
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org
© 2024 SCPE. Volume 25, Issues 6, pp. 5021–5038, DOI 10.12694/scpe.v25i6.3425

PE GAS PIPELINE DEFECT DETECTION ALGORITHM
BASED ON IMPROVED YOLO V5

QIANKUN FU∗, QIANG LI †, WENSHEN RAN ‡, YANG WANG §, NAN LIN ¶, AND HUIQING LAN ∥

Abstract. In order to improve defects detection efficiency in polyethylene (PE) gas pipelines and decrease leakage or other
pipelines abnormalities in operation, this research proposed an improved YOLO(You Only Look Once) v5 detection model. First,
the collected pipeline defect images were processed in grey scale, which improved the computational efficiency of the computer;
then, Gamma transform and double filtering algorithms were applied respectively for image enhancement and noise reduction
filtering of defects, which enhanced image quality and reduced image noise. Finally, the improved Sobel algorithm was applied to
detect defective image edges and the defects in the image were segmented by adaptive threshold segmentation method to obtain
binary images. The obtained binary images were employed to train the improved YOLO v5 detection model. The obtained
experimental results showed that, compared with the original algorithm, the improved detection algorithm had better detection
efficiency and higher robustness as well as higher recognition for common defects,improved YOLOv5 mAP and recall were 97.18%
and 98.03%, respectively, the mAP has increased by 1.33% and the recall has increased by 3.83%,which can achieve the detection
and identification of defect types of effects in PE gas pipes.
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1. Introduction. Today, PE pipelines are widely being used as an economical and effective transportation
means for oil, gas and urban water heating supply, which brings much convenience to human life as well as
industrial and agricultural development and also produces great economic benefits [1]. This type of pipeline
transportation has been used since 1860s, when the world’s first crude oil pipeline was constructed in the state
of Pennsylvania in the United States [2]. Today, after decades of development, pipeline transport industry
has become the fifth largest means of transport after railways, roads, aviation and seaborne [3]. However, PE
oil and gas pipelines are buried deep in the ground and are vulnerable to corrosion, cracks and other damage
types in long-term in the presence of oil or gas and other substances [4]. In pipeline networks around the
world, cracks and other damage forms in pipelines can lead to the leakage of liquids and gases, resulting in
wasted resources, environmental pollution, and even explosions [5]. Due to the long time required for manual
inspection of pipelines, pipeline robotics equipped with various inspection methods have been developed and
applied [6]. Robots equipped with image recognition technology has become an increasingly popular method
for online non-contact inspection in recent years. By utilizing image recognition technology for inspection, it is
possible to clearly identify existing defects [7].

As time passed, image processing technology has rapidly come into prominence and at the same time,
pipeline defect detection technology has also presented a diversified trend [8]. Dong et al. [9] developed an
automatic pipeline weld defect identification technology applicable of quality identification and assessment of
a series of defects in pipeline welds, with an identification accuracy rates of higher than 90%, which helped
ensure the safe operation of pipelines. Wang et al. [10] introduced a framework for tracking multiple sewer
defects in CCTV videos based on defect detection and metric learning. This fast method enabled high-accuracy
detection of general 2D surface defects. Bondada et al. [11] presents a new method for automated inspection
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Fig. 2.1: Image pre-processing procedure.

of long distance pipelines using machine vision technology. The method identifies corrosion and quantifies the
damage caused to help maintain pipeline integrity. Myrans et al. [12] developed a new method for automatic
identification of detected fault types in pipelines. Their proposed method computed GIST feature descriptors
for fault frames and applied RF machine learning classifiers to analyze frame contents and identify fault types.
Ye et al. [13] introduced an image recognition algorithm using feature extraction and machine learning methods
and applied support vector machines to classify pipeline defects with 84.1% overall accuracy. Fang et al. [14]
developed a fault detection technique that applied an anomaly detection algorithm developed using unsupervised
machine learning to a new pipeline visual inspection device. The video recorded by the device was regarded as
a sequence signal, which was converted into a feature vector and then, defects were identified using a pipeline
defect detection algorithm. The overall accuracy of the developed method was above 90%. Kumar et al. [15]
developed a framework that used a deep convolutional neural network (CNN) to classify multiple defects such
as root intrusion, deposits, and cracks in sewer closed circuit television (CCTV) images.

