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NON-DEDICATED DISTRIBUTED ENVIRONMENT: A SOLUTION FOR SAFE AND
CONTINUOUS EXPLOITATION OF IDLE CYCLES

R. C. NOVAES* , P. ROISENBERG* , R. SCHEER* , C. NORTHFLEET* , J. H. JORNADA* AND W. CIRNEf

Abstract. The Non-Dedicated Distributed Environment (NDDE) aims to muster the idle processing power of interactive
computers (workstations or PCs) into a virtual resource for parallel applications and grid computing. NDDE is novel in the sense
that it allows for safe and continuous use of idle cycles. Differently from existing solutions, NDDE applications run inside a
virtual machine rather than on the user environment. Besides safe and continuous cycle exploitation, this approach enables NDDE
applications to run on an operating system other than that used interactively. Our preliminary results suggest that NDDE can in
fact harvests most of the idle cycles and has almost no impact on the interactive user.
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1. Introduction. Modern desktop computers and workstations have powerful computational capabilities
that are used primarily to provide short response times to the user’s daily activities like word processing,
spreadsheet calculations or web page rendering. Most of the time, however, this processing power is idle,
waiting for occasional user inputs or requests. During this unused periods that can range from fractions of a
second (e.g. between user keystrokes) to hours, the operating system normally executes an "idle" process, which
is a dummy process with the lowest priority on the system, so it runs only when there is no other process or
service needing to be executed. The processing capacity used to run this idle process is in fact being wasted.

The Non-Dedicated Distributed Environment (NDDE) aims to potentially use all of this fragmented idle
time from most or all the machines connected to a network. This will create a very low cost virtual resource
with only minimal interference on the normal operation of the interactive users. Such a virtual resource can be
directly used to run parallel application or can be a component of a large computational grid.

Of course, this is not a new idea. Systems like Condor [1] and SETI@home [2] are classic examples of
successful exploitation of idle cycles to do useful computation. NDDE differs from these in the sense that it
allows for safe and continuous use of idle cycles. It is safe because it is much harder for a malicious guest
application to tamper with user data and environment. It is continuous because it avoids the “interactive versus
idle” resources dichotomy. That is, NDDE enables both environments to run concurrently so the workstation
does not need to be totally idling to make its resources available. It can exploit idle resources in a much finer
grain.

Safe and continuous idle exploitation is possible because NDDE applications run inside a virtual machine
rather than on the user environment. Note that, additionally, this approach enables NDDE applications to run
on operating system other than that used interactively.

We have conducted some initial experiments to (i) gauge how much of the idle cycles NDDE can in fact
deliver for a parallel or grid application, and (ii) measure its impact on the interactive users. In a nutshell,
NDDE can in fact harvests most of the idle cycles and has almost no impact on the interactive user. However,
it displays a noticeable overhead for I/O intensive applications.

The reminder of this paper is organized as follows. The next section surveys the state of the art in exploring
idle cycles. Then, we introduce NDDE, presenting its features and architecture. Finally, we give a performance
overview of this environment and conclude with an outlook on future work.

2. Exploiting Idle Cycles. The use of many resources to tackle a single problem dates back (at least)
to the 1970’s. The conventional approach since then has been to use dedicated platforms for running parallel
applications. These platforms are generally assembled as parallel supercomputers (such as IBM SP2 and Cray
T3E) or dedicated Beowulf clusters [3].

On the other hand, there are also applications that can use non-dedicated resources, running opportunis-
tically when resources are idle. Since non-dedicated resources are much cheaper than dedicated resources,
much effort has been spent to ease using such idle resources. Therefore, we have seen in the 1980’s the intro-
duction of systems such as Condor, which enabled parallel applications to effectively benefit from cycles that
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would otherwise be wasted. More recently, SETI@home showed that this approach could scale up to planetary
proportions.

However, in traditional idle harvesting systems as can be seen in Condor and SETI@home, the guest parallel
application runs in the user environment (i.e., as a process in the user operating system). This creates a security
concern. Since the parallel application runs as a normal process inside the user’s environment, it may be able
to exploit some security breaches and cause damage. There are two possible solutions for this problem. The
first is to execute the guest application in an emulated platform, like Java. The second is to reboot the machine
and run a completely independent operating system from where the guest application has no access to the user
environment,.

Systems like HP’s I-Cluster [4] and vCluster [5] implement a solution based on reboot motivated by security
concerns. These systems, upon detecting that there is no user activity, reboot the machine, entering in a
different, separated operating system, in which the guest application runs. This approach requires a separated
partition to hold the parallel environment and it addresses the security concerns providing a separated operating
system and file system, preserving user data. As an extra advantage, the parallel application can run on an
operating system different from the one that serves the interactive user. For example, in I-Cluster and vCluster,
Windows caters for interactive users, while parallel applications run on Linux.

