
S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 4, pp. 17�30. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSEXTENDING RESOURCE-BOUNDED FUNCTIONAL PROGRAMMING LANGUAGESWITH MUTABLE STATE AND CONCURRENCYSTEPHEN GILMORE, KENNETH MACKENZIE AND NICHOLAS WOLVERSON∗Abstra
t. Camelot is a resour
e-bounded fun
tional programming language whi
h
ompiles to Java byte
ode to run on theJava Virtual Ma
hine. We extend Camelot to in
lude language support for Camelot-level threads whi
h are
ompiled to nativeJava threads. We extend the existing Camelot resour
e-bounded type system to provide safety guarantees about the heap usage ofCamelot threads. We demonstrate the usefulness of our
on
urren
y extensions to the language by implementing a multi-threadedgraphi
al network
hat appli
ation whi
h
ould not have been expressed as naturally in the sequential, obje
t-free sublanguage ofCamelot whi
h was previously available.1. Introdu
tion. Fun
tional programming languages allow programmers to express algorithms
on
iselyusing high-level language
onstru
ts operating over stru
tured data, se
ured by strong type-systems. Togetherthese properties support the produ
tion of high-quality software for
omplex appli
ation problems. Fun
tionalprograms in strongly-typed languages typi
ally have relatively few programming errors when
ompared to similarappli
ations implemented in languages without these bene�
ial features.These desirable language properties mean that developers shed the burdens of expli
it memory manage-ment, but this has the asso
iated
ost that they typi
ally lose all
ontrol over the allo
ation and deallo
ation ofmemory. The Camelot language provides an intermediate way between
ompletely automati
 memory manage-ment and unassisted allo
ation and deallo
ation in that it provides type-safe storage management by re-bindingof addresses. The address of a datum
an be obtained in a pattern mat
h and used in an expression (to store adi�erent data value at that address), overwriting the
urrently-held value.The Camelot
ompiler targets the Java Virtual Ma
hine but the JVM does not provide an instru
tionto free memory,
onsigning this to the garbage
olle
tor, a generational
olle
tor with three generations andimplementations of stop-and-
opy and mark-sweep
olle
tions. Camelot allows more pre
ise
ontrol of memoryallo
ation, allowing in-pla
e modi�
ation of user-de�ned data stru
tures. The Camelot
ompiler supports variousresour
e-aware type systems whi
h ensure that memory re-use takes pla
e in a safe manner and also allow stati
predi
tion of heap-spa
e usage. Camelot uses a uniform representation for types whi
h are generated by the
ompiler, allowing data types to ex
hange storage
ells. This uniform representation is
alled the diamondtype [10, 12℄, implemented by a Diamond
lass in the Camelot run-time. The Camelot language implementsa type system whi
h assigns types to fun
tions whi
h re
ord the number of parameters whi
h they
onsume,and their types; the type of the result; and the number of diamonds
onsumed or freed. The out
ome is thatthe storage
onsumption requirements of a fun
tion are stati
ally
omputed at
ompile-time along with thetraditional Hindley-Milner type inferen
e pro
edure.The novel
ontribution of the present paper is to explain how su
h an unusually ri
h programming model
an be extended to in
orporate obje
t-oriented and
on
urrent programming idioms. This
ontribution is notjust a design: it has been realised in the latest release of the Camelot
ompiler.Stru
ture of this paper. In Se
tion 2 we present the Camelot language in order that the reader may under-stand the operational
ontext of the work. We follow this in Se
tion 3 with a dis
ussion of our obje
t-orientedextensions to Camelot. This leads on to a presentation of the use of threads in Se
tion 4 followed by an analysisof the management of threads by the run-time system in Se
tion 5. Se
tion 6 explains the relationship betweenthreads in Camelot and threads as traditionally implemented in
on
urrent fun
tional languages using �rst-
lass
ontinuations. Se
tion 7 details the impli
ations for veri�
ation of Camelot programs. Related work is surveyedin Se
tion 8 and
on
lusions follow after that.2. The Camelot language. The
ore of Camelot is a standard polymorphi
 ML-like fun
tional languagewhose syntax is based upon that of O'Caml; the main novelty lies in extensions whi
h allow the programmer toperform in-pla
e modi�
ations to heap-allo
ated data-stru
tures. These features are similar to those des
ribedin by Hofmann in [11℄, but in
lude some extra extensions for free list management. To retain a purely fun
tionalsemanti
s for the language in the presen
e of these extensions a linear type system
an be employed: in thepresent implementation, linearity
an be enfor
ed via a
ompiler swit
h. We are in the pro
ess of enhan
ing
∗Laboratory for Foundations of Computer S
ien
e, The University of Edinburgh, King's Buildings, Edinburgh, EH9 3JZ, S
otland17

18 S. Gilmore et al.the
ompiler by the addition of other, less restri
tive type systems whi
h still allow safe in-pla
e modi�
ations:more details will be given below.Cru
ial design
hoi
es for the
ompilation are transparen
y and an exa
t spe
i�
ation of the
ompilationpro
ess. The former ensures that the
ompilation does not modify the resour
e
onsumption in an unpredi
tableway. The latter provides a formal basis for using resour
e information inferred for the high-level language inproofs on the intermediate language.In the following se
tions we will give a brief des
ription of the stru
ture of the language. We will then outlinehow the language is
ompiled, and in parti
ular how the memory-management extensions are implemented.2.1. The stru
ture of Camelot. We will give some examples to indi
ate the basi
 stru
ture of Camelot;full details
an be found in [20℄.Datatypes are de�ned in the normal way:type intlist = Nil | Cons of int * intlisttype 'a polylist = NIL | CONS of 'a * 'a polylisttype ('a, 'b) pair = Pair of 'a *'bValues belonging to user-de�ned types are
reated by applying
onstru
tors and are de
onstru
ted using themat
h statement:let re
 length l = mat
h l withNil -> 0| Cons (h,t) -> 1+length tlet test () = let l = Cons(2, Cons(7,Nil))in length lAs
an be seen from this example,
onstru
tor arguments are en
losed in parentheses and are separated by
ommas. In
ontrast, fun
tion de�nitions and appli
ations whi
h require multiple arguments are written in a�
urried� style:let add a b = a+blet f x y z = add x (add y z)Despite this notation, the present version of Camelot does not support higher-order fun
tions; any appli-
ation of a fun
tion must involve exa
tly the same number of arguments as are spe
i�ed in the de�nition of thefun
tion.2.2. Diamonds and Resour
e Control. The Camelot
ompiler targets the Java Virtual Ma
hine, andvalues from user-de�ned datatypes are represented by heap-allo
ated obje
ts from a
ertain JVM
lass. Detailsof this representation will be given in Se
tion 2.4.Consider the following fun
tion whi
h uses an a

umulator to reverse a list of integers (as de�ned by theintlist type above).let re
 rev l a

 = mat
h l withNil -> a

| Cons (h,t) -> rev t (Cons (h,a

))let reverse l = rev l NilThis fun
tion allo
ates an amount of memory equal to the amount o

upied by the input list. If no furtherreferen
e is made to the input list then the heap spa
e whi
h it o

upies may eventually be re
laimed by theJVM garbage
olle
tor.In order to allow more pre
ise
ontrol of heap usage, Camelot in
ludes
onstru
ts allowing re-use of heap
ells. There is a spe
ial type known as the diamond type (denoted by <>) whose values represent blo
ks of heap-allo
ated memory, and Camelot allows expli
it manipulation of diamond obje
ts. This is a
hieved by equipping
onstru
tors and mat
h rules with spe
ial annotations referring to diamond values. Here is the reverse fun
tionrewritten using diamonds so that it performs in-pla
e reversal:let re
 rev l a

