualma
hine rather than on the user environment, this approa
h enables NDDE appli
ations to run on an operatingsystem other than that used intera
tively.An analysis was 
arried out to establish the performan
e of appli
ations that run on NDDE. The resultsshow that NDDE is best indi
ated when the parallel appli
ations are 
omputationally intensive. Appli
ationsthat are I/O-intensive may be impa
ted by the intrinsi
 limitations of the implementation of virtual ma
hines.The impa
t on the normal usage of the ma
hine was also measured. The me
hanism of using low priority onthe virtual ma
hine keeps the impa
t on the user to a minimum.The next steps in this work will be going in three dire
tions. First, we intend to evaluate NDDE morethoroughly, re�ning it where ne
essary. This in
ludes (i) further investigating the apparentresilien
e of NDDE to memory 
ompetition with the host appli
ations, (ii) evaluation of the per
entageof idle time that is available to be harvested on a typi
al enterprise or a
ademi
 network, and (iii) redu
e theoverhead for parallel appli
ations that are heavily based on internode 
ommuni
ations. Some real world datais being 
olle
ted in order to 
ompare the total of 
y
les harvested in this solution with a s
reensaver-based orreboot-based solution.One relevant result in this work is the performan
e loss observed in network-bounded appli
ations. Thisissue motivates us to perform some measurements to determine the appli
ation granularity that the guestappli
ation should have to make the transferen
e times be a

eptable.All the investigation topi
s des
ribed above will help us to see if this solution is pro�table when 
omparedto dedi
ated and swit
hed environments. Se
ond, it might be worthwhile to 
ombine NDDE's and I-Cluster'sapproa
h into a hybrid s
heme. For example, most ma
hines are totally idle during the night. We 
ould thus



114 R. C. Novaes, P. Roisenberg, R. S
heer, C. North�eet, J. H. Jornada and W. Cirne

0

100

200

300

400

500

600

700

800

2 4 8 16 32 64 128

M
flo

ps
/S

ec

Problem Size

Native Linux
Linux on VMware

Fig. 4.5. MPBen
h Bandwidththink of using I-Cluster during the night and NDDE during the day. Third, we intend to explore NDDE as asandboxing platform for MyGrid [18℄, enabling grid appli
ations that 
ross administrative boundaries. Note thatsu
h grid appli
ations raise espe
ially serious se
urity issues, making the use of NDDE te
hnology parti
ularlyrelevant.A
knowledgements. The authors wish to express their sin
ere thanks to the AGridM'03 reviewers fortheir insightful 
omments. REFERENCES[1℄ M. Litzkow, M. Livny and M. Mutka, A Hunter of Idle Workstations, Pro
eedings of the 8th International Conferen
eof Distributed Computing Systems, pp. 104�111, June 1988.[2℄ D. Anderson, J. Cobb and E. Korpela, SETI�home: An Experiment in Publi
-Resour
e Computing, Communi
ationof the ACM, vol. 45, no. 11, pp. 56�61, November 2002.[3℄ D. Ridge, D. Be
ker, P. Merkey and T. Sterling, Beowulf: Harnessing the Power of Parallelism in a Pile-of-PCs,Pro
eedings of IEEE Aerospa
e, 1997.[4℄ B. Ri
hard and P. Augerat, I-Cluster: Intense 
omputing with untapped resour
es, MPCS'02, Is
hia, Italy, April 2002.[5℄ C. A. F. De Rose, F. Blan
o, N. Maillard, K. Saikoski, R. Novaes and B. Ri
hard, The virtual 
luster: a dynami
environment for exploitation of idle network resour
es, Pro
eedings of 14th Symposium on Computer Ar
hite
ture andHigh Performan
e Computing (SBAC-PAD'2002), pp. 141�148, Vitï¿½ia, ES, Brazil, 2002.[6℄ R. J. Figueiredo, P. A. Dinda and J. A. B. Fortes, A Case for Grid Computing on Virtual Ma
hines, Pro
eedings ofInternational Conferen
e on Distributed Computing Systems (ICDCS), April 2003.[7℄ K. Lawton, The new Plex86 x86 Virtual Ma
hine Proje
t, WWW, August 2003. http://plex86.sour
eforge.net/.[8℄ VMware, VMware Workstation - Powerful Virtual Ma
hine Software for the Te
hni
al Professional , WWW, April 2003.http://www.vmware.
om/pdf/ws_spe
s.pdf.[9℄ C. Kudige, Umlwin32 , WWW, Mar
h 2003. http://umlwin32.sour
eforge.net/.[10℄ A. A. Chien, B. Calder and S. Elbert, Entropia: Ar
hite
ture and Performan
e of an Enterprise Desktop Grid System,Journal of Parallel Distributed Computing, vol. 63, no. 5, pp. 597�610, May 2003.[11℄ B. J. Walker, OpenSSI Linux Cluster Proje
t, WWW, April 2003. http://openssi.org/ssi-intro.pdf.[12℄ National S
ien
e Foundation, BLAS (Basi
 Linear Algebra Subprograms), WWW, Mar
h 2003.http://www.netlib.org/blas/.[13℄ P. J. Mu

i, K. London and J. Thurman, The MPBen
h Report, November 1998. WWW, Mar
h 2003.http://i
l.
s.utk.edu/proje
ts/ll
ben
h/mpben
h.pdf.



Non-dedi
ated Distributed Environment 115[14℄ P. J. Mu

i, K. London and J. Thurman, The Ca
heBen
h Report, November 1998. WWW, Mar
h 2003.http://i
l.
s.utk.edu/proje
ts/ll
ben
h/
a
heben
h.pdf.[15℄ Message Passing Interfa
e Forum, MPI: A Message Passing Interfa
e Standard , May 1994.[16℄ J. Sugerman, G. Venkita
halam and B. Lim, Virtualizing I/O Devi
es on VMware Workstation's Hosted Virtual Ma
hineMonitor , Pro
eedings of the USENIX Annual Te
hni
al Conferen
e, June 2001.[17℄ T. E. Anderson, D. E. Culler, D. A. Patterson and the NOW Team, A Case for Networks of Workstations: NOW,IEEE Mi
ro, February 1995.[18℄ W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauvï¿½ F. A. Barbosa da Silva,C. Osthoff Barros and C. Silveira, Running Bag-of-Tasks Appli
ations on Computational Grids: The MyGridApproa
h, Pro
eedings of the ICCP'2003 - International Conferen
e on Parallel Pro
essing, WWW, O
tober 2003.http://walfredo.ds
.ufpb.br/resume.html#publi
ations.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 9, 2003.A

epted: September 1, 2003.