One drawback of this approach is that it requires a reboot to switch between the two operating systems
and this operation has an impact on the interactive user. This is because switching between operating systems
is not instantaneous. It takes tens of seconds, in the best case. In order to minimize such an impact, I-Cluster
and vCluster keep track of the usage of the machine to try to predict when the interactive user will need it
again. This prediction is used to avoid rebooting the machine into cluster mode when the user is expected to
go in activity soon, as well as to reboot back into interactive mode in anticipation of the user’s need. Of course,
any user activity also prompts the switch back to the interactive operating system.

Other systems, which run guest applications concurrently with local user applications like SETI@home, use
a different approach for harvesting idle cycles. They monitor user activity using operating system features, like
a screensaver.

However, no matter which approach the system uses, it will always try to minimize the impact in the inter-
active user. Therefore, the prediction of the user idleness is crucial for switching and concurrent approaches. In
a perfect world, the user should not notice the exploitation of idle cycles. An issue that complicates matters is
that sometimes the user is not interacting with the machine but she is waiting for a task to be completed, like
a download. This means that idleness detection mechanism must monitor many of the system’s parameters to
correctly detect user activity.

Unfortunately, the above approaches impose a limit on how many idle cycles one can harvest. First, for
idleness prediction based systems, idle cycles will be really wasted because in order to cause minimal impact on
the user, the system has to be somewhat conservative, keeping the system in interactive mode. Secondly, for
screensaver-based systems, the user might be interacting with the computer, but using only a small fraction of
its processing power (e.g., when the user is typing text) but the system will be seen as active. In both cases
idle cycles will be being wasted.

In short, using the screensaver or rebooting the machine to safely exploit idle cycles seems to be effective
when there are big chunks of idle time. Such schemes are not effective at harvesting fragmented idle time.

The NDDE addresses these problems. It allows for the safe exploitation of idle cycles, just as I-Cluster and
vCluster, but is also able to harvest fragmented idle time, unlike I-Cluster and vCluster. Another feature that
distinguishes our approach from the implementations listed above is that, being based on a virtual machine, it
can provide a more homogenous execution environment.

3. NDDE. The NDDE is part of a group of projects hosted by HP Brazil that aim to provide simple
solutions for exploiting unused computational resources for grid or cluster usage. The target research subjects are
non-dedicated computers in corporations and educational institutions. This research includes the development
of environment switching processes using reboot or in concurrent mode, like the solution presented here.

NDDE improves upon original I-Cluster and vCluster projects. It presents a different approach to explore
idle time, based on the premise that there are unused cycles even when the user is interacting with the computer.
The NDDE implements a virtual machine inside the user’s system, running a separated operating system that
has its own address space and file system. The parallel applications run concurrently with the user’s applications.
Although the core of this idea (grid computing using virtual machines) is not new, as we can see in paper of
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Figueiredo et al. [6], our contribution is that we propose to increase the availability of a non-dedicated machine
to the grid or cluster using as many idle cycle as possible, with minor impact on the interactive user’s activities.
Using this approach the system does not require any special action, like rebooting, to become an active
cluster resource. The guest operating system runs in a user-mode virtual machine, which has restricted access
to user’s system resources, thus parallel applications can be safely executed. In order to isolate the user’s
environment, the virtual machine can only access data inside its file system that is entirely contained inside a
single file on user’s machine. The main advantages on this approach are:
1. The guest environment is isolated from the user environment. The applications running on the guest
OS have their own address and storage space and the access to system resource is made through a
software layer provided by the virtual machine.
2. There is no noticeable switching time between the two different environments (user and parallel).
3. There is no instruction set conversion, only system calls conversion. So the overhead for CPU intensive
applications is minimum.
4. The user does not need to be aware about exploitation of idle cycles. The only requirement may be
that the user should leave the machine always turned on.
5. It increases the availability of the node to be exploited as a cluster resource. Any idle time, no matter
how small it is, can be used to perform cluster tasks.

Fig. 3.1 shows the basic architecture model for the solution. The virtual machine acts like a native ap-
plication and runs concurrently with other applications on the user’s machine. The virtual machine can be
implemented using open source tools like Plex86 [7] or commercial products like VMware [8]. Another option
is to use User-Mode Linux for Windows (Umlwin32) [9], but it lacks the security offered by the virtual machine
implementations. In all cases, the user machine’s resources are shared between the native applications and the
virtual machine.