YOLO algorithm is also gradually becoming popular in pipeline defect detection thanks to the development
of deep learning. Chen et al. [16] developed a Cycle-GAN-based sample enhancement strategy and an improved
YOLO v5-based defect detection system for the detection of pipeline inner wall defects, which could detect
common problems including oxide spalling, erosion, deposition, and infiltration. Zhao et al. [17] proposes a
YOLOv3-based method for underwater pipeline oil spill point detection. Their developed network was able to
quickly detect pipeline leakage points with high accuracy and low misdetection rate. Yan et al. [18] introduced
an anomalous signal detection method (YOLO-PD) based on improved YOLOv7 which was able to effectively
identify anomalous signals in pipelines with higher detection accuracy. Peng et al. [19] improved YOLO
v5 algorithm and introduced an algorithm for pipeline leakage detection using CBAM(Convolutional block
attention module) attention mechanism, thereby focusing more on identifying pipeline leakage characteristics
and decreasing intricate background effects on detection outcomes. Yin et al. [20] developed a YOLO v3-
based pipeline defect detection framework capable of detecting six common pipeline defects with mean average
precision (mAP) of 85.37%.

In summary, the above mentioned computer vision-based inspection methods were consisted of three parts;
namely, image preprocessing, feature extraction, and defect identification and classification. These methods
were more effective in detection and required less labor. However, many current feature extraction methods are
designed for specific defect types and can only recognize them, which limits their applicability. Furthermore,
they suffer from low precision and high incorrect detection rate. Hence, this research developed a YOLOv5-
based PE pipeline defect detection framework capable of extracting abstract features of defects on its own and
accurately detecting and categorizing three types of defect; namely cracks, snaps, and holes. Accordingly, this
research improved the existing modeling frameworks by adding an attention mechanism model and K-means++
algorithm and employed ablation experiments to validate the efficiency of the developed mod-el. It was found
that unlike the original algorithm, mAP was increased by 1.33% and maximum confidence was enhanced by 0.2

2. Image Pre-processing. Pipe image pre-processing not only eliminates noise, but also improves dis-
tinction between pipeline backdrop and defects, decrease data complexity and highlight defect characteristics
[21]. The image pre-processing approach employed in this research is illustrated Fig. 2.1.

2.1. Greyscale processing for pipeline images. Greyscale is the brightness value of each pixel in an
image and is often applied to represent the darkness or lightness of a pixel. Grayscale images are usually easier
to process compared to color images since they have only one channel while color images have three channels
[22]. Compared to colored images, grayscale images use less memory and more swiftly perform computer tasks.
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Fig. 2.2: Comparison of different greyscale processing methods.

The three prevalent methods to convert color images into grayscale ones are mean value, maximum value, and
weighted average methods.

Maximum value method directly selects the highest-valued element from the color channels in images are
red (R), green (G), and blue (B) as shown in equation(2.1).

R = G = B = max(R,G,B) (2.1)

Mean value approach averages the values in the three R, B, and G components. as stated in equation (2.2).

R = G = B = (R+G+B)/3 (2.2)

Weighted average method relies on the sensitivity of human eye to the three colors R, B, G, as given in
equation(2.3):

I(u, v) = 0.3× IR(u, v) + 0.59× IG(u, v) + 0.11× IB(u, v) (2.3)

Where: I(u, v) indicates the coordinate’s gray value, while IR(u, v)IB(u, v) and IG(u, v) are pixel brightness
levels for the three color elements of R, B and G, respectively.

Utilizing weighted average (Fig. 2.2B1-B3),maximum value (Fig. 2.2C1-C3) and mean value (Fig. 2.2D1-
D3)techniques, the three initial defect image (Fig. 2.2 A1-A3) of holes,cracks, and snaps were processed in
grayscale. It was found that weighted aver-age method was the most efficient technique for grayscale images.
according to Fig. 2.2, pipeline defect image displays clear defect features and moderate brightness. Therefore,
weighted average method was used for image grayscale in this research.

