
S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 4, pp. 1�16. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSEVALUATING THE PERFORMANCE OF PIPELINE-STRUCTURED PARALLELPROGRAMS WITH SKELETONS AND PROCESS ALGEBRA∗ANNE BENOIT† , MURRAY COLE , STEPHEN GILMORE , AND JANE HILLSTONAbstra
t. We show in this paper how to evaluate the performan
e of pipeline-stru
tured parallel programs with skeletonsand pro
ess algebra. Sin
e many appli
ations follow some
ommonly used algorithmi
 skeletons, we identify su
h skeletons andmodel them with pro
ess algebra in order to get relevant information about the performan
e of the appli
ation, and to be ableto take good s
heduling de
isions. This
on
ept is illustrated through the
ase study of the pipeline skeleton, and a tool whi
hgenerates automati
ally a set of models and solves them is presented. Some numeri
al results are provided, proving the e�
a
y ofthis approa
h.Key words. Algorithmi
 skeletons, pipeline, high-level parallel programs, performan
e evaluation, pro
ess algebra, PEPAWorkben
h.1. Introdu
tion. One of the most promising te
hni
al innovations in present-day
omputing is the in-vention of grid te
hnologies whi
h harness the
omputational power of widely distributed
olle
tions of
om-puters [8℄. Designing an appli
ation for the Grid raises di�
ult issues of resour
e allo
ation and s
heduling(roughly speaking, how to de
ide whi
h
omputer does what, and when, and how they intera
t). These issuesare made all the more
omplex by the inherent unpredi
tability of resour
e availability and performan
e. Forexample, a super
omputer may be required for a more important task, or the Internet
onne
tions required bythe appli
ation may be parti
ularly busy.In this
ontext of grid programming, a skeleton-based approa
h [5, 16, 7℄ re
ognizes that many real ap-pli
ations draw from a range of well-known solution paradigms and seeks to make it easy for an appli
ationdeveloper to tailor su
h a paradigm to a spe
i�
 problem. Powerful stru
turing
on
epts are presented to theappli
ation programmer as a library of pre-de�ned `skeletons'. As with other high-level programming modelsthe emphasis is on providing generi
 polymorphi
 routines whi
h stru
ture programs in
learly-delineated ways.Skeletal parallel programming supports reasoning about parallel programs in order to remove programmingerrors. It enhan
es modularity and
on�gurability in order to aid modi�
ation, porting and maintenan
e a
tiv-ities. In the present work we fo
us on the Edinburgh Skeleton Library (eSkel) [6℄. eSkel is an MPI-based librarywhi
h has been designed for SMP and
luster
omputing and is now being
onsidered for grid appli
ations usinggrid-enabled versions of MPI su
h as MPICH-G2 [14℄.The use of a parti
ular skeleton
arries with it
onsiderable information about implied s
heduling depen-den
ies. By modelling these with sto
hasti
 pro
ess algebras su
h as Performan
e Evaluation Pro
ess Algebra[13℄, and thereby being able to in
lude aspe
ts of un
ertainty whi
h are inherent to grid
omputing, we believethat we will be able to underpin systems whi
h
an make better s
heduling de
isions than less sophisti
ated ap-proa
hes. Most signi�
antly, sin
e this modelling pro
ess
an be automated, and sin
e grid te
hnology providesfa
ilities for dynami
 monitoring of resour
e performan
e, our approa
h will support adaptive res
heduling ofappli
ations.Sto
hasti
 pro
ess algebras were introdu
ed in the early 1990s as a
ompositional formalism for performan
emodelling. Sin
e then they have been su

essfully applied to the analysis of a wide range of systems. In generalanalysis is based on the generation of an underlying
ontinuous time Markov
hain (CTMC) and derivation ofits steady state probability distribution. This ve
tor re
ords the likelihood of ea
h potential state of the system,and
an in turn be used to derive performan
e measures su
h as throughput, utilisation and response time.Several sto
hasti
 pro
ess algebras have appeared in the literature; we use Hillston's Performan
e EvaluationPro
ess Algebra (PEPA) [13℄.Some related proje
ts obtain performan
e information from the Grid using ben
hmarking and monitoringte
hniques [4, 17℄. In the ICENI proje
t [9℄, performan
e models are used to improve the s
heduling de
isions,but these are just graphs whi
h approximate data obtained experimentally. Moreover, there is no upper-levellayer based on skeletons in any of these approa
hes.
∗This work is part of the ENHANCE proje
t, funded by the United Kingdom Engineering and Physi
al S
ien
es Resear
h
oun
il grant number GR/S21717/01.
†S
hool of Informati
s, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, May�eld Road,Edinburgh EH9 3JZ, UK. enhan
ers�inf.ed.a
.uk, http://groups.inf.ed.a
.uk/enhan
e/1

2 A. Benoit et al.Other re
ent work
onsiders the use of skeleton programs within grid nodes to improve the quality of
ostinformation [1℄. Ea
h server provides a simple fun
tion
apturing the
ost of its implementation of ea
h skeleton.In an appli
ation, ea
h skeleton therefore runs only on one server, and the goal of s
heduling is to sele
t themost appropriate servers within the wider
ontext of the appli
ation and supporting grid. In
ontrast, ourapproa
h
onsiders single skeletons whi
h span the Grid. Moreover, we use modelling te
hniques to estimateperforman
e.Our main
ontribution is based on the idea of using performan
e models to enhan
e the performan
e ofgrid appli
ations. We propose to model skeletons in a generi
 way to obtain signi�
ant performan
e resultswhi
h may be used to res
hedule the appli
ation dynami
ally. To the best of our knowledge, this kind of workhas not been done before. We show in this paper how we
an obtain signi�
ant results on a �rst
ase studybased on the pipeline skeleton. An earlier version of this paper is published in the pro
eedings of the workshopon Pra
ti
al Aspe
ts of High-level Parallel Programming (PAPP04), part of the International Conferen
e onComputational S
ien
e (June 7-9, 2004, Kraków, Poland) [2℄. In this extended version a presentation of PEPAis in
luded; the model resolution and the tool AMoGeT are des
ribed more pre
isely; and more experimentalresults are exposed.In the next se
tion, we present the pipeline and a model of the skeleton. Then we explain how to solvethe model with the PEPA Workben
h in order to get relevant information (Se
tion 3). In Se
tion 4 we presenta tool whi
h automati
ally determines the best mapping to use for the appli
ation, by �rst generating a setof models, then solving them and
omparing the results. Some numeri
al results on the pipeline appli
ationare provided in Se
tion 5, and the feasibility of this approa
h is dis
ussed in Se
tion 6. Finally we give some
on
lusions.2. The pipeline skeleton. Many parallel algorithms
an be
hara
terized and
lassi�ed by their adheren
eto one or more of a number of generi
 algorithmi
 skeletons [16, 5, 7℄. We fo
us in this paper on the
on
ept ofpipeline parallelism, whi
h is of well-proven usefulness in several appli
ations. We re
all brie�y the prin
iple ofthe pipeline skeleton. Then we introdu
e the pro
ess algebra PEPA [13℄ and we explain how we
an model thepipeline with PEPA. Finally, we show in Se
tion 2.4 the state transition diagram of a three stage pipeline.2.1. The prin
iple of pipeline. In the simplest form of pipeline parallelism [6℄, a sequen
e of Ns stagespro
ess a sequen
e of inputs to produ
e a sequen
e of outputs (Fig. 2.1).
...Stage 1 Stage 2 Stage Ns