 = mat
h l withNil -> a

| Cons (h,t)�d -> rev t (Cons (h,a

)�d)let reverse l = rev l NilThe annotation ��d� on the �rst o

urren
e of Cons tells the
ompiler that the diamond value d is to bebound to a referen
e to the spa
e used by the list
ell. The annotation on the se
ond o

urren
e of Cons spe
i�es

Extending Camelot With Mutable State and Con
urren
y 19that the list
ell Cons(h,a

) should be
onstru
ted in the diamond obje
t referred to by d, and no new spa
eshould be allo
ated on the heap.One might not always wish to re-use a diamond value immediately. This
an sometimes
ause di�
ultysin
e su
h diamonds might then have to be returned as part of a fun
tion result so that they
an be re
y
ledby other parts of the program. For example, the alert reader may have noti
ed that the list reversal fun
tionabove does not in fa
t reverse lists entirely in pla
e. When the user
alls reverse, the invo
ation of the Nil
onstru
tor in the
all to rev will
ause a new list
ell to be allo
ated. Also, the Nil value at the end of theinput list o

upies a diamond, and this is simply dis
arded in the se
ond line of the rev fun
tion (and will besubje
t to garbage
olle
tion if there are no other referen
es to it).The overall e�e
t is that we
reate a new diamond before
alling the rev fun
tion and are left with an extradiamond after the
all had
ompleted. We
ould re
over the extra diamond by making the reverse fun
tionreturn a pair
onsisting of the reversed list and the spare diamond, but this is rather
lumsy and programsqui
kly be
ome very
omplex when using this kind of te
hnique.To avoid this kind of problem, unwanted diamonds
an be stored on a free list for later use. This is doneby using the annotation ��_� as in the following example whi
h returns the sum of the entries in an integer list,destroying the list in the pro
ess:let re
 sum l a

 = mat
h l withNil�_ -> a

| Cons (h,t)�_ -> sum t (a

+h)The question now is how the user retrieves a diamond from the free list. In fa
t, this happens automati
allyduring
onstru
tor invo
ation. If a program uses an unde
orated
onstru
tor su
h as Nil or Cons(4,Nil) thenif the free list is empty the JVM new instru
tion is used to allo
ate memory for a new diamond obje
t on theheap; otherwise, a diamond is removed from the head of the free list and is used to
onstru
t the value. Itmay o

asionally be useful to expli
itly return a diamond to the free list and an operator free: <> -> unit isprovided for this purpose.There is one �nal notational re�nement. The in-pla
e list reversal fun
tion above is still not entirelysatisfa
tory sin
e the Nil value
arries no data but is nonetheless allo
ated on the heap. We
an over
ome thisby rede�ning the intlist type astype intlist = !Nil | Cons of int * intlistThe ex
lamation mark dire
ts the
ompiler to represent the Nil
onstru
tor by the JVM null referen
e. Withthe new de�nition of intlist the original list-reversal fun
tion performs true in-pla
e reversal: no heap spa
eis
onsumed or destroyed when the reverse fun
tion is applied. The ! annotation
an be used for a single zero-argument
onstru
tor in any datatype de�nition. In addition, if every
onstru
tor for a parti
ular datatype isnullary then they may all be pre
eded by!, in whi
h
ase they will be represented by integer values at runtime.We have deliberately
hosen to expose this
hoi
e to the programmer (rather than allowing the
ompiler toautomati
ally
hoose the most e�
ient representation) in keeping with our poli
y of not allowing the
ompilerto perform optimisations whi
h have unexpe
ted results on resour
e
onsumption.The features des
ribed above are very powerful and
an lead to many kinds of program error. For example,if one applied the reverse fun
tion to a sublist of some larger list then the small list would be reversed properly,but the larger list
ould be
ome partially reversed. Perhaps worse, a diamond obje
t might be used in severaldi�erent data stru
tures of di�erent types simultaneously. Thus a list
ell might also be used as a tree node, andany modi�
ation of one stru
ture might lead to modi�
ations of the other. The simplest way of preventing thiskind of problem is to require linear usage of heap-allo
ated obje
ts, whi
h means that variables bound to su
hobje
ts may be used at most on
e after they are bound. Details of this approa
h
an be found in Hofmann'spaper [11℄. Stri
t linearity would require one to write the list length fun
tion as something likelet re
 length l = mat
h l withNil -> Pair (0, Nil)| Cons(h,t)�d ->let p = length tin mat
h p withPair(n, t1)�d1 -> Pair(n+1, Cons(h,t1)�d)�d1It is ne
essary to return a new
opy of the list sin
e it is illegal to refer to l after
alling length l.Our
ompiler has a swit
h to enfor
e linearity, but the example demonstrates that the restri
tive nature

20 S. Gilmore et al.of linear typing
an lead to unne
essary
ompli
ations. Aspinall and Hofmann [1℄ give a type system whi
hrelaxes the linearity
ondition while still allowing safe in-pla
e updates, and Mi
hal Kone£ný generalises thisstill further in [15, 16℄. As part of the MRG proje
t, Kone£ný has implemented a type
he
ker for a variant ofthe type system of [15℄ adapted to Camelot.A di�erent approa
h to providing heap-usage guarantees is given by Hofmann and Jost in [13℄, where analgorithm is presented whi
h
an be used to stati
ally infer heap-usage bounds for fun
tional programs of asuitable form. In
ollaboration with the MRG proje
t, Ste�en Jost has implemented a variant of this inferen
ealgorithm for Camelot: the implementation is des
ribed in [14℄. Both of these implementations are
urrentlystand-alone programs, but we are in the pro
ess of integrating them with the Camelot
ompiler.One of our goals in the design of Camelot was to de�ne a language whi
h
ould be used as a testbed fordi�erent heap-usage analysis methods. The in
lusion of expli
it diamonds �ts the type systems of [1, 15, 16℄, andthe in
lusion of the free list fa
ilitates the Hofmann-Jost inferen
e algorithm, whi
h requires that all memorymanagement takes pla
e via a free list.2.3. Compilation of expressions. Camelot is initially
ompiled into the Grail intermediate language[5, 19℄ whi
h is essentially a fun
tional form of Java byte
ode. This pro
ess is fa
ilitated by an initial phase inwhi
h several transformations are applied to the abstra
t syntax tree.2.3.1. Monomorphisation. Firstly, all polymorphism is removed from the program. For polymorphi
types (αn, . . . , α1) t su
h as α list we examine the entire program to determine all instantiations of the typevariables, and
ompile a separate datatype for ea
h distin
t instantiation. Similarly, whenever a polymorphi
fun
tion is de�ned the program is examined to �nd all uses of the fun
tion and a monomorphi
 fun
tion of theappropriate type is generated for ea
h distin
t instantiation of types.2.3.2. Normalisation. After monomorphisation there is a phase referred to as normalisation whi
h trans-forms the Camelot program into a form whi
h
losely resembles Grail.Firstly the
ompiler ensures that all variables have unique names. Any dupli
ations are resolved by gener-ating new names. This allows us to map Camelot variable names dire
tly onto Grail variable names (whi
h inturn map onto JVM lo
al variable lo
ations) with no danger of
lashes arising.Next, we give names to intermediate results in many
ontexts by repla
ing
omplex expressions with vari-ables. For example, the expression f(a + b + c) would be repla
ed by an expression of the form let t1 =
a + b in let t2 = t1 + c in f(t2). The introdu
tion of names for intermediate results
an produ
e a largenumber of Grail (and hen
e JVM) variables. After the sour
e
ode has been
ompiled to Grail the number oflo
al variables is minimised by applying a standard register allo
ation algorithm (see [30℄).A �nal transformation ensures that let-expressions are in a �straight-line� form. After all of these trans-formations have been performed expressions have been redu
ed to a form whi
h we refer to as normalisedCamelotThe stru
ture of normalised Camelot (whi
h is in fa
t in a type of A-normal form [9℄) is su�
iently
loseto that of Grail that it is fairly straightforward to translate from the former to the latter. Another bene�t ofnormalisation is that it is easier to write and implement type systems for normalised Camelot. The fa
t thatthe
omponents of many expressions are atoms rather than
omplex subexpressions means that typing rules
an have very simple premisses.2.4. Compilation of values. Camelot has various primitive types (int, float, et
.) whi
h
an betranslated dire
tly into
orresponding JVM types. The
ompilation of user-de�ned datatypes, however, israther more
ompli
ated. Obje
ts belonging to datatypes are represented by members of a single JVM
lasswhi
h we will refer to as the diamond
lass. Obje
ts of the diamond
lass
ontain enough �elds to representany member of any datatype de�ned in the program. Ea
h instan
e X of the diamond
lass
ontains an integertag �eld whi
h identi�es the
onstru
tor with whi
h X is asso
iated. The diamond
lass also
ontains a stati
�eld pointing to the free list. The free list is managed via the stati
 methods allo
 (whi
h returns the diamondat the head of the free list, or
reates a new diamond by
alling new if the free list is empty), and free whi
hpla
es a diamond obje
t on the free list. The diamond
lass also has overloaded stati
 methods
alled makeand fill, one instan
e of ea
h for every sequen
e of types appearing in a
onstru
tor. The make methods areused to implement ordinary
onstru
tor appli
ation; ea
h takes an integer tag value and a sequen
e of argumentvalues and
alls allo
 to obtain an instan
e of the diamond
lass, and then
alls a
orresponding fill method