2.2. Enhancing images for pipeline defects. Enhancing the visual appeal of an image entails empha-
sizing its borders and key textural features, while minimizing the visibility of less significant sections, thereby
slightly boosting image visual impact [23]. To improve grayscale image (Fig. 2.3A1-A3), Gamma transforma-
tion (Fig. 2.3B1-B3), global histogram equalization (Fig. 2.3C1-C3), and adaptive histogram equalization (Fig.
2.3D1-D3) were applied.
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Fig. 2.3: Comparison of the effectiveness of different image enhancement algorithms.

It was seen from Fig. 2.3 that, compared to other algorithms, Gamma transformation created no distortion
in pipe defect images and defect borders became more visible and prominent in the backdrop. Therefore,
Gamma transform was applied to enhance contrast between pipeline backdrop and pipeline defects.

2.3. Filtering and denoising images of pipe defects. Due to environmental interference or equipment
limitations, the final image is frequently susceptible to significant noise interference during image transmission
process. Image denoising is a classic image restoration method which employs noise to predict clean images [24].
The above images (Fig. 2.4A1-A3) were denoised using bilateral filtering (Fig. 2.4C1-C3), Gaussian filtering
(Fig. 2.4D1-D3), mean filtering (Fig. 2.4E1-E3) and median filtering (Fig. 2.4F1-F3).

Step-by-step processing is a popular approach for resolving complex noisy images [25]. A specific weighted
average used in bilateral filtering employs Gaussian distribution to eliminate Gaussian noise from the image.
However, elimination of Gaussian noise ignores salt-and-pepper noise and while adaptive median filtering excels
at removing salt-and-pepper noise, its effectiveness falls when eliminating Gaussian noise[26]. There-fore, it
was recommended to apply a dual filter (Fig. 2.4B1-B3), in which a median filter eliminated salt-and-pepper
noise and then, a bilateral filter eliminated Gaussian noise. Unlike alternative filtering methods, dual filter-
ing maintained edge details, removed noise points, and effectively preserved edges, as illustrated in Fig. 2.4
Consequently, this re-search utilized dual-filter noise reduction technique.

2.4. Edge detection of pipe defect image. Edge detection in images can help us better understand
image contents, extract feature information, and achieve object detection and recognition.The traditional Sobel
operator performs a weighted averaging operation on each pixel by applying a convolutional template (as
illustrated in Fig. 2.5), followed by a differential procedure to obtain gradient values along X and Y directions.
This algorithm cannot easily obtain the required detection outcomes and its localization precision falls short.
Since the traditional Sobel algorithm has templates only along X (horizontal) and Y (vertical) directions, it is
more sensitive to detect x and y edges [27]. The obtained PE gas pipe defect images included a high quantity of
interfering data due to image compression and working environment and different forms and depths of defects
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Fig. 2.4: Comparison of different image filtering algorithms.

Fig. 2.5: Sobel operator template.

in the pipeline produced relatively tiny regional variations in defect image gray scale. Therefore, relying only
on two directional operators for pipe defect edge detection was found to be inefficient and prone to missing
edge information. Hence, it was proposed to add six more directions to traditional Sobel algorithm to enhance
image edge pixel detection precision[28]. As illustrated in Fig. 2.6, this method enhanced image edge detection,
boosted edge detection precision, and reduced erroneous edge chances.

On the above-displayed pipeline defect-filtered images (Fig. 2.7A1-A3), Sobel edge detection method
(Fig. 2.7B1-B3), Prewitt edge detection method (Fig. 2.7C1-C3), and improved Sobel edge detection method
(Fig. 2.7D1-D3) were applied for image border detection. Edge detection results of the three defects are
illustrated in Fig. 2.7. In terms of result comparison, improved Sobel algorithm enhanced defect edge extraction,
ensuring greater continuity and integrity, and fully revealed defect shape characteristics. Therefore, this research
employed improved Sobel algorithm to identify edges.