inputs outputsFig. 2.1. The pipeline appli
ationEa
h input passes through ea
h stage in the same order, and the di�erent inputs are pro
essed one afteranother (a stage
annot pro
ess several inputs at the same time). Note that the internal a
tivity of a stage maybe parallel, but this is transparent to our model. In the remainder of the paper we use the term �pro
essor�to denote the hardware responsible for exe
uting su
h a
tivity, irrespe
tive of its internal design (sequential orparallel).We
onsider this appli
ation
lass in the
ontext of
omputational grids, and so we want to map it toour
omputing resour
es, whi
h
onsist of a set of potentially heterogeneous pro
essors inter
onne
ted by aheterogeneous network.It is well known that a
omputing pipeline performs most e�e
tively when the workload is well balan
eda
ross stages and there are a large enough number of inputs to amortize the
osts of �lling and draining. Ourwork dire
tly addresses the �rst of these issues, by fa
ilitating exploration of the stage-to-pro
essor mappingspa
e. The se
ond issue remains the responsibility of the programmer: our approa
h assumes that running theappli
ation will take long enough for the system to rea
h an equilibrium behaviour. The models help us tostudy this steady state behaviour.Considering the pipeline appli
ation in the eSkel library [6℄, we fo
us here on a pipeline variant whi
hrequires that ea
h stage produ
es exa
tly one output for ea
h input.We now go on to present the PEPA language whi
h we will use to model the pipeline appli
ation. Thepresentation below is ne
essarily brief and rather informal. For full details the reader is referred to [13℄. Theoperational semanti
s
an also be found in Appendix A.

Evaluating The Performan
e of Pipeline-stru
tured Parallel Programs 32.2. Introdu
tion to PEPA. The PEPA language provides a small set of
ombinators. These allowlanguage terms to be
onstru
ted de�ning the behaviour of
omponents, via the a
tivities they undertake and theintera
tions between them. Timing information is asso
iated with ea
h a
tivity. Thus, when enabled, an a
tivity
a = (α, r) will delay for a period sampled from the negative exponential distribution whi
h has parameter r.If several a
tivities are enabled
on
urrently, either in
ompetition or independently, we assume that a ra
e
ondition exists between them. The
omponent
ombinators, together with their names and interpretations,are presented informally below.Pre�x: The basi
 me
hanism for des
ribing the behaviour of a system is to give a
omponent a designated�rst a
tion using the pre�x
ombinator, denoted by a full stop. For example, the
omponent (α, r).S
arriesout a
tivity (α, r), whi
h has a
tion type α and an exponentially distributed duration with parameter r, and itsubsequently behaves as S.Choi
e: The
hoi
e
ombinator
aptures the possibility of
ompetition between di�erent possible a
tivities.The
omponent P + Q represents a system whi
h may behave either as P or as Q. The a
tivities of both Pand Q are enabled. The �rst a
tivity to
omplete distinguishes one of them: the other is dis
arded. The systemwill behave as the derivative resulting from the evolution of the
hosen
omponent.Constant: It is
onvenient to be able to assign names to patterns of behaviour asso
iated with
omponents.Constants are
omponents whose meaning is given by a de�ning equation. For example, P

def
= (α, r).P de�nesa
omponent whi
h performs a
tivity α at rate r, forever.Hiding: The possibility to abstra
t away some aspe
ts of a
omponent's behaviour is provided by the hidingoperator, denoted P/L. Here, the set L of visible a
tion types identi�es those a
tivities whi
h are to be
onsidered internal or private to the
omponent and whi
h will appear as the unknown type τ .Cooperation: In PEPA dire
t intera
tion, or
ooperation, between
omponents is the basis of
ompositionality.The set whi
h is used as the subs
ript to the
ooperation symbol, the
ooperation set L, determines thosea
tivities on whi
h the
o-operands are for
ed to syn
hronise. For a
tion types not in L, the
omponentspro
eed independently and
on
urrently with their enabled a
tivities. However, an a
tivity whose a
tion typeis in the
ooperation set
annot pro
eed until both
omponents enable an a
tivity of that type. The two
omponents then pro
eed together to
omplete the shared a
tivity. The rate of the shared a
tivity may bealtered to re�e
t the work
arried out by both
omponents to
omplete the a
tivity (for details see [13℄). Wewrite P ‖ Q as an abbreviation for P ⊲⊳

L
Q when L is empty.In some
ases, when an a
tivity is known to be
arried out in
ooperation with another
omponent, a
omponent may be passive with respe
t to that a
tivity. This means that the rate of the a
tivity is leftunspe
i�ed (denoted ⊤) and is determined upon
ooperation, by the rate of the a
tivity in the other
omponent.All passive a
tions must be syn
hronised in the �nal model.The dynami
 behaviour of a PEPA model is represented by the evolution of its
omponents, either individ-ually or in
ooperation. The form of this evolution is governed by a set of formal rules whi
h give an operationalsemanti
s of PEPA terms (see [13℄). Thus, as in
lassi
al pro
ess algebra, the semanti
s of ea
h term in PEPA isgiven via a labelled multi-transition system (the multipli
ities of ar
s are signi�
ant). In the transition system astate
orresponds to ea
h synta
ti
 term of the language, or derivative, and an ar
 represents the a
tivity whi
h
auses one derivative to evolve into another. The
omplete set of rea
hable states is termed the derivative setof a model and these form the nodes of the derivation graph whi
h is formed by applying the semanti
 rulesexhaustively.The derivation graph is the basis of the underlying Continuous Time Markov Chain (CTMC) whi
h is usedto derive performan
e measures from a PEPA model. The graph is systemati
ally redu
ed to a form where it
an be treated as the state transition diagram of the underlying CTMC. Ea
h derivative is then a state in theCTMC. The transition rate between two derivatives P and Q in the derivation graph is the rate at whi
h thesystem
hanges from behaving as
omponent P to behaving as Q. It is the sum of the a
tivity rates labellingar
s
onne
ting node P to node Q.2.3. Pipeline model. To model a pipeline appli
ation, we de
ompose the problem into the stages, thepro
essors and the network. The model is expressed in PEPA (
f. Se
tion 2.2).