The virtual machine runs its own instance of an operating system, called 'guest system’, that provides access
to the virtual machine’s emulated storage space and controls the use of other resources like virtual memory space
and network access. All parallel application accesses to system resources are made through the Host System
Call converter, which converts the virtual machine system calls to equivalent host operating system calls. CPU
intensive applications (the typical application on parallel environments) run near native machine speed since
there is no machine instruction emulation. The parallel applications are loaded in the virtual machine address
space and feel as if they are on a dedicated machine. Note also that parallel applications compatible with the
guest operating system do not need to be changed or recompiled to run on this environment.

To improve the security, we could also restrict or completely eliminate the virtual machine’s ability to
access the network. A trusted application on the host OS would be responsible for transferring code and data
in and out from the guest file system. This solution is very similar to Entropia [10] that offers a "sandboxed"
environment for safe task execution.

Virtual Machine

Guest Guest Guest
Application 1 Application 2 Application n
Guest System kernel Native applications

Host System call converter

Guest file system Host System resources

Fia. 3.1. NDDEFE basic architecture

To not interfere with the regular users of the computers, the virtual machines will be made to run as the
process with one of the lowest priorities on the system, having only slightly higher priority than the operating
system’s own “idle” process. This way the virtual machine will be executed by the operating system only
when there is no other process or service able to run, but will be chosen to be run by the operating system
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instead of the operating system’s own “idle” process. When there are regular applications running, the NDDE
environment, composed by the virtual machine and its own applications, will be automatically preempted and
maintained by the host operating system in a “ready-to-run” state, so it can continue to run as soon as there is
no regular processes or services running.

4. Performance Evaluation. In order to verify the usability of the NDDE two sets of tests were per-
formed. The first one gauges the performance an application can attain via NDDE. The second one measures
the impact on the regular interactive usage of the machine.

4.1. Benchmark Environment. The test environment consisted of a pair of HP e-PC 42, a Pentium 4
1.7 GHz machine with 256 MB of memory. The host operating system was Microsoft Windows 2000 Professional.
The guest operating system was Linux Red Hat 8.0 and used OpenSSI version 0.9.6r3 [11] as the basic parallel
processing environment.

At the beginning two implementations for running the guest environment were considered: Umlwin32 and
VMware. The VMware was chosen due to the UMLWin32’s early development stage. In the tests described
here, the guest operating system runs under VMware Workstation version 3.2.0 configured with 128 MB of
memory.

4.2. Performance of Parallel Applications. The tests aim to measure the overall performance NDDE
makes available for the guest applications. LLCBench, which is a combined set of synthetic benchmarks, was
used to make these tests. It is the combination of BLASBench [12], MPBench [13]|, and CacheBench [14].
MPBench is used to measure the communication performance of MPI [15]. CacheBench has been chosen to
determine the virtual machine’s memory subsystem performance. Finally, BLASBench is used to measure the
performance of a CPU-bound application.

In order to evaluate the performance impact, a baseline test was performed. These tests, referred as ’Native
Linux’ in the graphs, use machines executing OpenSSI in native mode, without any emulation.

The idea behind these tests was to verify the performance penalties imposed by this approach, that is, an
execution environment running concurrently with a completely different operating system. For sure these tests
are generic and only basic usability issues are addressed.

The following tests were performed: one group of tests for memory access simulation, shown in Fig. 4.1,
Fig. 4.2 and Fig. 4.3, one test for simulating CPU intensive applications, shown in Fig. 4.4 and, finally, a test
regarding the network bandwidth, shown in Fig. 4.5.

These graphs show the average results of each test after several runs.

The Fig. 4.1, Fig. 4.2 and Fig. 4.3 show that VMware has some influence on cache operation that is almost
constant for all cache size. We speculate that this performance loss is probably due to page fault handling in
the virtual machine but further investigation is required to confirm this theory.

The BLAS performance test, shown in Fig. 4.4, also shows that VMware adds little overhead to the guest
environment for CPU intensive applications.

The Fig. 4.5 shows that the network operations suffer noticeable losses imposed by the 1/O hardware
emulation implemented by virtual machine. This happens because the guest application sees a “double OS” on
every access to network devices, that needs to be handled first by the guest OS and later again by the host OS.
The same situation happens for all file access, as described by Sugerman et al. [16].

These tests show that the virtual machine solution is best suited for CPU-intensive applications but may
not be suited for network or I/0 intensive tasks.

4.3. Impact on the User. In order to evaluate the impact of NDDE on normal interactive usage, we
elected editing a huge file with Microsoft Word 2000 as archetypical representative of a machine’s interactive
usage. This huge file had 151MB in size, with 2,623,919 words in 14,211 pages. Considering that we were using
a machine with 256 MB of memory and VMware was configured to emulate a machine with 128 MB of memory,
this file size (151 MB) is expected to cause Microsoft Word Processor to generate some swapping activity.