2.5. Adaptive Threshold Segmentation. When faced with non-uniform lighting or irregular gray value
distribution, the segmentation outcomes obtained with a global threshold are frequently unsatisfactory, whereas
application of an adaptive threshold, also known as local segmentation, could provide favorable results [29]. The
function of this concept was to determine local threshold based on the brightness distributions of various image
regions rather than global image threshold. This allowed it to adaptively determine thresholds for various image
regions; hence, it was called ”adaptive thresholding method”. Following edge detection, images (Fig. 2.8A1-
A3) were processed through global threshold segmentation (Fig. 2.8B1-B3), Otsu threshold segmentation (Fig.
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Fig. 2.6: Improved Sobel operator.

Fig. 2.7: Comparison of the effectiveness of different edge detection algorithms.

2.8C1-C3), and adaptive threshold segmentation (Fig. 2.8D1-D3). Through naked eye observation and using
adaptive threshold pipe defects and backdrop could be distinguished to achieve optimal segmentation of PE gas
pipe defects with minimal information interference. Therefore, in this research, adaptive threshold algorithm
was applied for image division to obtain binary image.

3. Pipeline defect detection algorithm based on improved YOLOv5. YOLO v5 is part of You
Only Look Once (YOLO) algorithm family. This algorithm has made some improvements on YOLO v4 and
its speed and accuracy have been greatly improved [30]. The main idea of the algorithm was to use a single
neural network model for target detection, by feeding the entire image into the model. The model was able
to directly output the location and class information of the targets present in the image [31]. Three modules,
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Fig. 2.8: Comparison of different threshold segmentation methods.

Fig. 3.1: Conv module structure.

Fig. 3.2: C3 module structure.

namely backbone, neck, and head, make up YOLO v5 and use grids concept to detect targets.

3.1. YOLO v5 algorithm principle.

3.1.1. Backbone. Backbone is an image feature extraction network that takes input images and gradually
extracts features through several convolutional and pooling layers [32]. The main structures of backbone are
Conv module, C3 module, and SPP module, which play key roles in target detection algorithms.

1. Conv module. Convolutional neural networks frequently use conv module as fundamental module, which
is mainly composed of Conv2d, BN layer and SILU activation function. High-level image features can be
gradually extracted through these operations, which helps the network to learn various patterns and features
in image and provide the necessary information for target detection. Conv module structure is illustrated in
Fig. 3.1.

2. C3 module. C3 module can extract multi-scale feature information from receptive fields of various sizes.
This is significant for computer vision applications such as target detection because it achieves higher accuracy
and speed in shorter training times; therefore, it is extensively applied in target detection tasks. C3 module
structure is illustrated in Fig. 3.2.
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Fig. 3.3: SPP module structure.

Fig. 3.4: Neck module structure.

3. SPP module. The role of spatial pyramid pooling (SPP) module is to perform multi-scale pooling
operations on input feature maps to capture spatial information of different sizes. This helps the network better
understand the contextual information of the target at different scales, improving target detection accuracy and
robustness. The SPP module plays a key role in YOLO v5, helping the network to efficiently concatenate target
features at different scales and improve detection performance. The structure of SPP module is illustrated in
Fig. 3.3.

3.1.2. Neck module. Because the uncertainty of the size and position of an object in an image, a mech-
anism is required to handle targets of different scales and sizes. Feature pyramid is a strategy for dealing with
multi-scale target detection, which could be realized by adding layers of characteristics at various scales to
backbone network [33]. Feature pyramid network (FPN) serves to establish connections among different layers
of feature maps and perform feature fusion and up-sampling operations to generate pyramid structures with
rich semantic information and multi-scale features, helping the network better detect targets of various sizes
and scales [34]. The structure of neck module is presented in Fig.3.4.

3.1.3. Head module. In YOLO v5, head module (shown in Fig. 3.5) is responsible for performing target
detection task on the last layer of network feature map, which usually consists of multiple convolutional layers
for extracting features and generating target detection results [35]. The head module in YOLOv5 applied a
series of convolutional operations on the last convolutional layer to generate a bounding box for the target and
a corresponding class confidence score. These predictions were applied to determine the presence of targets in
the image and their corresponding classes.