4 A. Benoit et al.The stagesThe �rst part of the model is the appli
ation model, whi
h is spe
i�ed independently of the resour
es on whi
hthe appli
ation will be
omputed. We de�ne one PEPA
omponent per stage. For i = 1..Ns, the
omponentStagei works sequentially. At �rst, it gets data (a
tivity movei), then pro
esses it (a
tivity pro
essi), and �nallymoves the data to the next stage (a
tivity movei+1).Stagei

def
= (movei,⊤).(pro
essi,⊤).(movei+1,⊤).StageiAll the rates are unspe
i�ed, denoted by the distinguished symbol ⊤, sin
e the pro
essing and move timesdepend on the resour
es where the appli
ation is running. These rates will be de�ned later, in another part ofthe model.The pipeline appli
ation is then de�ned as a
ooperation of the di�erent stages over the movei a
tivities,for i = 2..Ns.The a
tivities move1 and moveNs+1 represent, respe
tively, the arrival of an input in the appli
ation andthe transfer of the �nal output out of the pipeline. They do not represent any data transfer between stages, sothey are not syn
hronizing the pipeline appli
ation. Finally, we have:Pipeline def
= Stage1 ⊲⊳

{move2}
Stage2

⊲⊳
{move3}

. . . ⊲⊳
{moveNs

}
StageNsThe pro
essorsWe
onsider that the appli
ation must be mapped on a set of Np pro
essors. Ea
h stage is pro
essed by a given(unique) pro
essor, but a pro
essor may pro
ess several stages (in the
ase where Np < Ns). In order to keepthe model simple, we de
ide to put information about the pro
essor (su
h as the load of the pro
essor or thenumber of stages being pro
essed) dire
tly in the rate µi of the a
tivities pro
essi, i = 1..Ns (these a
tivitieshave been de�ned for the
omponents Stagei).Ea
h pro
essor is then represented by a PEPA
omponent whi
h has a
y
li
 behaviour,
onsisting ofpro
essing sequentially inputs for a stage. Some examples follow.

• In the
ase when Np = Ns, we map one stage per pro
essor:Pro
essori
def
= (pro
essi, µi).Pro
essori

• If several stages are pro
essed by a same pro
essor, we use a
hoi
e
omposition. In the followingexample (Np = 2 and Ns = 3), the �rst pro
essor pro
esses the two �rst stages, and the se
ondpro
essor pro
esses the third stage.Pro
essor1 def
= (pro
ess1, µ1).Pro
essor1 + (pro
ess2, µ2).Pro
essor1Pro
essor2 def
= (pro
ess3, µ3).Pro
essor2Sin
e all pro
essors are independent, the set of pro
essors is de�ned as a parallel
omposition of the pro
essor
omponents: Pro
essors def
= Pro
essor1||Pro
essor2|| . . . ||Pro
essorNpThe networkThe last part of the model is the network. We do not need to dire
tly model the ar
hite
ture and the topologyof the network for what we aim to do, but we want to get some information about the e�
ien
y of the link
onne
tion between pairs of pro
essors. This information is given by a�e
ting the rates λi of the movei a
tivities(i = 1..Ns + 1).� λ1 represents the
onne
tion between the user (providing inputs to the pipeline) and the pro
essor hostingthe �rst stage.� For i = 2..Ns, λi represents the
onne
tion between the pro
essor hosting stage i − 1 and the pro
essorhosting stage i.� λNs+1 represents the
onne
tion between the pro
essor hosting the last stage and the user (the site wherewe want the output to be delivered).

Evaluating The Performan
e of Pipeline-stru
tured Parallel Programs 5Note that λi will en
ode information both about the load on the links and the size of the data pro
essedby pro
essi−1. When the data is �transferred� on the same
omputer, the rate is really high, meaning that the
onne
tion is fast (
ompared to a transfer between di�erent sites).The network is then modelled by the following
omponent:Network def
= (move1, λ1).Network + · · · + (moveNs+1, λNs+1).NetworkThe pipeline modelOn
e we have de�ned the di�erent
omponents of our model, we just have to map the stages onto the pro
essorsand the network by using the
ooperation
ombinator. For this, we de�ne the following sets of a
tion types:� Lp = {pro
essi}i=1..Ns
to syn
hronize the Pipeline and the Pro
essors� Lm = {movei}i=1..Ns+1 to syn
hronize the Pipeline and the NetworkMapping def

= Network ⊲⊳
Lm

Pipeline ⊲⊳
Lp

Pro
essorsPEPA input �leAn example of an input �le for the PEPA Workben
h
an be found in Appendix B.2.4. State transition diagram for the pipeline model. Figure 2.2 represents the state transitiondiagram of a three stage, three pro
ess pipeline. This pi
ture shows all of the possible interleavings of the
omponents of the model with ar
s of various kinds showing the di�erent types of transitions from state tostate.In Table 2.1 we show the
orresponden
e between the state numbers in Figure 2.2 and the PEPA terms.Sin
e the PEPA terms are long we have omitted the
ooperation sets, showing only the lo
al state of ea
h
omponent. Moreover to keep the table
ompa
t we have named the derivatives of the Stage
omponents asfollows: Stagei0
def
= (movei,⊤).Stagei1Stagei1

def
= (pro
essi,⊤).Stagei2Stagei2
def
= (movei+1,⊤).Stagei03. Solving the models. One reason to work with a formal modelling language su
h as PEPA is thatmodels are unambiguous and
an serve to support reliable
ommuni
ation between those who design systems,those who develop them and those who maintain them. Another reason to work with a formal modellinglanguage is that formal models
an be automati
ally pro
essed by tools in order to derive information fromthem whi
h otherwise would have to be produ
ed by manual
al
ulation or reasoning.The tool whi
h we have used for pro
essing our PEPA models and
omputing the steady-state probabilitydistribution of our system is the PEPA Workben
h. A full des
ription of the fun
tioning of this software
an befound in [11℄; the referen
e manual for the latest release is [12℄. We in
lude a brief des
ription of the fun
tioningof the Workben
h in Appendix C.1 in order to make the present paper self-
ontained.Noti
e however that the steady-state probability distribution of the system is rarely the desired result ofthe performan
e analysis pro
ess and so to progress we must identify a signi�
ant performan
e result. Theperforman
e result that is pertinent for the pipeline appli
ation is the throughput of the pro
essi a
tivities(i = 1..Ns). Sin
e data passes sequentially through ea
h stage, the throughput is identi
al for all i, and we needto
ompute only the throughput of pro
ess1 to obtain signi�
ant results. This is done by adding the steady-stateprobabilities of ea
h state in whi
h pro
ess1
an happen, and multiplying this by µ1.We have made some
hanges to the Java edition of the PEPA Workben
h in order to allow the user tospe
ify performan
e results whi
h will then be automati
ally
omputed. This new fun
tionality is then used to
ompute numeri
al results from the pipeline models. Some more te
hni
al details are provided in Appendix C.2.