Extending Camelot With Mutable State and Con
urren
y 21to �ll in the appropriate �elds with the tag and the arguments. The fill methods are also used when theprogrammer reuses an existing diamond to
onstru
t a datatype value.It
an be argued that this representation is ine�
ient in that datatype values are often represented by JVMobje
ts whi
h are larger than they need to be. This is true, but is di�
ult to avoid due to the type-safe natureof JVM memory management whi
h prevents one from re-using the heap spa
e o

upied by a value of one typeto store a value of a di�erent type. We wish to be able to reuse heap spa
e, but this
an be impossible if obje
ts
an
ontain only one type of data. With the
urrent s
heme one
an easily write a heapsort program whi
hoperates entirely in-pla
e. List
ells are large enough to be reused as heap nodes and this allows a heap to bebuilt using
ells obtained by destroying the input list. On
e the heap has been built it
an in turn be destroyedand the spa
e reused to build the output list. In this
ase, the amount of memory o

upied by a list
ell islarger than it needs to be, but the overall amount of store required is less than would be the
ase if separate
lasses were used to
ontain list
ells and heap nodes.In the
urrent
ontext it
an be
laimed that it is better to have an ine�
ient representation about whi
h we
an give
on
rete guarantees than an e�
ient one whi
h about we
an say nothing. Most of the programs whi
hwe have written so far use a limited number of datatypes so that the overhead introdu
ed by the monolithi
representation for diamonds is not too severe. However, it is likely that for very large programs this overheadwould be
ome una

eptably large. One possibility whi
h we have not yet explored is that it might be possibleto a
hieve more e�
ient heap usage by using data�ow te
hniques to follow the �ow of diamonds through theprogram and dete
t datatypes whi
h are never used in an overlapping way. One
ould then equip a programwith several smaller diamond
lasses whi
h would represent su
h non-overlapping types.These problems
ould be avoided by
ompiling to some platform other than the JVM (for example toC or to a spe
ialised virtual ma
hine) where
ompa
tion of heap regions would be possible. The Hofmann-Jost algorithm is still appli
able in this situation, so it would still be feasible to produ
e resour
e guarantees.However, it was a fundamental de
ision of the MRG proje
t to use the JVM, based on the fa
ts that the JVMis widely deployed and very well-known, and that resour
e usage is a genuine
on
ern in many
ontexts wherethe JVM is used. Our present approa
h allows us to produ
e
on
rete guarantees at the
ost of some overhead;we hope that at a later stage a more sophisti
ated approa
h (su
h as the one suggested above) might allow usto redu
e the overheads while still obtaining guaranteed resour
e bounds.2.5. Remarks. There are various ways in whi
h Camelot
ould be extended. The la
k of higher-orderfun
tions is in
onvenient, but the resour
e-aware type systems whi
h we use are presently unable to deal withhigher-order fun
tions, partly be
ause of the fa
t that these are normally implemented using heap-allo
ated
losures whose size may be di�
ult to predi
t. A possible strategy for dealing with this whi
h we are
urrentlyinvestigating is Reynolds' te
hnique of defun
tionalization [24℄ whi
h transforms higher-order programs into�rst-order ones, essentially by performing a transformation of the sour
e
ode whi
h repla
es
losures withmembers of datatypes. This has the advantage that extra spa
e required by
losures is exposed at the sour
elevel, where it is amenable to analysis by the heap-usage inferen
e te
hniques mentioned earlier.3. Obje
t-oriented extensions. The
ore Camelot language as des
ribed in Se
tion 2 above enables theprogrammer to write a program with a predi
table resour
e usage; however, only primitive intera
tion with theoutside world is possible, through
ommand line arguments, �le input and printed output. To be able to writea full interfa
e for a game or utility to be run on a mobile devi
e, Camelot programs must be able to interfa
ewith external Java libraries. Similarly, the programmer may wish to utilise devi
e-spe
i�
 libraries, or Java'sextensive
lass library.This se
tion des
ribes our obje
t-oriented extension to Camelot. This is primarily intended to allow Camelotprograms to a

ess Java libraries. It would also be possible to write resour
e-
erti�ed libraries in Camelot for
onsumption by standard Java programs, or indeed use the obje
t system for OO programming for its own sake,but giving Camelot programs a

ess to the outside world is the main obje
tive.In designing an obje
t system for Camelot, many
hoi
es are made for us, or at least tightly
onstrained.We wish to
reate a system allowing inter-operation with Java, and we wish to
ompile an obje
t system toJVML. So we are almost for
ed into drawing the obje
t system of the JVM up to the Camelot level, and
annotseriously
onsider a fundamentally di�erent system.On the other hand, the type system is strongly in�uen
ed by the existing Camelot type system. Thereis more s
ope for
hoi
e, but implementation
an be
ome
omplex, and an overly
omplex type system is

