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t. Camelot is a resour
e-bounded fun
tional programming language whi
h 
ompiles to Java byte 
ode to run on theJava Virtual Ma
hine. We extend Camelot to in
lude language support for Camelot-level threads whi
h are 
ompiled to nativeJava threads. We extend the existing Camelot resour
e-bounded type system to provide safety guarantees about the heap usage ofCamelot threads. We demonstrate the usefulness of our 
on
urren
y extensions to the language by implementing a multi-threadedgraphi
al network 
hat appli
ation whi
h 
ould not have been expressed as naturally in the sequential, obje
t-free sublanguage ofCamelot whi
h was previously available.1. Introdu
tion. Fun
tional programming languages allow programmers to express algorithms 
on
iselyusing high-level language 
onstru
ts operating over stru
tured data, se
ured by strong type-systems. Togetherthese properties support the produ
tion of high-quality software for 
omplex appli
ation problems. Fun
tionalprograms in strongly-typed languages typi
ally have relatively few programming errors when 
ompared to similarappli
ations implemented in languages without these bene�
ial features.These desirable language properties mean that developers shed the burdens of expli
it memory manage-ment, but this has the asso
iated 
ost that they typi
ally lose all 
ontrol over the allo
ation and deallo
ation ofmemory. The Camelot language provides an intermediate way between 
ompletely automati
 memory manage-ment and unassisted allo
ation and deallo
ation in that it provides type-safe storage management by re-bindingof addresses. The address of a datum 
an be obtained in a pattern mat
h and used in an expression (to store adi�erent data value at that address), overwriting the 
urrently-held value.The Camelot 
ompiler targets the Java Virtual Ma
hine but the JVM does not provide an instru
tionto free memory, 
onsigning this to the garbage 
olle
tor, a generational 
olle
tor with three generations andimplementations of stop-and-
opy and mark-sweep 
olle
tions. Camelot allows more pre
ise 
ontrol of memoryallo
ation, allowing in-pla
e modi�
ation of user-de�ned data stru
tures. The Camelot 
ompiler supports variousresour
e-aware type systems whi
h ensure that memory re-use takes pla
e in a safe manner and also allow stati
predi
tion of heap-spa
e usage. Camelot uses a uniform representation for types whi
h are generated by the
ompiler, allowing data types to ex
hange storage 
ells. This uniform representation is 
alled the diamondtype [10, 12℄, implemented by a Diamond 
lass in the Camelot run-time. The Camelot language implementsa type system whi
h assigns types to fun
tions whi
h re
ord the number of parameters whi
h they 
onsume,and their types; the type of the result; and the number of diamonds 
onsumed or freed. The out
ome is thatthe storage 
onsumption requirements of a fun
tion are stati
ally 
omputed at 
ompile-time along with thetraditional Hindley-Milner type inferen
e pro
edure.The novel 
ontribution of the present paper is to explain how su
h an unusually ri
h programming model
an be extended to in
orporate obje
t-oriented and 
on
urrent programming idioms. This 
ontribution is notjust a design: it has been realised in the latest release of the Camelot 
ompiler.Stru
ture of this paper. In Se
tion 2 we present the Camelot language in order that the reader may under-stand the operational 
ontext of the work. We follow this in Se
tion 3 with a dis
ussion of our obje
t-orientedextensions to Camelot. This leads on to a presentation of the use of threads in Se
tion 4 followed by an analysisof the management of threads by the run-time system in Se
tion 5. Se
tion 6 explains the relationship betweenthreads in Camelot and threads as traditionally implemented in 
on
urrent fun
tional languages using �rst-
lass
ontinuations. Se
tion 7 details the impli
ations for veri�
ation of Camelot programs. Related work is surveyedin Se
tion 8 and 
on
lusions follow after that.2. The Camelot language. The 
ore of Camelot is a standard polymorphi
 ML-like fun
tional languagewhose syntax is based upon that of O'Caml; the main novelty lies in extensions whi
h allow the programmer toperform in-pla
e modi�
ations to heap-allo
ated data-stru
tures. These features are similar to those des
ribedin by Hofmann in [11℄, but in
lude some extra extensions for free list management. To retain a purely fun
tionalsemanti
s for the language in the presen
e of these extensions a linear type system 
an be employed: in thepresent implementation, linearity 
an be enfor
ed via a 
ompiler swit
h. We are in the pro
ess of enhan
ing
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18 S. Gilmore et al.the 
ompiler by the addition of other, less restri
tive type systems whi
h still allow safe in-pla
e modi�
ations:more details will be given below.Cru
ial design 
hoi
es for the 
ompilation are transparen
y and an exa
t spe
i�
ation of the 
ompilationpro
ess. The former ensures that the 
ompilation does not modify the resour
e 
onsumption in an unpredi
tableway. The latter provides a formal basis for using resour
e information inferred for the high-level language inproofs on the intermediate language.In the following se
tions we will give a brief des
ription of the stru
ture of the language. We will then outlinehow the language is 
ompiled, and in parti
ular how the memory-management extensions are implemented.2.1. The stru
ture of Camelot. We will give some examples to indi
ate the basi
 stru
ture of Camelot;full details 
an be found in [20℄.Datatypes are de�ned in the normal way:type intlist = Nil | Cons of int * intlisttype 'a polylist = NIL | CONS of 'a * 'a polylisttype ('a, 'b) pair = Pair of 'a *'bValues belonging to user-de�ned types are 
reated by applying 
onstru
tors and are de
onstru
ted using themat
h statement:let re
 length l = mat
h l withNil -> 0| Cons (h,t) -> 1+length tlet test () = let l = Cons(2, Cons(7,Nil))in length lAs 
an be seen from this example, 
onstru
tor arguments are en
losed in parentheses and are separated by
ommas. In 
ontrast, fun
tion de�nitions and appli
ations whi
h require multiple arguments are written in a�
urried� style:let add a b = a+blet f x y z = add x (add y z)Despite this notation, the present version of Camelot does not support higher-order fun
tions; any appli-
ation of a fun
tion must involve exa
tly the same number of arguments as are spe
i�ed in the de�nition of thefun
tion.2.2. Diamonds and Resour
e Control. The Camelot 
ompiler targets the Java Virtual Ma
hine, andvalues from user-de�ned datatypes are represented by heap-allo
ated obje
ts from a 
ertain JVM 
lass. Detailsof this representation will be given in Se
tion 2.4.Consider the following fun
tion whi
h uses an a