6 A. Benoit et al.
25 26 27

24

21

move1 move2 move3 move4

process3process2process1

8
9

2 3

10 11 12

7

16 17 18

2322

4
619 20

14 15

5

13

1

Fig. 2.2. State transition diagram of a three stage, three pro
ess pipeline with states numbered a

ording to Table 2.14. AMoGeT: The Automati
 Model Generation Tool. We investigate in this paper how to enhan
ethe performan
e of grid appli
ations with the use of algorithmi
 skeletons and pro
ess algebras. To do this, wehave
reated a tool whi
h automati
ally generates performan
e models for the pipeline
ase study, and thensolves the models. These results
ould be used to res
hedule the appli
ation.We give at �rst an overview of the tool. Then we des
ribe the information whi
h is provided to the tool viaa des
ription �le. Finally, we explain the fun
tioning of the tool.
des
ription�le performan
einformation

PEPAmodels resultsAMoGeT CompareresultsmodelsGenerate Workben
hPEPA
Fig. 4.1. The prin
iple of AMoGeT4.1. AMoGeT des
ription. Fig. 4.1 illustrates the prin
iple of the tool. In its
urrent form, the toolis a generi
, reusable software
omponent. Its ultimate role will be as an integrated
omponent of a run-time s
heduler and re-s
heduler, adapting the mapping from appli
ation to resour
es in response to
hanges inresour
e availability and performan
e.

Evaluating The Performan
e of Pipeline-stru
tured Parallel Programs 7Table 2.1Corresponden
e between state numbers in Figure 2.2 and PEPA terms (
ooperation sets are omitted but remain
onstant)state no. PEPA state1 (Network, (Stage10,Stage20,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))2 (Network, (Stage11,Stage20,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))3 (Network, (Stage12,Stage20,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))4 (Network, (Stage10,Stage21,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))5 (Network, (Stage11,Stage21,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))6 (Network, (Stage12,Stage21,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))7 (Network, (Stage10,Stage22,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))8 (Network, (Stage11,Stage22,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))9 (Network, (Stage12,Stage22,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))10 (Network, (Stage10,Stage20,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))11 (Network, (Stage11,Stage20,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))12 (Network, (Stage12,Stage20,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))13 (Network, (Stage10,Stage21,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))14 (Network, (Stage11,Stage21,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))15 (Network, (Stage12,Stage21,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))16 (Network, (Stage10,Stage22,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))17 (Network, (Stage11,Stage22,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))18 (Network, (Stage12,Stage22,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))19 (Network, (Stage10,Stage20,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))20 (Network, (Stage11,Stage20,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))21 (Network, (Stage12,Stage20,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))22 (Network, (Stage10,Stage21,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))23 (Network, (Stage11,Stage21,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))24 (Network, (Stage12,Stage21,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))25 (Network, (Stage10,Stage22,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))26 (Network, (Stage11,Stage22,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))27 (Network, (Stage12,Stage22,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))Information is provided to the tool via a des
ription �le (
f. Se
tion 4.2). This information
an be gatheredfrom the Grid resour
es and from the appli
ation de�nition. In the following experiments, it is provided by theuser, but we
an also get it automati
ally from grid servi
es, for example from the Network Weather Servi
e [17℄.The tool allows everything to be done in a single step through a simple Perl s
ript (
f. Se
tion 4.3): itgenerates the models, solves them with the PEPA Workben
h, and then
ompares the results. This allows usto have feedba
k on the appli
ation when the performan
e of the available resour
es is modi�ed.4.2. Des
ription �le for AMoGeT. The aim of this �le is to provide information about the availablegrid resour
es and the modelled appli
ation, in our
ase the pipeline.This des
ription �le is named mymodel.des, where mymodel is the name of the appli
ation.
• The �rst information provided is the type of the model. Sin
e we study here the pipeline skeleton, the�rst line is

type = pipeline;

• We then have the information about the Grid resour
es and Network links, as a list of parameters. Thenumber of pro
essors N must at �rst be spe
i�ed:
nbproc =N ;And then, for i = 1..N and j = 1..N , we spe
ify the available
omputing power of the pro
essor i (
pi),and the performan
e of the network link between pro
essors i and j (nli-j):
p1=10;
p2=5;nl1-1=10000; nl1-2=8;
pi
aptures the fa
t that a pro
essor's full power may not be available to our appli
ation (e. g. be
auseof time-sharing with other a
tivities).

8 A. Benoit et al.
• Con
erning the appli
ation, we have some information about the stages of the pipeline. Ns is thenumber of stages.nbstage=Ns;The amount of work wi required to
ompute one output for stage i must be spe
i�ed for i = 1..Ns:w1=2; w2=4; ...Finally, we need to spe
ify the size of the data transferred to and from ea
h stage. For i = 1..Ns + 1,dsi is the size of the data transferred to stage i, with the boundary
ase dsNs + 1 whi
h represents thesize of the output data.ds1=100; ds2=5; ...
• Next we de�ne a set of
andidate mappings of stages to pro
essors. Ea
h mapping spe
i�es where theinitial data is lo
ated, where the output data must be left and (as a tuple) the pro
essor where ea
hstage is pro
essed. For example, the tuple (1, 1, 2) means that the two �rst stages are on pro
essor 1,with the third stage on pro
essor 2. A mapping is then of the form [input, tuple, output]. The mappingde�nition is a set of mappings, it
an be as follows:mappings=[1,(1,2,3),3℄,[1,(1,1,2),2℄,[1,(1,1,1),1℄;
• The last thing is the performan
e result we want to
ompute. For the pipeline appli
ation, we
an askfor the throughput with the line:throughput;4.3. The AMoGeT Perl s
ript. The tool allows everything to be done in a single step through a simplePerl s
ript. The model generation is done by
alling an auxiliary fun
tion. Models are then solved with thePEPA Workben
h as seen in Se
tion 3. Finally, the results are
ompared. This allows us to have feedba
k onthe appli
ation when the performan
e of the available resour
es is modi�ed.One model is generated from ea
h mapping of the des
ription �le. Ea
h model is as des
ribed in Se
tion 2.3.The di�
ult point
onsists of generating the rates from the information gathered before. The model generationitself is then straightforward.To
ompute the rates of the pro
essi a
tivities for a given model (i = 1..Ns), we need to know how manystages are hosted on ea
h pro
essor, and we assume that the work sharing between the stages is equitable. Therate asso
iated with the pro
essi a
tivity is then:

