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A DYNAMIC SANDBOX DETECTION TECHNIQUE IN A PRIVATE CLOUD
ENVIRONMENT

ZHANGWEI YANG*AND JUNYU XIAOt

Abstract. In specific private cloud scenarios, how to defend against malicious software and ensure data security is one of
the current research hotspots, and sandbox is an important detection method. This paper proposes a dynamic behavior detection
technique based on sandboxing, which real-time monitors and analyzes malicious software behavior. By improving the sandbox
behavior weight, integrating virtual resources, and designing fine-grained access control, the detection accuracy and efficiency are
enhanced based on zero trust access control system. The simulated attacks are identified on the testing platform, drawing knowledge
graphs, achieving effective discovery and tracing. Meanwhile, this paper verified through experiments that the system consumption
of the detection method is within an acceptable range, expanding the detection range and reducing the missed detection rate.

Key words: Private cloud, dynamic behavior detection, sandbox escape, access control

1. Introduction. With private clouds, hybrid clouds, and multi-clouds becoming the main form of digital
infrastructure, traditional defense mechanisms and security boundaries have been broken. In some specific
private cloud application scenarios, its security systems mostly adopt a centralized construction and central-
ized management approach. This entails the use of firewalls (FW), intrusion detection systems (IPS), web
application firewalls (WAF), and database firewalls, forming a security resource pool, and using traditional
signature-based detection techniques to identify and block malicious attacks to ensure data security within
the cloud [1,2]. However, when attackers or malware exploit 0-day vulnerabilities, signature-based detection
methods cannot recognize and defend against them. Hence, there’s a need for non-signature-based methods.
In response to the defense framework for high-security networks, Li et al. [3] established a defense system ar-
chitecture that includes APT detection gateways, private clouds within the organization, security management
centers, security storage centers, and threat management consoles. Considering the disadvantages of traditional
three-tier network architectures when dealing with malicious software attacks, Xu [4] proposed an improved
hierarchical centralized network security architecture. By centralizing analysis and control, the internal security
components of enterprises form an integrated whole, effectively guarding against malicious attacks.

Sandbox detection technology, based on an environment closely resembling real access entities, can detect
malicious activities during the vulnerability exploitation phase. It effectively identifies abnormal behaviors, un-
known attacks, and unrecognized malicious code, possessing commendable detection capability . Domestic and
foreign scholars’ research on sandbox detection technology started with binary program sandboxes. Google’s
binary sandbox NaCl, designed for X86 architecture, is a double-layer sandbox. The inner layer restricts the con-
trol flow of untrusted programs at the instruction level, while the outer layer monitors and validates untrusted
program system call behaviors at the system call layer. However, sandbox monitoring consumes significant
computational resources. Many malicious attacks and software have integrated sandbox escape features, deter-
mining whether a sandbox is running and then employing methods to evade sandbox detection. This has led to
a gradual increase in attacks that can bypass sandbox detection, amplifying system risks [6]. Balzarotti et al.
[7] conducted research on the different execution paths of malicious samples in simulation analysis environments
and real environments, but failed to detect malicious samples with delay types, resulting in a relatively high
false alarm rate. Lindorfer et al. [8] proposed a method to detect sandbox escape behavior based on different
behavior files, but it was unable to detect some samples that were tested for virtual environments.

*Network and Educational Technology Center, Pingxiang College, Pingxiang, Jiangxi, China. (Corresponding author,
yzw@pxu.edu.cn))
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Fig. 2.1: Virtualization-based sandboxes

To effectively respond to new types of attack threats in specific private cloud scenarios, mainly in the form
of hybrid cloud and multi cloud, a dynamic sandbox detection technology is implemented to more effectively
confront attacks and malware threats with sandbox escape capabilities, which is based on traditional sandbox.In
addition, this paper constructs a zero trust access control system, which calculates the trust value for each
resource access, by improving the access control mechanism.