3.2. Improvements to initial anchor box. YOLO v5 algorithm inherits the anchor box mechanism of
previous generations of YOLO algorithm with the difference that YOLO v5 algorithm innovatively embedded
adaptive anchor box mechanism. It significantly enhanced the efficiency of the algorithm [36]. However, the
prior frame of YOLO v5 target detection network was based on the COCO dataset obtained by clustering
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Fig. 3.5: Head module structure.

during training and large target detection in the dataset accounts for more. However, in the current detection
scenario, small and medium-sized targets were predominate and were still mainly targeted as pipeline defective
targets, which inability to fit well the anchor box acquired on the COCO dataset. The primary drawback of
K-means technique is that the amount of clusters-K and the initial cluster centers need to be confirmed by
themselves, and an unreasonable number of clusters and cluster centers will make the results uninterpretable.
Therefore, this research recommended using K-means++ algorithm to recalculate the anchor boxes used in
pipeline defect target identification to improve the accuracy of the algorithm.

3.2.1. K-means. The main principle of K-means algorithm is to first choose K cluster centers at random
according to the principle of nearest neighbor to sample points to be classified into each cluster. Then, the center
of mass of each cluster is recalculated through averaging method to determine new cluster center. Iterating is
continued until the clustering results of all samples no longer change.

K-means clustering algorithm is consisted of the following main steps.
Step 1: Selection of clustering centers. K samples from dataset X are randomly selected as initial clustering

centers;
Step 2: Calculation of Euclidean distance. Distances from all sample points to K cluster cores are individually

calculated, the closest cluster core to the point is found, and the obtained core is attributed to the
corresponding cluster;

Step 3: Updating the clustering center. After assigning all points to K clusters into which the dataset X is
divided, the center of gravity (average distance from the center) of each cluster is re-computed and
designated to be a new ”cluster core”.

Step 4: Steps 2 and 3 are repeated until each clustering center no longer changes.

3.2.2. K-means++. The original YOLO v5 algorithm integrated K-means and genetic algorithms in
auto anchor, which performed the computation of the anchor value of the data before training was started.
Based on the obtained best possible recall (BPR) value, it could be determined whether the dataset needed
to recalculate the anchor[37]. K-means clustering algorithm required human intervention in determining the
value of K. The result might not be a globally optimum solution, which greatly reduced the overall operating
efficiency of the algorithm [38]. Therefore, in this research, it was decided to replace K-means algorithm with
K-means++ algorithm to recluster the dataset which was optimized to decrease errors and improve detection
algorithm accuracy. K-means++ algorithm is consisted of the following steps:
Step 1: The initial clustering center C1 is chosen at random from dataset X;
Step 2: The shortest distance d(x) between each sample and the already existing clustering center is determined;
Step 3: The probability P (x) hat each sample point would be chosen as the next cluster center is calculated
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Fig. 3.6: SE module structure.

and then, the sample point with the highest probability value (or probability distribution) is chosen as
the next cluster center P (x) , as stated in Equation 3.1

P (x) =
d(x)2∑

x∈X
d(x)2

(3.1)

Step 4: Steps 2 and 3 are repeated until a total of K cluster centers are screened;
Step 5: Calculation of the Euclidean distance. The distances from all sample points to K cluster cores are

individually calculated, the closest cluster core to the point is found, and it is attributed to the corre-
sponding cluster;

Step 6: Updating the clustering center. After assigning all points to the K clusters into which the dataset X
is divided, the center of gravity (average distance from the center) of each cluster is re-computed and
designated as a new ”cluster core”.

Step 7: Steps 5 and 6 are iterated until each clustering center no longer changes.
3.3. Fusion Attention Module. Due to its high detection speed and accuracy, YOLO v5 is frequently

used in target detection and defect recognition applications. However, there is a certain error when detecting
unclear features or small targets and images obtained in natural environments may have occlusion. Therefore,
in order to address the aforementioned issues, it is required to increase the feature extraction capability of the
detected targets. Adding attention mechanism in YOLO v5 is the most common way to enhance its feature
extraction ability and despite the fact that it increases the total amount of parameters, it can improve accuracy.

3.3.1. SE module. Squeeze-and-excitation (SE) model is an attentional mechanism to enhance the per-
formance of neural networks. It dynamically learns the importance of features among different channels and
improves the network’s attention to important features. The main functions of SE module are excitation and
squeeze, which are obtained through a series of operations to obtain a weight matrix to reconstruct the original
features [39]. The structure of SE algorithm is presented in Fig. 3.6.