µi = wi ×
cpj

nbstjwhere j is the number of the pro
essor hosting the stage i, and nbstj is the number of stages being pro
essedon pro
essor j. In e�e
t, the available
omputing power
pj is further diluted by our own internal timesharingfa
tor nbstj, before being applied to the workload asso
iated with the stage, wi.The rates of
ommuni
ation between stages depend on the mapping too, sin
e the rate of a movei a
tivitydepends on the
onne
tion link between the pro
essor j1 hosting stage i−1 and the pro
essor j2 hosting stage i,whi
h is given by nlj1-j2. Sin
e the mapping spe
i�es where the input and output data are, we
an also �ndthe
onne
tion link for the data arriving into the pipeline and the data exiting the appli
ation. These ratesdepend also on the size of the data transferred from one stage of the pipeline to the next, given by dsi. Theboundary
ases are applied to
ompute the rates of the move1 and moveNs+1 a
tivities. The rate asso
iatedwith the movei a
tivity is therefore:
λi =

nlj1−j2

dsiOn
e these rates are derived, generating the model is straightforward. We add into the �le the des
riptionof the throughput of the pro
ess1 a
tivity as a required result to allow an automati

omputation of this result.The models
an then be solved with the PEPA Workben
h, and the throughput of the pipeline is automati
ally
omputed (Se
tion 3). During the resolution, all the results are saved in a single �le, and the last step of results
omparison �nds out whi
h mapping produ
es the best throughput. This mapping is the one we should use torun the appli
ation.

Evaluating The Performan
e of Pipeline-stru
tured Parallel Programs 95. Numeri
al results. We present in this se
tion some numeri
al results. We explain through them howthe information obtained with AMoGeT
an be relevant for optimizing the appli
ation.In the present paper we do not apply this method to a given �real-world� example. We use an abstra
tpipeline for whi
h we arbitrarily �x the time required to
omplete ea
h stage. This is su�
ient to show thatAMoGeT
an help to optimize an appli
ation.5.1. Experiment 1: Pipeline with 3 stages��xed data size. We give here a few numeri
al resultson an example with 3 pipeline stages (and up to 3 pro
essors). The models that we need to solve are reallysmall (in this
ase, the model has 27 states and 51 transitions,
f. Figure 2.2).We suppose in this experiment that nli-i=10000 for i = 1..3, and that there is no need to transfer the inputor the output data. Moreover, we suppose that the network is symmetri
al (nli-j=nlj-i for all i, j = 1..3).Con
erning the pipeline parameters, the amount of work wi required to
ompute ea
h stage is 1, as well as thesize of the data dsi whi
h is transferred from one stage to another. The relevant parameters are therefore nl1-2,nl2-3, nl1-3, and
pi for i = 1..3. We
ompare di�erent mappings, and just spe
ify the tuple indi
ating whi
hstage is on whi
h pro
essor. We
ompare the mappings (1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,1),(1,3,2) and (1,3,3) (the �rst stage is always on pro
essor 1). The results are displayed in Table 5.1, and we onlyput the best of the mappings whi
h were investigated in the relevant line of the table.Table 5.1Result table for Experiment 1Set of results Parameters Mapping &nl1-2 nl2-3 nl1-3
p1
p2
p3 Throughput1 10000 10000 10000 10 10 10 (1,2,3): 5.63467
10000 10000 10000 5 5 5 (1,2,3): 2.818922 10000 10000 10000 10 10 1 (1,2,1): 3.36671

10 10 10 10 10 1 (1,1,2): 2.59914
1 1 1 10 10 1 (1,1,1): 1.879633 10 1 1 10 10 10 (1,1,2): 2.59914
10 1 1 1 1 100 (1,3,3): 0.49988In the �rst set of results, all the pro
essors are identi
al and the network links are really fast. In these
ases,the best mapping always
onsists of putting one stage on ea
h pro
essor (the results for the mapping (1, 3, 2)are identi
al to the best mapping). If we divide the time allo
ated by the pro
essor to the appli
ation by 2, theresulting throughput is also divided by 2, sin
e only the pro
essing power has an impa
t on the throughput.The se
ond set of results illustrates the
ase when one pro
essor is be
oming really busy, in this
asepro
essor 3. We should not use it any more, but depending on the network links, the best mapping may
hange.If the links are not e�
ient, we should indeed avoid data transfer and try to put
onse
utive stages on the samepro
essor. When nl1-2 = nl2-3 = nl1-3 = 10, the mapping (1, 2, 2) provides the same results as (1, 1, 2).Finally, the third set of results shows what happens if the network link to pro
essor 3 is really slow. Inthis
ase again, the use of the pro
essor should be avoided, and the best mappings are (1, 1, 2) and (1, 2, 2).However, if pro
essor 3 is a really fast pro
essor
ompared to the other ones (last line), we pro
ess stage 2 andstage 3 on the third pro
essor (mapping (1, 3, 3)).5.2. Experiment 2: Pipeline with 3 stages�data size
hanging. The third experiment keeps the

3 stage pipeline, but
onsiders
hanges in the size of the data. The assumptions are the same as for Experiment 1,but more parameters have a �xed value.In this experiment, the network
onne
tion between pro
essors 1 and 2 is slightly less e�e
tive than theothers. So, we have nl1-2 = 100, nl2-3 = nl1-3 = 1000. Moreover, the
omputing power of ea
h stage is
pi = 10. The size of the data is now �xed to 100, ex
ept from the data transiting from stage 1 to stage 2(ds2), whose size is varying.Figure 5.1 presents the throughput obtained with ea
h mapping, as a fun
tion of the data size ds2.Noti
e �rst that some of the mappings are not in�uen
ed by the
hange of the data size, i. e. (1,1,1), (1,1,2)and (1,1,3). This is due to the fa
t that the
onne
tion between stages 1 and 2 is good be
ause the data stayson the same pro
essor. The in�uen
e of the size of the data transferred is mu
h more important when the
onne
tion is less e�e
tive (mappings (1,2,2) and (1,2,3)), sin
e the move2 a
tivity is then the bottlene
k of thesystem.