In the guest operating system, two test applications were developed. One is a CPU consuming application,
which executes a continuous loop. The other application is both CPU and memory consuming. This application
allocates 100 MB and executes a continuous loop touching every page by changing the contents of a few bytes
on each of them to force the pages to be marked as dirty. So, the guest operating system needs to save their
contents to the swap file in case it needs to release pages to make room for user applications.

The tests were grouped in four distinct scenarios:



480

Non-dedicated Distributed Environment 111

475

465

460

MB/Sec

455

450

445

440

435

T T
Native Linux —+—
Linux on VMware ---x---

256

—_

1024 2048 4096

8192

Vector Length in Bytes

16384 32768 65536 131072

Fic. 4.1. CacheBench Read Performance

. A baseline machine just with the user application (Microsoft Word 2000 editing the 151 MB file)

2. A machine with the same user application and just the guest operating system executing in VMware
(no application executing on it)
3. Same as scenario 2, but executing a CPU bound application in the virtual machine
4. Same as scenario 2, but executing a CPU and memory bound application in the virtual machine
In each scenario, four operations were executed:
1. Starting of the application (Microsoft Word) and huge document load
2. Go to the end of the document
3. Select the “statistics” tab option in document properties
4. Replace a character at the end of document and measuring the time to save it
The completion time for each operation was measured, according to Table 4.1.

TABLE 4.1
Average resulting time (min:sec)

Baseline | VMware only | CPU bound | CPU + memory bound
Load 0:39 0:41 0:41 0:48
Go to end 5:47 5:56 5:57 6:02
Properties 4:18 4:25 4:26 4:26
Save 3:00 3:10 3:12 3:26

The results shown in Table 4.1 are the mean value of several executions. There is only minor impact on the
regular user operation for most scenarios, and even the impact of the concurrency for memory was acceptable
in this test. Considering the gain of allowing the machine to act as a cluster node concurrently with normal
machine operation, the impact on the regular user side seems to be acceptable.

It is interesting to point out that literature reports cases where the competition for memory introduced by
guest application cause serious problems for the interactive use of the machine [17]. This would occur when
the interactive applications are sleeping and thus can get swapped out to disk when the guest application needs
to allocate more memory. We could not reproduce such a behavior. We conjecture that this is due to the
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fact VMware’s memory was limited to 128 MB. In previous experiments reported in the literature, the guest
applications had no explicit memory limit.

5. Conclusions. In this article we described NDDE, an alternative way to explore the idle time of in-
teractive computers, turning a set of such computers into a virtual resource for parallel applications and grid
computing. NDDE is novel because it allows for safe and continuous use of idle cycles. It is safe in the sense
that it is much harder for a malicious guest application to tamper with user data and environment. It is contin-
uous because it can also harvest fragmented idle time. Moreover, since NDDE applications run inside a virtual
machine rather than on the user environment, this approach enables NDDE applications to run on an operating
system other than that used interactively.

An analysis was carried out to establish the performance of applications that run on NDDE. The results
show that NDDE is best indicated when the parallel applications are computationally intensive. Applications
that are I/O-intensive may be impacted by the intrinsic limitations of the implementation of virtual machines.
The impact on the normal usage of the machine was also measured. The mechanism of using low priority on
the virtual machine keeps the impact on the user to a minimum.

The next steps in this work will be going in three directions. First, we intend to evaluate NDDE more
thoroughly, refining it where necessary. This includes (i) further investigating the apparent

resilience of NDDE to memory competition with the host applications, (ii) evaluation of the percentage
of idle time that is available to be harvested on a typical enterprise or academic network, and (iii) reduce the
overhead for parallel applications that are heavily based on internode communications. Some real world data
is being collected in order to compare the total of cycles harvested in this solution with a screensaver-based or
reboot-based solution.

One relevant result in this work is the performance loss observed in network-bounded applications. This
issue motivates us to perform some measurements to determine the application granularity that the guest
application should have to make the transference times be acceptable.

All the investigation topics described above will help us to see if this solution is profitable when compared
to dedicated and switched environments. Second, it might be worthwhile to combine NDDE’s and I-Cluster’s
approach into a hybrid scheme. For example, most machines are totally idle during the night. We could thus
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think of using I-Cluster during the night and NDDE during the day. Third, we intend to explore NDDE as a
sandboxing platform for MyGrid [18], enabling grid applications that cross administrative boundaries. Note that
such grid applications raise especially serious security issues, making the use of NDDE technology particularly
relevant,.
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