3.3.2. CA modules. Channel attention (CA) module is designed to improve the feature representation
ability of the network by learning the importance of features among various channels to increase the network’s
attention to specific features. By introducing CA module, the ability of the neural network to perceive critical
features can be effectively improved, which in turn enhances network performance in various visual tasks [40].
The structure of CA algorithm is presented in Fig. 3.7.

3.4. CBAM module. Convolutional block attention module (CBAM) was designed to improve the per-
formance of neural networks by focusing on both channel and spatial information. Channel attention is applied
to learn the importance of features among different channels, while spatial attention is employed to learn
the correlation among different locations within the feature map, thus allowing the network to focus more on
important feature channels and spatial locations[41]. The structure of CBAM algorithm is illustrated in Fig.
3.8.

4. Analysis of experimental results. We allocated training dataset, validation dataset, and test dataset
in the ratio of 7:2:1, with a total of 3365 images. The specific quantities are summarized in Table 4.1.
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Fig. 3.7: CA module structure.

Fig. 3.8: CBAM module structure.

Table 4.1: Specific allocation of data sets.

Defect type Training Validation Test Total
Cracks 753 227 123 1103
Snap 720 208 110 1038
Holes 822 253 149 1224

4.1. Setting parameters and experimental platform. The working environment is presented in Table
4.2 and the settings of the training parameters are given in Table 4.3.

4.2. Evaluation indicators. The experimental results of this research evaluated the performance of the
improved algorithm in terms of mean average precision (mAP), recall, and precision. In target detection, mAP
is applied to measure the detection accuracy of the model on multiple categories for evaluating the performance
of the overall target detection algorithm where larger mAP values indicated better model performance. The
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Table 4.2: Experimental operating environment.

Classification Versions
Computer operating system Windows 10 Professional

CPU i9-9900KF
GPU NAIDIA GeForce RTX2080Ti 12G
RAM 32G

Python 3.8
Pytorch 1.9
CUDA 11.1

Table 4.3: Experimental training setting.

Name Image size learning rate Epoch Batch-size
Parameter setting 640×480 0.01 200 16

Table 4.4: Ablation experiments with different image pre-processing procedures.

Greyscale
processing

Image
enhancements

Filtering
and denoising

Edge
detection

Threshold
segmentation mAP/% Time/h

× × × × × 94.01 23.8
✓ × × × × 94.06 16.9
✓ ✓ × × × 94.85 16.6
✓ ✓ ✓ × × 95.22 16.7
✓ ✓ ✓ ✓ × 95.68 14.8
✓ ✓ ✓ ✓ ✓ 95.85 14.8

equations for recall, precision, and mAP are expressed below:

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

AP =

∫
1

0

P (R)dR (4.3)

mAP =
1

N

N∑
i=1

APi (4.4)

where TP , FP , and FN stand for true positives, false positives, and false negatives, respectively.
4.3. Comparative experiments and analysis of results. It was seen that training YOLOv5 model

using preprocessed defective images improved mAP by 1.84% and training speed by 29% compared to the
original algorithm, which showed that preprocessing of pipeline defect images improved the training speed and
accuracy of the model.

Table 4.5 shows that the K-means algorithm to K-means++ method was successful in boosting overall
algorithm detection precision, with mAP increasing by 0.48%.
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Fig. 4.1: Improved YOLO v5 Structure.

Table 4.5: Comparison of initial anchor box optimisation experiments.

Algorithms mAP/% Recall/% Precision/% Params/M Time/h
YOLOv5s 95.85 94.20 94.55 7.06 14.8

YOLOv5s-K++ 96.33 94.98 95.26 7.06 14.5

Table 4.6: Comparison of different models of attention mechanisms.