10 A. Benoit et al.
T

hr
ou

gh
pu

t

ds2

mappings:

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300 350

(1,1,1)
(1,1,2)
(1,1,3)
(1,2,1)
(1,2,2)
(1,2,3)
(1,3,1)

(1,3,3)
(1,3,2)

Fig. 5.1. Experiment 2: Throughput fun
tion of ds2The best mapping is (1,3,2) when ds2 < 150, and (1,1,3) for greater values. Both of them avoid theslow
onne
tion nl1-2, and they use several pro
essors so the pro
essing power is better than for mappingslike (1,1,1). When the size of the data transferred between the �rst two stages be
omes high, the bottlene
k isthe
onne
tion link between them, so it is better to put them on the same pro
essor, even if we may lose somepro
essing power.5.3. Experiment 3: Pipeline with 8 stages. The last experiment
onsiders a larger pipeline,
omposedof 8 stages. We use up to 8 pro
essors, and
ompare four di�erent mappings, depending on the number ofpro
essors we wish to use:
• 8 pro
essors, the mapping is [1, (1, 2, 3, 4, 5, 6, 7, 8), 8]
• 4 pro
essors, the mapping is [1, (1, 1, 2, 2, 3, 3, 4, 4), 4]
• 2 pro
essors, the mapping is [1, (1, 1, 1, 1, 2, 2, 2, 2), 2]
• 1 pro
essor, the mapping is [1, (1, 1, 1, 1, 1, 1, 1, 1), 1]The parameters are the same as for Experiment 1, with
pi = 10, wi = 1, dsi=1 and nli-i = 10000 forall i. We vary the parameters nli-j, for i 6= j, assuming that all these links are equal, and we
ompute thethroughput for the di�erent mappings. Figure 5.2 displays the results.The
urves obtained
on�rm that we should avoid data transfer when the network
onne
tions are lesse�
ient. When nli-j > 7, the network performs well enough to allow the use of the 8 pro
essors. However,when the performan
e de
reases, we should use only 4 pro
essors, then two, and only one when nli-j < 0.8.When we need to transfer the output data ba
k to the �rst pro
essor (for example, the mapping

[1, (1, 2, 3, 4, 5, 6, 7, 8), 1]for the
ase with 8 pro
essors), we obtain almost the same results, with a slightly smaller throughput due tothis additional transfer.6. Feasibility of the approa
h. We envisage the use of our approa
h within a s
heduling and res
hedulingplatform for long-running grid appli
ations. In this
ontext it is anti
ipated that after initial analysis ands
heduling, the system would be monitored and that res
heduling would be needed only relatively infrequently,for example, on
e an hour. Nevertheless it is important that the use of the tool does not
ontribute an overheadwhi
h eliminates the bene�t to be obtained from its use. In this se
tion we present eviden
e whi
h suggeststhat this is not likely to be the
ase in pra
ti
e. The reader should note that here we are re�e
ting on theperforman
e of the analysis tools themselves rather than on the performan
e of the appli
ation whi
h theymonitor (as presented in the previous se
tion).

Evaluating The Performan
e of Pipeline-stru
tured Parallel Programs 11
Number of processors

T
hr

ou
gh

pu
t

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 1 2 3 4 5 6 7 8 9 10

2
4
8

1

nli-jFig. 5.2. Experiment 3: Pipeline with 8 stagesWe ran an experiment to assess the time taken to generate and solve models using AMoGeT, whi
h will, of
ourse, be dependent on the size of the generated model. Fig. 6.1 illustrates the number of states and transitionsof the models as a fun
tion of the parameters of the skeleton. These numbers are independent of the numberof pro
essors in the model; they depend only on the number of pipeline stages.
 1e+6

 8e+5

 6e+5

 4e+5

 2e+5

 0 2 4 8 10 12 6Number of StagesNumberofst
ates/transitio
ns statestransitions

Fig. 6.1. States and TransitionsThe time required to generate and solve the models must be
arefully
onsidered. The generation is alwaysvery qui
k: it takes less than 0.01 se
onds to generate 20 models. The time required to solve the modelsis usually more important, espe
ially when the models have a large state spa
e. However, if we
onsider onlyrelatively small models (up to 20, 000 states), the resolution with the PEPA workben
h takes only a few se
onds.Fig. 6.1 shows that when the number of stages is less than 9, the size of the model is small enough to have a fastresolution. However, the model grows exponentially when the number of stages is in
reased, making AMoGeTless e�e
tive for a large number of stages. Sin
e real appli
ations usually do not have very many stages, this isnot a limitation of the tool in pra
ti
e.

12 A. Benoit et al.The overall use of AMoGeT takes usually less than one minute for
omplex appli
ations running on severalpro
essors, even when we
onsider several models to solve.As stated earlier, in a s
enario of long
omputing grid appli
ations, with eventually dynami
 res
hedulingof the appli
ation, we
onsider that the tool may be run on
e per hour. We therefore believe that the amountof time required may be quite negligible and that the gain obtained by using the best of the mappings whi
hwere investigated
an outperform the
ost of the use of the tool.7. Con
lusions. In the
ontext of grid appli
ations, the availability and performan
e of the resour
es
hange dynami
ally. We have shown through this study that the use of skeletons, and performan
e modelsof these,
an produ
e some relevant information to improve the performan
e of the appli
ation. This hasbeen illustrated on the pipeline skeleton, whi
h is a
ommonly used algorithmi
 skeleton. The models helpus to
hoose the mapping, of the stages onto the pro
essors, whi
h will produ
e the best throughput. A toolautomates all the steps to obtain the result easily.The pipeline skeleton is a simple
ontrol skeleton. The deal skeleton has already been modelled in a similarway [3℄, and experiments are ongoing using deal skeletons nested into a pipeline appli
ation. This approa
h willalso be developed on some other skeletons so it may be useful for a larger
lass of appli
ations.Our re
ent work
onsiders the generation of models whi
h take into a