2. Malware Detection Methods in a Cloud Environment. For malware detection in cloud envi-
ronments, the prevalent detection methods are static and dynamic analysis of the software. Static analysis
involves using techniques like decompilation and pattern matching for binary forensics to analyze its code pat-
terns before the malware executes. It’s then compared with known malicious software features, and if there’s
a match, it’s identified as malicious or as an attack. The advantages of static analysis are speed and simplicity
in its implementation. However, the shortcoming is that the features of the sample under test must already
exist in a previously established feature database. Hence, it’s incapable of detecting unknown malware, ren-
dering it defenseless against 0-day attacks [9-10]. Dynamic analysis runs malicious programs in a controlled
environment and determines their malice by monitoring their network activities and process calls. Dynamic
analysis can detect unknown malicious attacks and effectively block 0-day attacks. Still, it requires considerable
computational resources to simulate a controlled environment, making it complex.In a word, the static analysis
method is implemented through feature library matching, while the dynamic analysis method determines ma-
licious behavior by detecting it after running the program. The sandbox is one of the mainstream methods for
dynamic malware detection. It offers better detection capabilities for unrecognized malicious software attacks.
The implementation principle is as follows: (1) directly import suspicious code into a pre-set sandbox environ-
ment; (2) monitor the sandbox’s filesystem, processes, network behaviors, and registry changes and export the
monitoring traffic data; (3) analyze the exported traffic data to determine if the sandbox contains malicious
programs. In terms of specific implementation, sandboxes can be constructed based on virtualization or rules
[11-13]. Virtualization-based sandboxes can be either system-level or container-level. They provide an encap-
sulated runtime environment for untrusted programs or resources, securing other trusted data environments
while maintaining the untrusted program’s original functionality, without affecting the operation of trusted
programs outside the sandbox. The implementation process is illustrated in Fig 2.1.

The virtualization-based sandboxes utilizes virtual machine technology to create a secure isolation environ-
ment on physical servers for security detection of suspicious files, applications, or websites. It replicate system
resources, introducing redundant resources and demanding high system performance. Rule-based sandboxes,
on the other hand, mainly operate through access control rule engines and program monitors. They can solve
the system resource replication problem but overly rely on the security of safety rules. Typically, these rules
are pre-set and complex, lacking flexibility. Their implementation process is depicted in Fig 2.2

In real-world environments, many malicious programs will perform sandbox checks. If they detect that a
sample is in a virtual machine or sandbox environment, they won’t run, meaning they integrate sandbox escape
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features. In private cloud environments, owners can effectively control data and its security. Depending on
specific scenario needs and characteristics, they can deploy specific security strategies. Using laaS according
to access entity needs, they can offer virtual resource services formed by integrating computing power, storage,
and I/O devices. This simulates more sandboxes and virtual machine environments, allows cloud computing
environments to upload detection samples, and improves the success rate and efficiency of sample execution.
Additionally, private clouds can adjust different functions and check granularities according to different net-
work environment needs. This allows for more efficient detection of unknown malicious behaviors and codes,
compensating for the traditional sandbox’s inability to detect malicious attacks with integrated sandbox escape
features.

3. Dynamic Sandbox Detection Technology. When a program in a sandbox environment needs to
access resources outside the sandbox that are necessary for its operation, access control rules are needed to
restrict the program’s behavior. In private cloud scenarios, sandbox technology uses cloud platforms with vast
amounts of network security data to deeply analyze computer software and mobile applications. Applications are
first executed in the cloud sandbox to capture detailed behavioral information. This allows for a comprehensive
check for suspicious activities and security issues in entirely unknown computer software and mobile applications
in a short time. Any malicious activities or virus attacks are confined within the cloud sandbox, ensuring the
safety of the underlying system used by the accessing entity. However, some malicious software with sandbox
escape capabilities can bypass protection and execute malicious code without being detected by network security
solutions. These methods mainly include detecting human-computer interaction, detecting system features,
loading time, and data obfuscation.

3.1. Human-Machine Interaction Sandbox Escape Detection. One of the technical vulnerabilities
inherent in sandboxes is the lack of human-machine interaction. Some malicious attacks determine if they’re
in a sandbox environment by checking for mouse clicks or pop-up dialog boxes in the invaded system. Such
malicious programs remain dormant after infiltrating the target system and only execute malicious code when
they detect human-machine interactions, such as mouse movements, clicks, or intelligent reactions to dialog
boxes. Using this technique, they continually develop more advanced sandbox escape methods. For example,
by setting a delay after a mouse click or adding a loop count feature that waits for several mouse clicks before
executing. Some malicious codes even check the direction of mouse movement, only executing when the mouse
moves in a specific direction. These covert codes are hard to detect, making it easy to evade sandbox detection.
The process of malicious software detecting mouse operations is shown in Fig 3.1.