22 S. Gilmore et al.undesirable from a programmer's point of view. We also do not want to interfere with type systems for resour
esas mentioned above.We shall �rst attempt to make the essential features of Java obje
ts visible in Camelot in a simple form,with the view that a simple abbreviation or module system
an be added at a later date to make things morepalatable if desired.3.1. Basi
 Features. We shall view obje
ts as re
ords of possibly mutable �elds together with relatedmethods, although Camelot has no existing re
ord system. We de�ne the usual operations on these obje
ts,namely obje
t
reation, method invo
ation, �eld a

ess and update, and
asting and mat
hing. As one mightexpe
t we
hoose a
lass-based system
losely modelling the Java obje
t system. Consequently we must a
-knowledge Java's uses of
lasses for en
apsulation, and asso
iate stati
 methods and �elds with
lasses also.We now
onsider these features. The examples below illustrate the new
lasses of expressions we add toCamelot.Stati
 method
alls There is no
on
eptual di�eren
e between stati
 methods and fun
tions, ignoring the useof
lasses for en
apsulation, so we
an treat stati
 method
alls just like fun
tion
alls.java.lang.Math.max a bStati
 �eld a

ess Some libraries require the use of stati
 �elds. We should only need to provide a

ess to
onstant stati
 �elds, so they
orrespond to simple values.java.math.BigInteger.ONEObje
t
reation We
learly need a way to
reate obje
ts, and there is no need to deviate from the newoperator. By analogy with standard Camelot fun
tion appli
ation syntax (i.e.
urried form) we have:new java.math.BigInteger "101010" 2Instan
e �eld a

ess To retrieve the value of an instan
e variable, we writeobje
t#fieldwhereas to update that value we use the syntaxobje
t#field <- valueassuming that field is de
lared to be a mutable �eld.It
ould be argued that allowing unfettered external a

ess to an obje
t's variables is against the spiritof OO, and more to the point inappropriate for our small language extension, but we wish to allow easyinteroperability with any external Java
ode.Method invo
ation Drawing inspiration from the O'Caml syntax, and again using a
urried form, we haveinstan
e method invo
ation:myMap#put key valueNull values In Java, any method with obje
t return type may return the null obje
t. For this reason we adda
onstru
tisnull ewhi
h tests if the expression e is a null value.Casts and type
ase It may be o

asionally be ne
essary to
ast obje
ts up to super
lasses, for example tofor
e the intended
hoi
e between overloaded methods. We will also want to re
over sub
lasses, su
has when removing an obje
t from a
olle
tion. Here we propose a simple notation for up-
asting:obj :> ClassThis notation is that of O'Caml, also borrowed by MLj (des
ribed in [3℄). To handle down-
asting weshall extend patterns in the manner of type
ase (again like MLj) as follows:mat
h obj with o :> C1 -> o.a()| o :> C2 -> o.b()| _ -> obj.
()Here o is bound in the appropriate subexpressions to the obje
t obj viewed as an obje
t of type C1 orC2 respe
tively. As in datatype mat
hes we require that every possible
ase is
overed; here this meansthat the default
ase is mandatory. We also require that ea
h
lass is a sub
lass of the type of obj, andsuggest that a
ompiler warning should be given for any redundant mat
hes.Unlike MLj we
hoose not to allow down
asting outside of the new form of mat
h statement, partlybe
ause at present Camelot has no ex
eption support to handle invalid down-
asts.As usual, the arguments of a (stati
 or instan
e) method invo
ation may be sub
lasses of the method's argumenttypes, or
lasses implementing the spe
i�ed interfa
es.

Extending Camelot With Mutable State and Con
urren
y 23The following example demonstrates some of the above features, and illustrates the ease of interoperability.Note that the type of the parameter l is spe
i�ed by a
onstraint here. Type inferen
e does not
ross
lassboundaries in Camelot.let
onvert (l: string list) =mat
h l with [℄ -> new java.util.LinkedList ()| h::t ->let ll =
onvert tin let _ = ll#addFirst hin ll3.2. De�ning
lasses. On
e we have the ability to write and
ompile programs using obje
ts, we may aswell start writing
lasses in Camelot. We must be able to
reate
lasses to implement
allba
ks, su
h as in theSwing GUI system whi
h requires us to write stateful adaptor
lasses. Otherwise, as mentioned previously, wemay wish to write Camelot
ode to be
alled from Java, for example to
reate a resour
e-
erti�ed library foruse in a Java program, and de�ning a
lass is a natural way to do this. Implementation of these
lasses willobviously be tied to the JVM, but the form these take in Camelot has more s
ope for variation.We allow the programmer to de�ne a
lass whi
h may expli
itly sub
lass another
lass, and implement anumber of interfa
es. We also allow the programmer to de�ne (possibly mutable) �elds and methods, as wellas stati
 methods and �elds for the purpose of
reating a spe
i�

lass for interfa
ing with Java. We naturallyallow referen
e to this.The form of a
lass de
laration is given below. Items within angular bra
kets 〈. . .〉 are optional.
classdecl ::=
lass cname = 〈scname with〉 body end

body ::= 〈interfaces〉 〈fields〉 〈methods〉

interfaces ::= implement iname 〈interfaces〉

fields ::= field 〈fields〉

methods ::= method 〈methods〉This de�nes a
lass
alled cname, implementing the spe
i�ed interfa
es. The optional scname gives the nameof the dire
t super
lass; if it is not present, the super
lass is taken to be the root of the
lass hierar
hy, namelyjava.lang.Obje
t. The
lass cname inherits the methods and values present in its super
lass, and these maybe referred to in its de�nition.As well as a super
lass, a
lass
an de
lare that it implements one or more interfa
es. These
orresponddire
tly to the Java notion of an interfa
e. Java libraries often require the
reation of a
lass implementing aparti
ular interfa
e�for example, to use a Swing GUI one must
reate
lasses implementing various interfa
esto be used as
allba
ks. Note that at the
urrent time it is not possible to de�ne interfa
es in Camelot, theyare provided purely for the purpose of interoperability.Now we des
ribe �eld de
larations.
field ::= field x : τ | field mutable x : τ | val x : τInstan
e �elds are de�ned using the keyword field, and
an optionally be de
lared to be mutable. Stati
 �eldsare de�ned using val, and are non-mutable. In a sense these mutable �elds are the �rst introdu
tion of side-e�e
ts into Camelot. While the Camelot language is de�ned to have an array type, this has largely been ignoredin our more formal treatments as it is not fundamental to the language. Mutable �elds, on the other hand,are fundamental to our notion of obje
t orientation, so we expe
t any extension of Camelot resour
e-
ontrolfeatures to obje
t-oriented Camelot to have to deal with this properly.Methods are de�ned as follows, where 1 ≤ i1, . . . , im ≤ n.