Algorithms mAP/% Recall/% Precision/% Params/M Time/h
YOLOv5s 95.85 94.20 94.55 7.06 14.8

YOLOv5s-K++-SE 96.52 97.46 95.97 7.21 15.1
YOLOv5s-K++-CA 97.18 98.06 97.1 7.22 15.4
YOLOv5s-K++-CBAM 95.79 97.73 96.06 7.22 15.6

Comparison of the results of adding different attention mechanism modules is given in Table 4.6 where
CA module was found to have the best effect compared with other methods. CA module was added to YOLO
v5 model and its structure is shown in Fig.4.1. The trained mAP function curve and loss function curve are
illustrated in Fig. 4.2 and confusion matrix is presented in Fig. 4.3. Compared with the original algorithm,
the improved YOLO v5 algorithm was better, with 1.33% increase in mAP and 3.83% increase in recall.

To further validate the performance of the improved algorithm, we conducted comparative experiments
using two defect detection algorithms of YOLO v7 and YOLO v8. The obtained experimental results are
presented in Table 4.7 and Fig. 4.4, with confusion matrix depicted in Fig. 4.5. The experimental results
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Fig. 4.2: Graph of the mAP and Loss for the different models.

Fig. 4.3: Confusion matrix for different models of attention.

Table 4.7: Comparison of different detection algorithms.

Algorithms mAP/% Recall/% Precision/% Params/M Time
YOLOv8 96.75 95.02 95.82 6.86 14.1
YOLOv7 96.29 94.91 95.61 6.95 14.6

YOLOv5s-K++-CA 97.18 98.03 97.1 7.22 15.4

demonstrated that improved YOLO model achieved higher mAP, precision, and recall compared to the remain-
ing two algorithms, where mAP was 0.43% higher than that obtained from YOLO v8 and 0.89% higher than
that of YOLO v7. Therefore, it could be inferred that YOLO v5s-K++-CA was an accurate and stable tool
for pipeline defect detection. The developed method could be applied to detect pipeline defects and ensure
pipeline safety.

Using trained pipeline defect detection model to detect gas pipeline defects, it was found that the improved



PE Gas Pipeline Defect Detection Algorithm Based on Improved YOLO v5 5035

Fig. 4.4: Graph of mAP and Loss for the different detection algorithms .

Fig. 4.5: Confusion matrix for different detection algorithms.

algorithm was able to provide much higher detection capability compared to the original algorithm. From
Fig. 4.6, it was seen that the updated approach presented a greater confidence level compared to the original
algorithm. For the three common defects of cracks, snaps, and holes, the developed method provided higher
recognition rates and the maximum confidence was improved by 0.2.

5. Conclusion. To address the challenges of low natural gas pipeline defect detection accuracy and poor
stability, we introduced an improved defect detection method based on YOLO v5 algorithm. Experimental
results demonstrated that the improved YOLO v5 model exhibited strong robustness and precision in detecting
pipeline defects and as a non-destructive testing method, it could be used to detect pipeline defects.

The primary conclusions of this research were as follows:
1. In response to frequent occurrence of varying degrees of leakage and other anomalies in oil and gas

pipelines, through experimental simulation of different abnormalities in the pipeline, the data collection
and manual marking production of corresponding data set, to lay the groundwork for utilizing target
detection methods in studying pipeline leakage and other anomalies in the future.
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Fig. 4.6: Comparison the effect before and after model improvement.

2. To enhance the quality of pipeline defect images, first, images were in grayscale using weighted average
method. Then, the contrast between pipeline background and any defects was enhanced by applying
gamma transform. Finally, noise was reduced in images using dual filtering.

3. To simplify the data and enhance the training speed and effectiveness of the model, we utilized improved
Sobel algorithm and adaptive thresholding method to detect defective image edges and threshold seg-
mentation to generate binary images. Then the model was trained with binary images to reduce its
dependence on color features, making the model more concerned with target shape.

4. In order to enhance the precision and efficiency of pipeline defect detection, YOLOv5’s K-Means
algorithm was improved and K-Means++ algorithm was employed to determine the initial center of
the anchor frame. Introduction of CA attention mechanism enhanced the perceptual ability of the
convolutional neural network in target detection, thus improving the accuracy and robustness of the
detection process.

In order to achieve better detection results and make the model more practical, the dataset needs to be
expanded to include various types and resolutions of pipeline defect images to further improve the ability of
real-time pipeline defect monitoring and detection model structure needs to be optimized to make it more
universally practical, which are considered as future works to be improved.
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