ount information from the Gridresour
es, whi
h is gathered with the help of the Network Weather Servi
e [17℄. This will allow us to havemodels �tted to the real-time
onditions of the resour
es. This �rst
ase study has already shown that we
an use su
h information produ
tively and that we have the potential to enhan
e the performan
e of gridappli
ations with the use of skeletons and pro
ess algebras.Having pro
ess algebra models of our skeletons also potentially o�ers other bene�ts su
h as the ability toformally verify the
orre
t fun
tioning of the skeleton. We intend to explore this aspe
t in future work.Appendix A. Stru
tured Operational Semanti
s for PEPA.The semanti
 rules, in the stru
tured operational style, are presented in Figure A.1; the interested readeris referred to [13℄ for more details. The rules are read as follows: if the transition(s) above the inferen
e line
an be inferred, then we
an infer the transition below the line. The notation rα(E) whi
h is used in the third
ooperation rule denotes the apparent rate of α in E, i.e. the sum of the rates of all a
tivities of type α in
Act(E).Appendix B. Pipeline example: input �le for the PEPA Workben
h.The input �le for the PEPA Workben
h is displayed in Fig. B.1, for a small example with Ns = Np = 3,and where ea
h pro
essor is hosting one of the stages.Appendix C. The PEPA Workben
h.C.1. Fun
tioning of the Workben
h. The PEPA Workben
h begins by generating the rea
hable statespa
e of a PEPA model as found from all possible interleavings of its transitions from state to state. For a �nitestate model with n states we
an enumerate this state spa
e as C = {C1, . . . , Cn}. As the workben
h
arriesout this task it
ompiles the in�nitesimal generator matrix Q of the
ontinuous-time Markov pro
ess underlyingthe PEPA model. The workben
h adds a transition rate r to Qij every time that it �nds a transition from state
Ci to Cj at rate r. Additionally it subtra
ts r from Qii in order that the row sum of the matrix remains inbalan
e.The
onditions whi
h must be satis�ed in order to guarantee the existen
e of an equilibrium distributionfor a Markov pro
ess, and for this to be the same as the limiting distribution, are well-known�a stationaryor equilibrium probability distribution, Π, exists for every time-homogeneous irredu
ible Markov
hain whosestates are all positive-re
urrent.The intuition behind this distribution is the obvious one, namely that in the long run the probability thatthe PEPA model is in state Ci is given by Π(Ci).For �nite state PEPA models whose derivation graph is strongly
onne
ted, and whi
h therefore havegenerated an ergodi
 Markov pro
ess, the equilibrium distribution of the model, Π, is found by solving thematrix equation

ΠQ = 0 (C.1)

Evaluating The Performan
e of Pipeline-stru
tured Parallel Programs 13Pre�x
(α, r).E

(α,r)
−−−→ ECooperation

E
(α,r)
−−−→ E′

E ⊲⊳
L

F
(α,r)

−−−→ E′ ⊲⊳
L

F

(α /∈ L)
F

(α,r)
−−−→ F ′

E ⊲⊳
L

F
(α,r)

−−−→ E ⊲⊳
L

F ′

(α /∈ L)

E
(α,r1)
−−−→ E′ F

(α,r2)
−−−→ F ′

E ⊲⊳
L

F
(α,R)
−−−→ E′ ⊲⊳

L
F ′

(α ∈ L) where R =
r1

rα(E)

r2

rα(F)
min(rα(E), rα(F))Choi
e

E
(α,r)
−−−→ E′

E + F
(α,r)
−−−→ E′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′Hiding

E
(α,r)
−−−→ E′

E/L
(α,r)
−−−→ E′/L

(α /∈ L)
E

(α,r)
−−−→ E′

E/L
(τ,r)
−−−→ E′/L

(α ∈ L)Constant
E

(α,r)
−→ E′

A
(α,r)
−→ E′

(A
def
= E)Fig. A.1. The operational semanti
s of PEPAsubje
t to the normalisation
ondition whi
h ensures that Π is a well-formed probability distribution

∑
Π(Ci) = 1. (C.2)The equations C.1 and C.2 are
ombined by repla
ing a
olumn of Q by a
olumn of ones and pla
ing a 1 inthe
orresponding row of 0.Be
ause the
onne
tivity graph of the state transition system of the model will in general have low degree,the transition matrix of the Markov pro
ess is best stored as a sparse matrix. The PEPA Workben
h usesa Java implementation of the pre
onditioned bi
onjugate gradient method. This is an iterative pro
edure asdes
ribed in [15℄ storing the in�nitesimal generator matrix in row-indexed sparse storage mode, a
ompa
t storagemode whi
h requires storage of only about two times the number of nonzero matrix elements. An advantageof
onjugate gradient methods for large sparse systems is that they referen
e the matrix only through itsmultipli
ation of a ve
tor, or the multipli
ation of its transpose and a ve
tor.C.2. Computing performan
e results with the PEPA Workben
h. The new fun
tionality of theworkben
h is des
ribed through a tiny example [10℄, whi
h we shall �rst des
ribe. We then explain how to addthe des
ription of the results in the PEPA input �le and how to
ompute them.A tiny example. We des
ribe the
omponents of the PEPA input language for the Workben
h via asimple example, des
ribed in the �le tiny.pepa:r1=2; r2=10; r3=1;P1=(start,r1).P2;

14 A. Benoit et al.// PIPELINE APPLICATION// 3 stages, 3 pro
essors (1 stage per pro
essor)// Variables de
laration (all identi
al)mu1=10; mu2=10; mu3=10;la1=10; la2=10; la3=10; la4=10;// Definition of the StagesStage1 = (move1, infty).(pro
ess1, infty).(move2, infty).Stage1;Stage2 = (move2, infty).(pro
ess2, infty).(move3, infty).Stage2;Stage3 = (move3, infty).(pro
ess3, infty).(move4, infty).Stage3;// Definition of the Pro
essorsPro
essor1 = (pro
ess1, mu1).Pro
essor1;Pro
essor2 = (pro
ess2, mu2).Pro
essor2;Pro
essor3 = (pro
ess3, mu3).Pro
essor3;// Definition of the NetworkNetwork = (move1,la1).Network + (move2,la2).Network+ (move3,la3).Network + (move4,la4).Network;// The pipeline modelNetwork <move1,move2,move3,move4>(Stage1 <move2> Stage2 <move3> Stage3)<pro
ess1,pro
ess2,pro
ess3> (Pro
essor1||Pro
essor2||Pro
essor3)Fig. B.1. The input �le for the PEPA Workben
h: pipeline.pepaP2=(run,r2).P3;P3=(stop,r3).P1;P1 || P1This model is
omposed of two
opies of a
omponent, P1, exe
uting in a pure parallel syn
hronization. P1is a simple sequential pro
ess whi
h undergoes a start a
tivity with rate r1 to be
ome P2 whi
h runs with rate
r2 to be
ome P3 whi
h goes ba
k to P1 via a stop a
tivity with rate r3.The �rst line of the �le is de�ning the rates. Then the sequential pro
ess is de�ned, and the �nal line is thesystem equation, whi
h des
ribes the behaviour of the modelled system.Adding results to the input �le. In order to automati
ally
ompute some performan
e results, the userjust needs to spe
ify them in the PEPA input �le, for example in the �le tiny.pepa presented before. This isdone by in
luding at the end of the �le one line per result, of the form:result_name = {result_des
ription};result_name = rate * {result_des
ription};The name of the performan
e result that is des
ribed is result_name, and the des
ription of the result for thePEPA State Finder is result_des
ription.The states of interest are des
ribed through the use of a simple pattern language, with double stars (**)for wild
ards, and double verti
al bars (||) for separators between model
omponents. The model
omponentsare des
ribed in the order used in the system equation.A rate
an be added; in this
ase the �nal result obtained by the PEPA State Finder will be multiplied bythis rate. This is quite useful to
ompute throughput.For our example, we
an add some results
on
erning the �rst pro
ess, independently of the state of these
ond one:start1 = {P1 || **};