method ::= maker(x1:τ1) . . . (xn:τn) 〈: super xi1
. . . xim

〉 = exp

| method m(x1:τ1) . . .(xn:τn) : τ = exp

| method m() : τ = exp

| let m(x1:τ1) . . . (xn:τn) : τ = exp

| let m() : τ = exp

24 S. Gilmore et al.Again, we use the usual let syntax to de
lare what Java would
all stati
 methods. Stati
 methods are simplymonomorphi
 Camelot fun
tions whi
h happen to be de�ned within a
lass, although they are invoked usingthe syntax des
ribed earlier. Instan
e methods, on the other hand, are a
tually a fundamentally new additionto the language. We
onsider the instan
e methods of a
lass to be a set of mutually re
ursive monomorphi
fun
tions, in whi
h the spe
ial variable this is bound to the
urrent obje
t of that
lass.We
an
onsider the methods as mutually re
ursive without using any additional syntax (su
h as andblo
ks) sin
e they are monomorphi
. ML uses and blo
ks to group mutually re
ursive fun
tions be
ause itslet-polymorphism prevents any of these fun
tions being used polymorphi
ally in the body of the others, but thisis not an issue here. In any
ase this impli
it mutual re
ursion feels appropriate when we are
ompiling to theJava Virtual Ma
hine, and have to
ome to terms with open re
ursion.In addition to stati
 and instan
e methods, we also allow a spe
ial kind of method
alled a maker. This isjust what would be
alled a
onstru
tor in the Java world, but as in [8℄ we use the term maker in order to avoid
onfusion between obje
t and datatype
onstru
tors. The maker term above de�nes a maker of the
ontaining
lass C su
h that if new C is invoked with arguments of type τ1 . . . τn, an obje
t of
lass C is
reated, thesuper
lass maker is exe
uted (this is the zero-argument maker of the super
lass if none is expli
itly spe
i�ed),expression exp (of unit type) is exe
uted, and the obje
t is returned as the result of the new expression. Every
lass has at least one maker; a
lass with no expli
it maker is taken to have the maker with no arguments whi
hinvokes the super
lass zero-argument maker and does nothing. This impli
it maker is inserted by the
ompiler.3.3. Polymorphism. We remarked earlier that stati
 methods are basi
ally monomorphi
 Camelot fun
-tions together with a form of en
apsulation, but it is worth
onsidering polymorphism more expli
itly. obje
t-oriented Camelot methods, whether stati
 or instan
e methods, are not polymorphi
. That is, they have subtypepolymorphism but not parametri
 polymorphism (generi
ity), unlike Camelot fun
tions whi
h have parametri
but not subtype polymorphism. This is not generally a problem, as most polymorphi
 fun
tions will involvemanipulation of polymorphi
 datatypes, and
an be pla
ed in the main program, whereas most methods willbe interfa
ing with the Java world and thus should
onform to Java's subtyping polymorphism.3.4. Translation. As mentioned earlier, the present Camelot
ompiler targets the JVM, via the inter-mediate language Grail. Translating the obje
t-oriented features whi
h have just been des
ribed is relativelystraightforward, as the JVM (and Grail) provide what we need. A detailed formal des
ription of the translationpro
ess
an be found in [31℄3.5. Obje
ts and Resour
e Types. As des
ribed earlier, the use of diamond annotations on Camelotprograms in
ombination with
ertain resour
e-aware type systems allows the heap usage of those programsto be inferred, as well as allowing some in-pla
e update to o

ur. Clearly the presen
e of mutable obje
ts inobje
t-oriented Camelot also provides for in-pla
e update. However by allowing arbitrary obje
t
reation wealso repli
ate the unbounded heap-usage problem solved for datatypes. Perhaps more seriously, we are allowingCamelot programs to invoke arbitrary Java
ode, whi
h may use an unlimited amount of heap spa
e.Firstly
onsider the se
ond problem. Even if we have some way to pla
e a bound on the heap spa
e used byour new OO features within a Camelot program, external Java
ode may use arbitrary amounts of heap. Thereseem to be a few possible approa
hes to this problem, none of whi
h are parti
ularly satisfa
tory. We
ouldde
ide to only allow the use of external
lasses if they
ame with a proof of bounded heap usage. Constru
tinga resour
e-bounded Java
lass library or inferring resour
e bounds for an existing library would be a massiveundertaking, although perhaps less problemati
 with the smaller
lass libraries used with mobile devi
es. Thissuggestion seems somewhat unrealisti
.Alternatively, we
ould simply allow the resour
e usage of external methods to be stated by the programmeror library
reator. This extends the trusted
omputing base in the sense of resour
es, but seems a morereasonable solution. The other alternative�
onsidering resour
e-bound proofs to only refer to the resour
esdire
tly
onsumed by the Camelot
ode�seems unrealisti
, as one
ould easily (and even a

identally)
heatby using Java libraries to do some memory-
onsuming �dirty work�.The issue of heap-usage internal to obje
t-oriented Camelot programs seems more tra
table, although wedo not propose a solution here. A �rst attempt might mimi
 the te
hniques used earlier for datatypes; perhapswe
an adapt the use of diamonds and linear type systems? The use of diamonds for in-pla
e update is irrelevanthere, and indeed relies on the uniform representation of datatypes by obje
ts of a parti
ular Java
lass. Sin
ewe are hardly going to represent every Java obje
t by an obje
t of one
lass we
ould not hope to have su
h adire
t
orrelation between diamonds and
hunks of storage.

Extending Camelot With Mutable State and Con
urren
y 25However, we
ould imagine an abstra
t diamond whi
h represents the heap storage used by an arbitraryobje
t, and require any instan
e of new to supply one of these diamonds, in order that the total number ofobje
ts
reated is limited. Unfortunately re
lamation of su
h an abstra
t diamond would only
orrespond tomaking an obje
t available to garbage
olle
tion, rather than de�nitely being able to re-use the storage. Evenso, su
h a system might be able to give a measure of the total number of obje
ts
reated and the maximumnumber in a
tive use simultaneously.4. Using threads in Camelot. Previously the JVM had been used simply as a
onvenient run-timefor the Camelot language but the obje
t-oriented extensions des
ribed above allow the Java namespa
e to bea

essed from a Camelot appli
ation. Thus a Camelot appli
ation
an now
reate Java obje
ts and invoke Javamethods. Figure 4.1 shows the implementation of a remote input reader in RoundTable, a networked
hatappli
ation written in Camelot. This example
lass streams input from a network
onne
tion and renders it ina display area in the graphi
al user interfa
e of the appli
ation.(* Thread to read from the network, passing data to a display obje
t *)
lass remote = java.lang.Threadwith�eld input : java.io.BufferedReader�eld disp : displaymaker (i : java.io.BufferedReader)(d : display) =let _ = input ← i in disp ← dmethod run() : unit =let line = this#input#readLine()in if isnullobj line then () elselet _ = this#disp#append linein this#run()endFig. 4.1. An extra
t from the RoundTable
hat appli
ation showing the OO extensions to CamelotThis example shows the Camelot syntax for method invo
ation (obj#meth()), �eld a

ess (obj#field) andmutable �eld update (f <- exp). Both of these are familiar from Obje
tive Caml.This example also shows that even in the obje
t-oriented fragment of the Camelot language that the naturalde�nition style for unbounded repetition is to write re
ursive method
alls. The Camelot
ompiler
onverts tail-
alls of instan
e methods (su
h as this#run) into while-loops so that methods implemented as in Figure 4.1run in
onstant spa
e and do not over�ow the Java run-time sta
k. In
ontrast re
ursive method
alls in Javaare not optimised in this way and would lead to the program over�owing the sta
k.A s
reenshot of a window from the RoundTable appli
ation is shown in Figure 4.2. This shows date-and-time-stamped messages arriving spontaneously in the window. The appli
ation o�ers the ability to threadmessages by
ontent or to sort them by time. The sorting routine is guaranteed by type
he
king to run in
onstant spa
e be
ause addresses of
ons
ells in the list of messages are re-
y
led using the free list as des
ribedin Se
tion 2.2.
Fig. 4.2. S
reenshot of the Camelot RoundTable appli
ation