To counteract these malicious attacks, anti-virtualization techniques are applied on top of the sandbox,
incorporating program modules like mouse movements, clicks, and dialog box interactions. This gives the
sandbox system the ability to simulate human-machine interactions, making it difficult for malicious codes to
discern whether they’re in a sandbox or a real environment, hence reducing the chances of evading sandbox
detection.
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Fig. 3.1: Mouse Operation Detection

3.2. Single File Load Time Detection. Since the sandbox has to inspect a large number of files, the
detection time for a single file is limited. Some malicious software sets a sleep timer to delay execution, thereby
evading sandbox detection. For instance, certain malware can extend sleep clocks, waiting for sandbox detection
to finish before executing. This works by using the timeout variable to call the Sleep Ex() function, ensuring
malicious code is only executed after a set period. Typically, the sandbox’s inspection time is less than this
set period, meaning the malicious code doesn’t run during the sandbox’s examination. To address this kind of
sandbox evasion, the detection method can be improved by setting multiple return checking strategies. When
malicious code tries to evade detection by setting a sleep timer, this multi-return detection method will disrupt
the set sleep time, increasing the chances of detection during execution.

3.3. Isolation of multiple access subjects. In cloud computing environments, multi-tenant architecture
has become one of the core components. In a multi-tenant environment, isolation is key to ensuring the
security of data and configuration information for each tenant.In specific applications, we can use methods
such as network isolation and computing resource isolation to achieve multi-tenant isolation. Among them,
network isolation uses network technologies such as VLAN and VPC to isolate the network traffic between
virtual machines of different tenants, making it impossible for tenants to communicate with each other. And
computing resource isolation uses container or virtualization technology to isolate computing resources from
different tenants.

4. Private Cloud Access Control Policy. When a program in a sandbox environment needs to access
resources outside the sandbox that are necessary for its operation, access control rules are needed to restrict the
program’s behavior. Private cloud computing environments, based on big data, offer an efficient deployment
method for cloud-based sandboxes. Isolated physical computing resources can be used as cloud endpoints to
provide detection services, enhancing the accuracy and detection capabilities of dynamic sandbox detection
technology. However, the inherent multi-instance permission issues in private cloud environments mean that
cloud-based sandboxes must address the isolation of multiple accessing entities. By improving authentication
in the private cloud, we can refine access control mechanisms, design access control policies to regulate multiple
entity data and service access, prevent side-channel attacks between virtual machines, and implement finer-
grained access control mechanisms [14].

4.1. Zero Trust Access Control System. Zero Trust is a trust-building method based on authentication,
shifting the security architecture from network-centric to identity-centric. All access requires granular, adaptive
access control centered on identity. The core principles of Zero Trust include: (1) Minimum access rights, where
each accessing entity can only access permissions necessary for their work [15-17]. By limiting permissions,
lateral attacks can be effectively prevented after hackers penetrate the network. This granular authorization is
typically managed by data owners who periodically review access rights and member identities. (2) All access
requires verification. Every time an accessing entity tries to access shared files, applications, or cloud storage
devices, their access to related resources must be verified instead of assuming trust after entering a trusted zone.
(3) Log monitoring. All activities in the network are logged, allowing for effective identification of abnormal
accounts, ransomware, and malicious actions. In Python language, it can be expressed as:

# Simulate access control policies

def Access-Control(username)

# Simulate security auditing and logging
def Audit-log(username, action)
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def main()
if Access-Control(username):
Audit-log(username, action)

The zero trust access control strategy relies on verifying user identity, verifying each access, conducting
security audits and logging, and executing corresponding response measures upon detecting threats. The process
is shown in Figure 4.1.

Zero trust has overturned the paradigm of access control, guiding the security system architecture from
"network centralization” to ”identity centralization”. Its essential demand is identity centered access control.
In the Zero Trust access control system, no individual, device, system, or application, whether inside or outside
the network, is inherently trusted. Trust is rebuilt based on authentication and authorization. Continuous
trustworthiness assessments are made on the accessors based on as many data sources as possible. Access
control and authorization strategies are then dynamically adjusted based on these evaluations [18-20], as shown
in Fig 4.2.