Evaluating The Performan
e of Pipeline-stru
tured Parallel Programs 15run1 = {P2 || **};Trun1 = r2 * {P2 || **};stop1 = {P3 || **};For example, the performan
e result run1 mat
hes all the states in whi
h the �rst pro
ess is ready toperform the run a
tivity. The state of the se
ond pro
ess
an be anything. Trun1 is the same, multiplied bythe rate of the run a
tivity r2. It
orresponds therefore to the throughput of run for the �rst pro
ess.For the pipeline appli
ation, the required performan
e result is spe
i�ed in the PEPA input �lepipeline.pepa (Fig. B.1). This is done by adding the following line at the end of this �le:Throughput = mu1 * { ** <move1,move2,move3,move4>((pro
ess1, infty).(move2,infty).Stage1 <move2> ** <move3> **)<pro
ess1,pro
ess2,pro
ess3> (** || ** || **)}Computing the results. The results
an be
omputed by using the
ommand line interfa
e. This is doneby invoking the following
ommand:java pepa.workben
h.Main -run lr ./tiny.pepaThe -run lr (or -run lnb
g+results) option means that we use the linear bi
onjugate gradient methodto
ompute the steady state solution of the model des
ribed in the �le ./tiny.pepa, and then we
ompute theperforman
e results spe
i�ed in this �le.This exe
ution prints the results to the s
reen, and it also saves one �le per performan
e result(./results/model_name.result_name). This �le is the output of the PEPA State Finder for the result des
rip-tion spe
i�ed in the input �le. It
ontains the state mat
hing the des
ription, and the sum of the steady-stateprobabilities for these states. It does not take the multipli
ative rate into a

ount. The results are also appendedto the �le./model_root.res, where model_root is the beginning of the model_name, until a �−� or a � .� isfound. This is used to automati
ally
ompare results of similar models.Only a few �les have been modi�ed to in
lude the new fun
tionality in the Java Workben
h. The interestedreader should refer to [12℄. REFERENCES[1℄ M. Alt, H. Bis
hof, and S. Gorlat
h, Program Development for Computational Grids Using Skeletons and Performan
ePredi
tion, Parallel Pro
essing Letters, 12 (2002), pp. 157�174.[2℄ A. Benoit, M. Cole, S. Gilmore, and J. Hillston, Evaluating the performan
e of skeleton-based high level parallelprograms, in The International Conferen
e on Computational S
ien
e (ICCS 2004), Part III, M. Bubak, D. van Albada,P. Sloot, and J. Dongarra, eds., LNCS, Springer Verlag, 2004, pp. 299�306.[3℄ A. Benoit, M. Cole, S. Gilmore, and J. Hillston, S
heduling skeleton-based grid appli
ations using PEPA and NWS,Submitted to a spe
ial issue of The Computer Journal on Grid Performability Modelling and Measurement, (2004).[4℄ R. Biswas, M. Frumkin, W. Smith, and R. V. der Wijngaart, Tools and Te
hniques for Measuring and ImprovingGrid Performan
e, in Pro
. of IWDC 2002 on Distributed Computing: Mobile and Wireless Computing, vol. 2571 ofLNCS, Cal
utta, India, De
. 2002, Springer-Verlag, pp. 45�54.[5℄ M. Cole, Algorithmi
 Skeletons: Stru
tured Management of Parallel Computation, MIT Press & Pitman, 1989.http://homepages.inf.ed.a
.uk/mi
/Pubs/skeletonbook.ps.gz.[6℄ M. Cole, eSkel: The edinburgh Skeleton library. Tutorial Introdu
tion, Internal Paper, S
hool of Informati
s, University ofEdinburgh, (2002).http://homepages.inf.ed.a
.uk/mi
/eSkel/.[7℄ M. Cole, Bringing Skeletons out of the Closet: A Pragmati
 Manifesto for Skeletal Parallel Programming, Parallel Com-puting, 30 (2004), pp. 389�406.[8℄ I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastru
ture, Morgan Kaufmann, 1998.[9℄ N. Furmento, A. Mayer, S. M
Gough, S. Newhouse, T. Field, and J. Darlington, ICENI: Optimisation ofComponent Appli
ations within a Grid Environment, Parallel Computing, 28 (2002), pp. 1753�1772.[10℄ S. Gilmore, The PEPA Workben
h: User's Manual, Internal Paper, S
hool of Informati
s, University of Edinburgh, (2001).http://www.d
s.ed.a
.uk/pepa/pwb.pdf.[11℄ S. Gilmore and J. Hillston, The PEPA Workben
h: A Tool to Support a Pro
ess Algebra-based Approa
h to Performan
eModelling, in Pro
. of the 7th Int. Conf. on Modelling Te
hniques and Tools for Computer Performan
e Evaluation,no. 794 in LNCS, Vienna, May 1994, Springer-Verlag, pp. 353�368.http://www.d
s.ed.a
.uk/pepa/workben
h.ps.gz.[12℄ N. Haenel, User Guide for the Java Edition of the PEPA Workben
h - Tabas
o release, Internal Paper, S
hool of Informati
s,University of Edinburgh, (2003).http://www.d
s.ed.a
.uk/pepa/.

16 A. Benoit et al.[13℄ J. Hillston, A Compositional Approa
h to Performan
e Modelling, Cambridge University Press, 1996.[14℄ N. Karonis, B. Toonen, and I. Foster, MPICH-G2: A Grid-Enabled Implementation of the Message Passing Interfa
e,Journal of Parallel and Distributed Computing (JPDC), 63 (2003), pp. 551�563.[15℄ W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numeri
al Re
ipes in C: The Art of S
ienti�
Computing, Cambridge University Press, 1992.[16℄ F. Rabhi and S. Gorlat
h, Patterns and Skeletons for Parallel and Distributed Computing, Springer Verlag, 2002.[17℄ R. Wolski, N. Spring, and J. Hayes, The network weather servi
e: a distributed resour
e performan
e fore
asting servi
efor meta
omputing, Future Generation Computer Systems, 15 (1999), pp. 757�768.Edited by: Frédéri
 LoulergueRe
eived: June 3, 2004A

epted: June 14, 2005