26 S. Gilmore et al.The extension of the Camelot
ompiler to support interoperation with Java fa
ilitates the implementationof graphi
al appli
ations su
h as these. The Java APIs used by this appli
ation in
lude the Swing graphi
aluser interfa
e
omponents, networking, threads and pluggable look-and-feel
omponents su
h as the Skin look-and-feel shown above.5. Management of threads. In designing a thread management system for Camelot our strongest re-quirement was to have a system whi
h works harmoniously with the storage management system already inpla
e for Camelot. One aspe
t of this is that the resour
e
onsumption of a single-threaded Camelot program
an be
omputed in line with the reasoning explained in Se
tion 1.In moving from one to multiple threads the most important question with respe
t to memory usage is thefollowing. Should the free list of storage whi
h
an be reused be a single stati
 instan
e shared a
ross all threads;or should ea
h thread separately maintain its own lo
al instan
e of the free list?In the former
ase the a

essor methods for the free list must be syn
hronised in order for data stru
turesnot to be
ome disordered by
on
urrent write operations. Syn
hronisation in
urs an overhead of lo
king andunlo
king the parent of the �eld when entering and leaving a
riti
al region. This imposes a run-time penalty.In the latter
ase there is no requirement for a

ess to the free list to be syn
hronised; ea
h thread has itsown free list. In this
ase, though, the free memory on ea
h free list is private, and not shared. This means thatthere will be times when one thread allo
ates memory (with a Java new instru
tion) while another thread hasunused memory on its lo
al free list. This imposes a penalty on the program memory usage, and this form ofthread management would lead to programs typi
ally using more memory overall.We have
hosen the former s
heme; we have a single stati
 instan
e of a free list shared a
ross all threads. Ourprograms will take longer than their optimum run-time but memory performan
e will be improved. Cru
ially,predi
tability of memory
onsumption is retained.There are several possible variants on this se
ond s
heme whi
h we
onsidered. They were not right for ourpurposes but might be right for others. One interesting alternative is a hybrid of the two approa
hes is whereea
h thread had a bounded (small) lo
al free list and �ushes this to the global free list when it be
omes full.This would redu
e the overhead of
alls to a

ess the syn
hronised global free list, while preventing threads fromkeeping too many unused memory
ells lo
ally. This
ould be a suitable
ompromise between the two extremesbut the analysis of this approa
h would inevitably be more
ompli
ated than the approa
h whi
h we adopted(a single stati
 free list).A se
ond alternative would be to implement weak lo
al free lists. In this
onstru
tion ea
h thread would haveits own private free list implemented using weak referen
es whi
h are referen
es that are not strong enough bythemselves to keep an obje
t alive if no genuine referen
es to it are retained. Weak referen
es are typi
ally usedto implement
a
hes and se
ondary indexes for data stru
tures. Other high-level garbage-
olle
ted languagessu
h as O'Caml implement weak referen
es also. This s
heme was not usable by us be
ause the Camelot
ompiler also targets small JVMs on handheld devi
es and the J2ME does not provide the ne
essary
lass(java.lang.ref.WeakReferen
e).The analysis of memory
onsumption of Camelot programs is based on the
onsumption of memory by heap-allo
ated data stru
tures. The present analysis of Camelot programs is based on a single-threaded ar
hite
ture.To assist with the development of an analysis method for multi-threaded Camelot programs we require thatdata stru
tures in a multi-threaded Camelot program are not shared a
ross threads. For example, it is notpossible to hold part of a list in one thread and the remainder in another. This requirement means that thespa
e
onsumption of a multi-threaded Camelot program is obtained as the sum of per-thread spa
e allo
ationplus the spa
e requirements of the threads themselves.At present our type system takes a

ount of heap allo
ations but does not take a

ount of sta
k growth.Thus Camelot programs
an potentially (and sometimes do in pra
ti
e) fail at runtime with ajava.lang.Sta
kOverflowError ex
eption if the programmer overuses the idiom of working with families ofmutually-re
ursive fun
tions and methods whi
h
ompute with deeply-nested re
ursion.Even sophisti
ated fun
tional language
ompilers for the JVM su�er from this problem and some, su
has MLj [4, 3℄, do not even implement tail-
all elimination in
ases where the Camelot
ompiler does. Severalauthors
onsider the absen
e of support for tail
all elimination to be a failing of the JVM [2, 22℄. An approa
hto eliminating tail
alls su
h as that used by Funnel [25℄ would be a useful next improvement to the Camelot
ompiler. Te
hniques su
h as trampolining have also been shown to work for the JVM [29℄. The prin
ipalreason why the JVM does not automati
ally perform tail-
all optimisation is that the Java se
urity model may

Extending Camelot With Mutable State and Con
urren
y 27require inspe
tion of the sta
k to ensure that a parti
ular method has su�
ient privileges to exe
ute anothermethod; eliminating tail-
alls would lead to the dis
arding of sta
k frames whi
h
ontain the ne
essary se
urityinformation. However, Clements and Felleisen have re
ently proposed another se
urity model whi
h allowssafe tail-
all optimisation [7℄; they
laim that this requires only a minor
hange to the me
hanism
urrentlyused by the JVM (and other platforms), so there may be some hope that future JVM implementations willsupport proper tail-
all optimisation and thus simplify the pro
ess of implementing fun
tional languages forthe JVM.6. A simple thread model for Camelot. To retain predi
tability of memory behaviour in Camelot werestri
t the programming model o�ered by Java's threads.Firstly, we disallow use of the stop and suspend methods from Java's threads API. These are depre
atedmethods whi
h have been shown to have poor programming properties in any
ase. Use of the stop methodallows obje
ts to be exposed in a damaged state, part-way through an update by a thread. Use of suspendfreezes threads but these do not release the obje
ts whi
h they are holding lo
ks on, thereby often leadingto deadlo
ks. Dispensing with pre-emptive thread interruption means that there is a
orresponden
e betweenCamelot threads and lightweight threads implemented using �rst-
lass
ontinuations,
all/

 and throw, asare usually to be found in multi-threaded fun
tional programming languages [6, 18℄.Se
ondly, we require that all threads are run, again for the purposes of supporting predi
tability of memoryusage. In the Java language thread allo
ation (using new) is separated from thread initiation (using the startmethod in the java.lang.Thread
lass) and there is no guarantee that allo
ated threads will ever be run atall. In multi-threaded Camelot programs we require that all threads are started at the point where they are
onstru
ted.Finally, we have a single
onstru
tor for
lasses in Camelot be
ause our type system does not supportoverloading. This must be passed initial values for all the �elds of the
lass (be
ause the thread will initiateautomati
ally). All Camelot threads ex
ept the main thread of
ontrol are daemon threads, whi
h means thatthe Java Virtual Ma
hine will not keep running if the main thread exits.let re
 threadname(args) =let locals = subexps in threadname(args)let threadInstance =new threadname(actuals) in . . .

lass threadnameHolder (args) = java.lang.Threadwithlet re
 threadname() =let locals = subexps in threadname()method run() : unit =let _ = this#setDaemon(true)in threadname()endlet threadInstance =new threadnameHolder (actuals) inlet _ = threadInstance#start() in . . .Fig. 6.1. Derived forms for thread
reation and use in CamelotThis simpli�ed idiom of thread use in Camelot allows us to de�ne derived forms for Camelot threads whi
habbreviate the use of threads in the language. These derived forms
an be implemented by
lass hoisting,moving a generated
lass de�nition to the top level of the program. This translation is outlined in Figure 6.1.7. Threads and (non-)termination. The Camelot programming language is supported not only by astrong, expressive type system but also by a program logi
 whi
h supports reasoning about the time and spa
eusage of programs in the language. However, the logi
 is a logi
 of partial
orre
tness, whi
h is to say that the
orre
tness of the program is guaranteed only under the assumption that the program terminates. It would