4.2. Computation of Subject Trust Value. Within a private cloud’s zero-trust access control system,
the trust value of a subject must be recalculated every time they request access to a resource. This is due to
the fundamental assumption of zero trust, which inherently deems all subjects as untrustworthy[21-22]. As a
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result, the calculation of a subject’s trust value is pivotal. Given the openness and dynamic nature of the cloud
environment, numerous factors can influence trust evaluations within this context. Many models particularly
consider aspects like subjective evaluations of the accessing subject, context relevancy, and time decay[23-25].
In a private cloud setting, Fuzzy Analytic Hierarchy Process(FAHP) can accurately reflect the relationship
between access subject attributes and trust values, which can be expressed as:

F= (eij)n*m (41)

Where n denotes the number of trust attribute values for the access subject, and indicates the maximum
number of trust levels for a certain trust attribute partition. Thus, F' is the standardized Analytic Hierarchy
Process matrix. Drawing from discrete trust value measurement methods, a subject’s behavior can be translated
into trust levels defined as: {Trust, Somewhat Trust, Neutral Trust, Somewhat Distrust, Distrust}. Using
model subsets, these trust categories can be articulated as:

T, = {Trust, Somewhat Trust, Neutral Trust, Somewhat Distrust, Distrust} (4.2)

Based on a cloud service provider’s trust determination of a subject’s behavior, quintuple 7;, must simul-
taneously fulfill the following conditions:
Tio1>T; 1=1(2,3,4,5
=288 (43)
TNTy (i #)

Before ascertaining the trustworthiness of a subject’s behavior, one needs to collect behavioral evidence and
undertake attribute analysis. Based on the influencing factors of cloud environment security, combined with the
AHP model, a scoring method is used to determine the relative importance of each indicator, and thus obtain
the weight of each indicator. To ensure relative accuracy of behavioral evidence values, picking the appropriate
time granularity within a given time frame is pivotal. Suppose X symbolizes the trust measure value of a
subject’s behavior, then X should lie within the Tn trust level space, satisfying X € [T;_1,T;], where T;_; and
T; represent the upper and lower trust level bounds, respectively. The initial judgment matrix F'Q = (€;)msm
can be express as follows, by using the AHP to compare the importance of trust attributes F' = (f1, fo,, fm),
and compare any two values of matrix F' with each other.

fi < [
fi=1f; (4.4)
fi> [

feij =

— o= O

It can calculate the weight vectors W,, = (W3, Wy, , W,,,) of each trust attribute, by converting the initial
judgment matrix F'Q to a fuzzy consistency matrix @ = (¢ij)msm -Similarly, W, can be transformed into a
matrix W = (W;;)msm-Then, the weight matrix of the attribute is combined with the judgment matrix to obtain
a new matrix Z with the diagonal as the attribute evaluation vector. According to the formula for calculating
the trust value, the product of the trust attribute vector and the weight vector is the trust value of the attribute,
and the trust value T is obtained as follows:

i=1

This trust value becomes void post-resource use, necessitating a recalculation before the next resource
request. As time decays, the trust value of the subject will also decrease. Therefore, this paper design a decay
factor that dynamically changes based on the time interval of its last trust evaluation, so as to reduce the
proportion of historical trust values in the overall trust value calculation process.
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Table 5.1: Experimental environment configuration.

Hadoop Cluster 0S Hadoop Version | IP Address
Master ubuntu-20.04.4-live-server-amd64 Hadoop 3.2.2 192.168.1.240
Slavel Ubuntu-20.10-desktop-amd64 Hadoop 3.2.2 192.168.1.245
Slave2 Ubuntu-20.10-desktop-amd64 Hadoop 3.2.2 192.168.1.246

5. Building the Test Environment. To test a series of implementations of dynamic sandbox deploy-
ment for the discovery and identification of malicious activities, we have constructed an open-source security
sandbox called Cuckoo based on VirtualBox. This sandbox operates in an environment entirely isolated from
the host operating system, possessing complete hardware system capabilities[22]. The Cuckoo Sandbox is a mal-
ware analysis system based on a virtualized environment, used for dynamic analysis of malware samples. It can
automatically execute and analyze program behavior, record various dynamic activities of malicious programs,
and generate detailed analysis reports.In addition, the Cuckoo sandbox is mainly composed of central man-
agement software and various analysis virtual machines. The central management software is responsible for
managing the analysis of samples, such as initiating analysis work, recording behavior, and generating reports.
And the analysis of virtual machines in Cuckoo sandbox is responsible for executing malicious program sam-
ples in isolated environments and reporting the analysis results to central management software. The specific
implementation is as follows:

(1) Deploy the Cuckoo sandbox, based on GPLv3, in the cloud to analyze malicious software. Compared to
sandboxes that analyze based on static feature codes, Cuckoo has the advantage of dynamic monitoring.
Cuckoo requires deployment on both Host and Guest sides. The Host is responsible for managing the
Guest’s startup analysis, network traffic collection, and receiving tasks (files) from the Host to obtain
information post-execution. In the Cuckoo sandbox, the executable files introduced with traffic are
executed, monitoring their real-time performance. Cuckoo can analyze traffic content, supporting PE
files, DLL files, Office documents, Zip archives, and nearly all other common file formats.

(2) Operate the sandbox within Cuckoo using the python command-line tool. Use cuckoo.py to start the
sandbox engine and submit.py to submit applications for analysis to the sandbox. After the Host
receives the task, the sandbox engine communicates with the Agent in the virtual machine to run the
application, then waits for the analysis results and outputs them to a specified directory.

(3) View the Cuckoo traffic analysis results to discover and identify potential malicious software codes. Cuckoo’s
application analysis results from traffic mainly include traces of function and API calls, records of ap-
plication operations on files, memory images of chosen processes, complete memory data of the analysis
machine Guest, screenshots during malicious software execution, and the network traffic generated by
the Guest. By integrating data analysis from the network security platform, malicious activities can
be matched and identified.

We created a Cuckoo sandbox in a cloud computing experimental environment and deployed the SAX2
intrusion detection system and yaahp hierarchical analysis software simultaneously. The experimental environ-
ment consists of three servers, and the hardware configuration is as follows: 2*Intel 5218(2.3GHz/16C) /256G
DDR3/2*480GB SSD. The experimental environment configuration is shown in Table 5.1.

The SAX2 software in the experimental environment is used to obtain basic data on user behavior, yaahp
is used to construct a user behavior trust model, and AHP method is used to construct a judgment matrix
to obtain user behavior weights. Meanwhile, a behavior evaluation team consisting of 5 experts was used to
evaluate and score the number of times the user ran threat programs N1 and scanned cloud server ports N2
obtained from the SAX2 system, forming the following user behavior evaluation Table 5.2.

Within the Cuckoo sandbox, add program codes to address sandbox evasion tactics, such as human-machine
interaction, and determine whether malicious codes call Set Windows Hook Ex A() or other mouse behavior
monitoring functions. If such codes are detected, invoke mouse click and movement functions in the sandbox
and monitor mouse input. While simulating mouse operations, observe the results of malicious code execution
associated with the pointer function fn. Similarly, in the sandbox, simulate clicking the MessageBox() dialogue
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Table 5.2: User behavior evaluation form.
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Fig. 5.1: Sandbox Simulation Verification

box operation to activate malicious code and observe its execution results.

To validate the effectiveness of the detection method, a simulation is conducted where random users run
malicious programs within the Cuckoo sandbox. As the experiment begins, random users interact with the
cloud server. As the number of interactions increases, the frequency of running malicious programs also grows.
Experiments are conducted on detection accuracy and false alarm rates to measure the precision of the detection
method, as shown in Fig 5.1.

With the gradual increase in malicious software attack behaviors, the dynamic sandbox detects more
instances, and the trust level of the malicious software rapidly decreases. This process quickly restricts the
malicious software from running in the sandbox, marking it as malicious software, preventing its entrance into
the actual private cloud environment, thereby reducing risks in the private cloud environment.

The calculation of user trust values during the interaction process is completed in a trusted proxy in a zero
trust access control system. As the number of visits increases, the access to resources also gradually increases.
In the zero trust mechanism, each visit requires recalculating the trust value, resulting in an increase in the
consumption of system resources, as shown in Fig 5.2, which shows the change in CPU usage.

It can be seen that compared to the resource consumption of traditional access control, the trust value in
the zero trust mechanism increases by about 3% per calculation, which is within an acceptable range. The
sandbox detection technology proposed in this paper, can achieve dynamic sample detection in virtual machine
environments , expanding the detection range based on Lindorfer’s detection method. Furthermore, it is possible
to detect delayed malicious samples and reduce the missed detection rate, based on the detection technology
proposed by Balzarotti.

6. Conclusion. This paper proposed a dynamic sandbox detection technology based on a private cloud
environment, aimed at detecting malicious software attacks in private cloud environments and enhancing their
security. This technology leverages the advantages of dynamic sandbox technology, incorporating features to
counteract sandbox evasion tactics such as human-machine interactions. It’s optimized for the characteristics
of a private cloud environment, ,and a model of trust value decay over time was designed based on the FAHP
method, realizing sandbox access control in a private cloud based on the zero-trust concept. By judging the
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trustworthiness through the trust value of each accessing entity, a Cuckoo test environment was constructed for
verification, and observed that the changes in system resource consumption were within an acceptable range.
In future research, this technology can be further refined to improve the efficiency and accuracy of malicious
software detection.
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