28 S. Gilmore et al.be possible to
onvert this logi
 into a logi
 of total
orre
tness whi
h would guarantee termination instead ofassuming it but proofs in su
h a logi
 would be more di�
ult to produ
e than proofs in the partial
orre
tnesslogi
.It might seem nonsensi
al to have a logi
 of partial
orre
tness to guarantee exe
ution times of programs(�this program either terminates in 20 se
onds or it never does�) but even these proofs about exe
ution times havetheir use. They are used to provide a bound on the running time of a program so that if this time is ex
eeded theprogram may be terminated for
ibly by the user or the operating system be
ause after this point it seems thatthe program will not terminate. Su
h a priori information about exe
ution times would be useful for s
hedulingpurposes. In Grid-based
omputing environments Grid servi
e providers s
hedule in
oming jobs on the basis ofestimated exe
ution times supplied by Grid users. These estimates are sometimes signi�
antly wrong, leadingthe s
heduler either to for
ibly terminate an over-running job due to an under-estimated exe
ution time or tos
hedule other jobs poorly on the basis of an over-estimated exe
ution time.Be
ause of the presen
e of threads in the language we now have meaningful (impure, side-e�e
ting) fun
tionswhi
h do not terminate so a strong fun
tional programming approa
h [27℄ requiring proofs of termination forevery fun
tion would be inappropriate for our purposes.8. Related work. The
ore of the Camelot programming language is a stri
t,
all-by-value �rst-orderfun
tional programming language in the ML family extended with expli
it memory deallo
ation
ommands andan extended type system whi
h expresses the
ost of fun
tion appli
ation in terms of an in
rease in the sizeof the allo
ated memory on the heap. Other authors have addressed a similar programming model with somevariations. Lee, Yang and Yi [17℄ present a stati
 analysis approa
h whi
h is used in applying a sour
e-leveltransformation to insert expli
it free
ommands into the program text. Their analysis allows uses of expli
itmemory deallo
ation whi
h are not expressible in Camelot due to the linearity requirement of the Camelottype system. Vas
on
elos and Hammond [28℄ present a type system whi
h is superior to ours in applying tohigher-order fun
tional programs. Our primary
ost
omputation is memory allo
ation whereas their primaryfo
us is on run-time abstra
ted as the number of beta-redu
tions in the abstra
t semanti
 interpretation ofthe fun
tion term against the operational semanti
s of the language. Our work di�ers from both of these in
onsidering multi-threaded, not only single-threaded programs.We have made referen
e to MLj, the aspe
ts of whi
h related to Java interoperability are des
ribed in [3℄.MLj is a fully formed implementation of Standard ML, and as su
h is a mu
h larger language than we
onsiderhere. In parti
ular, MLj
an draw upon features from SML su
h as modules and fun
tors, for example, allowingthe
reation of
lasses parameterised on types. Su
h �exibility
omes with a pri
e, and we hope that therestri
tions of our system will make the
erti�
ation of the resour
e usage of obje
t-oriented Camelot programsmore feasible.By virtue of
ompiling an ML-like language to the JVM, we have made many of the same
hoi
es that havebeen made with MLj. In many
ases there is one obvious translation from high level
on
ept to implementation,and in others the appropriate language
onstru
t is suggested by the Java obje
t system. However we have alsomade di�erent
hoi
es more appropriate to our purpose, in terms of transparen
y of resour
e usage and thedesire for a smaller language. For example, we represent obje
ts as re
ords of mutable �elds whereas MLj usesimmutable �elds holding referen
es.There have been various other attempts to add obje
t oriented features to ML and ML-like languages.O'Caml provides a
lean, �exible obje
t system with many features and impressive type inferen
e�a formalisedsubset is des
ribed in [23℄. As in obje
t-oriented Camelot, obje
ts are modelled as re
ords of mutable �elds plusa
olle
tion of methods. Many of the additional features of O'Caml
ould be added to obje
t-oriented Camelotif desired, but there are some
ompli
ations
aused when we
onsider Java
ompatibility. For example, thereare various ways to
ompile parameterised
lasses and polymorphi
 methods for the JVM, but making thesefeatures intera
t
leanly with the Java world is more subtle.The power of the O'Caml obje
t system seems to
ome more from the distin
tive type system employed.O'Caml uses the notion of a row variable, a type variable standing for the types of a number of methods. Thismakes it possible to express �a
lass with these methods, and possibly more� as a type. Where we would havea method parameter taking a parti
ular obje
t type and by subsumption any subtype, in O'Caml the type ofthat parameter would in
lude a row variable, so that any obje
t with the appropriate methods and �elds
ouldbe used. This allows O'Caml to preserve type inferen
e, but this is less important for our appli
ation, and doesnot map
leanly to the JVM.

Extending Camelot With Mutable State and Con
urren
y 29A
lass me
hanism for Moby is de�ned in [8℄ with the prin
iple that
lasses and modules should be orthogonal
on
epts. La
king a module system, Camelot is unable to take su
h an approa
h, but both Moby and O'Camlhave been a guide to
on
rete representation. Many other relevant issues are dis
ussed in [21℄, but again la
kof a module system�and our desire to avoid this to keep the language small�gives us a di�erent perspe
tiveon the issues.9. Con
lusions and further work. Our ongoing programme of resear
h on the Camelot fun
tionalprogramming language has been investigating resour
e
onsumption and providing stati
 guarantees of resour
e
onsumption at the time of program
ompilation. Our thread management system provides a layer of abstra
tionover Java threads. This
ould allow us to modify the present implementation to multi-task several Camelotthreads onto a single Java thread. The reason to do this would be to
ir
umvent the ungenerous thread limit onsome JVMs. This extension remains as future work but our present design strongly supports su
h an extension.We have dis
ussed a very simple thread pa
kage for Camelot. A more sophisti
ated one, perhaps based onThimble [26℄, would provide a mu
h more powerful programming model.A possibly pro�table extension of Camelot would be to use defun
tionalization [24℄ to eliminate mutualtail-re
ursion. Given a set of mutually re
ursive fun
tions F whose results are of type t, we de�ne a datatypes whi
h has for ea
h of the fun
tions in F a
onstru
tor with arguments
orresponding to the fun
tion'sarguments. The
olle
tion of fun
tions F is then repla
ed by a single fun
tion f: s -> t whose body is amat
h statement whi
h
arries out the
omputations required by the individual fun
tions in F . In this waythe mutually re
ursive fun
tions
an be repla
ed by a single tail-re
ursive fun
tion, and we already have anoptimisation whi
h eliminates re
ursion for su
h fun
tions. This te
hnique is somewhat
lumsy, and
are isrequired in re
y
ling the diamonds whi
h are required to
ontain members of the datatypes required by s.Another potential problem is that several small fun
tions are e�e
tively
ombined into one large one, and thereis thus a danger that that 64k limit for JVM methods might be ex
eeded. Nevertheless, this te
hnique doesover
ome the problems related to mutual re
ursion without a�e
ting the transparen
y of the
ompilation pro
essunduly, and it might be possible for the
ompiler to perform the appropriate transformations automati
ally.We intend to investigate this in more detail.A
knowledgements. The authors are supported by the Mobile Resour
e Guarantees proje
t (MRG, proje
tIST-2001-33149). The MRG proje
t is funded under the Global Computing pro-a
tive initiative of the Futureand Emerging Te
hnologies part of the Information So
iety Te
hnologies programme of the European Commis-sion's Fifth Framework Programme. The other members of the MRG proje
t provided helpful
omments on anearlier presentation of this work. Java is a trademark of SUN Mi
rosystems.REFERENCES[1℄ D. Aspinall and M. Hofmann, Another type system for in-pla
e update, in Pro
. 11th European Symposium on Program-ming, Grenoble, vol. 2305 of Le
ture Notes in Computer S
ien
e, Springer, 2002.[2℄ N. Benton, Some short
omings of, and possible improvements to, the Java Virtual Ma
hine. This is an unpublished notewhi
h is available on-line at http://resear
h.mi
rosoft.
om/∼ni
k/jvm
ritique.pdf, June 1999.[3℄ N. Benton and A. Kennedy, Interlanguage working without tears: Blending SML with Java, in Pro
eedings of the 4thACM SIGPLAN Conferen
e on Fun
tional Programming, Paris, Sept. 1999, ACM Press.[4℄ N. Benton, A. Kennedy, and G. Russell, Compiling Standard ML to Java byte
odes, in Pro
eedings of the 3rd ACMSIGPLAN Conferen
e on Fun
tional Programming, Baltimore, sep 1998, ACM Press.[5℄ L. Beringer, K. Ma
Kenzie, and I. Stark, Grail: a fun
tional form for imperative mobile
ode, in Ele
troni
 Notes inTheoreti
al Computer S
ien
e, V. Sassone, ed., vol. 85, Elsevier, 2003.[6℄ E. Biagioni, K. Cline, P. Lee, C. Okasaki, and C. Stone, Safe-for-spa
e threads in Standard ML, Higher-Order andSymboli
 Computation, 11 (1998), pp. 209�225.[7℄ J. Clements and M. Felleisen, A tail-re
ursive ma
hine with sta
k inspe
tion, ACM Transa
tions on ProgrammingLanguages and Systems. To appear.[8℄ K. Fisher and J. Reppy, Moby obje
ts and
lasses, 1998. Unpublished manus
ript.[9℄ C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen, The essen
e of
ompiling with
ontinuations, in Pro
eedingsACM SIGPLAN 1993 Conf. on Programming Language Design and Implementation, PLDI'93, Albuquerque, NM, USA,23�25 June 1993, vol. 28(6), ACM Press, New York, 1993, pp. 237�247.[10℄ M. Hofmann, A type system for bounded spa
e and fun
tional in-pla
e update, Nordi
 Journal of Computing, 7 (2000),pp. 258�289.[11℄ , A type system for bounded spa
e and fun
tional in-pla
e update, Nordi
 Journal of Computing, 7 (2000), pp. 258�289.[12℄ M. Hofmann and S. Jost, Stati
 predi
tion of heap spa
e usage for �rst-order fun
tional programs, in Pro
. 30th ACMSymp. on Prin
iples of Programming Languages, 2003.

30 S. Gilmore et al.[13℄ , Stati
 predi
tion of heap spa
e usage for �rst-order fun
tional programs, in Pro
. 30th ACM Symp. on Prin
iples ofProgramming Languages, New Orleans, 2003.[14℄ S. Jost, lfd_infer: an implementation of a stati
 inferen
e on heap-spa
e usage., in Pro
eedings of SPACE'04, Veni
e,2004. To appear.[15℄ M. Kone£ný, Fun
tional in-pla
e update with layered datatype sharing, in TLCA 2003, Valen
ia, Spain, Pro
eedings,Springer-Verlag, 2003, pp. 195�210. Le
ture Notes in Computer S
ien
e 2701.[16℄ , Typing with
onditions and guarantees for fun
tional in-pla
e update, in TYPES 2002 Workshop, Nijmegen, Pro
eed-ings, Springer-Verlag, 2003, pp. 182�199. Le
ture Notes in Computer S
ien
e 2646.[17℄ O. Lee, H. Yang, and K. Yi, Inserting safe memory reuse
ommands into ML-like programs, in Pro
eedings of the 10thAnnual International Stati
 Analysis Symposium, vol. 2694 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, 2003,pp. 171�188.[18℄ P. Lee, Implementing threads in Standard ML, in Advan
ed Fun
tional Programming, Se
ond International S
hool, Olympia,WA, USA, August 26-30, 1996, Tutorial Text, J. Laun
hbury, E. Meijer, and T. Sheard, eds., vol. 1129 of Le
ture Notesin Computer S
ien
e, Springer, 1996, pp. 115�130.[19℄ K. Ma
Kenzie,Grail: a fun
tional intermediate language for resour
e-bounded
omputation. LFCS, University of Edinburgh,2002. Available at http://groups.inf.ed.a
.uk/mrg/publi
ations/.[20℄ K. Ma
Kenzie and N. Wolverson, Camelot and Grail: Resour
e-aware fun
tional programming for the JVM, in Trendsin Fun
tional Programming, Intelle
t, 2004, pp. 29�46.[21℄ D. Ma
Queen, Should ML be obje
t-oriented?, Formal Aspe
ts of Computing, 13 (2002).[22℄ E. Meijer and J. Miller, Te
hni
al Overview of the Common Language Runtime (or why the JVM is not my favouriteexe
ution environment). URL: http://do
s.msdnaa.net/ark/Webfiles/whitepapers.htm, 2001.[23℄ D. Remy and J. Vouillon, Obje
tive ML: An e�e
tive obje
t-oriented extension to ML, Theory and Pra
ti
e of Obje
tSystems, 4 (1998), pp. 27�50.[24℄ J. C. Reynolds,De�nitional interpreters for higher-order programming languages, Higher-Order and Symboli
 Computation,11 (1998), pp. 363�397.[25℄ M. S
hinz and M. Odersky, Tail
all elimination on the Java Virtual Ma
hine, in Pro
eedings of Babel'01, vol. 59 ofEle
troni
 Notes in Theoreti
al Computer S
ien
e, 2001.[26℄ I. Stark, Thimble � Threads for MLj, in Pro
eedings of the First S
ottish Fun
tional Programming Workshop, no. RM/99/9in Department of Computing and Ele
tri
al Engineering, Heriot-Watt University, Te
hni
al Report, 1999, pp. 337�346.[27℄ D. Turner, Elementary strong fun
tional programming, in Pro
eedings of the First International Symposium on Fun
tionalProgramming Languages in Edu
ation, R.Plasmeijer and P.Hartel, eds., vol. LNCS 1022, Nijmegen, Netherlands, De
.1995, Springer.[28℄ P. B. Vas
on
elos and K. Hammond, Inferring
osts for re
ursive, polymorphi
 and higher-order fun
tional programs,in Pro
eedings of the 15th International Workshop on the Implementation of Fun
tional Languages, G. Mi
haelson andP. Trinder, eds., LNCS, Springer-Verlag, 2003. To appear.[29℄ D. Wakeling, Compiling lazy fun
tional programs for the Java Virtual Ma
hine, Journal of Fun
tional Programming, 9(1999), pp. 579�603.[30℄ N. Wolverson, Optimisation and resour
e bounds in Camelot
ompilation. Final-year proje
t report, University of Edin-burgh, 2003. Available at http://groups.inf.ed.a
.uk/mrg/publi
ations/wolverson.ps.[31℄ N. Wolverson and K. Ma
Kenzie, O'Camelot: adding obje
ts to a resour
e-aware fun
tional language, in Pro
eedings ofTFP2003, Intelle
t, 2004, pp. 47�62.Edited by: Frédéri
 LoulergueRe
eived: June 15, 2004A

epted: June 9, 2005