umulator to reverse a list of integers (as de�ned by theintlist type above).let re
 rev l a

 = mat
h l withNil -> a

| Cons (h,t) -> rev t (Cons (h,a

))let reverse l = rev l NilThis fun
tion allo
ates an amount of memory equal to the amount o

upied by the input list. If no furtherreferen
e is made to the input list then the heap spa
e whi
h it o

upies may eventually be re
laimed by theJVM garbage 
olle
tor.In order to allow more pre
ise 
ontrol of heap usage, Camelot in
ludes 
onstru
ts allowing re-use of heap
ells. There is a spe
ial type known as the diamond type (denoted by <>) whose values represent blo
ks of heap-allo
ated memory, and Camelot allows expli
it manipulation of diamond obje
ts. This is a
hieved by equipping
onstru
tors and mat
h rules with spe
ial annotations referring to diamond values. Here is the reverse fun
tionrewritten using diamonds so that it performs in-pla
e reversal:let re
 rev l a

 = mat
h l withNil -> a

| Cons (h,t)�d -> rev t (Cons (h,a

)�d)let reverse l = rev l NilThe annotation ��d� on the �rst o

urren
e of Cons tells the 
ompiler that the diamond value d is to bebound to a referen
e to the spa
e used by the list 
ell. The annotation on the se
ond o

urren
e of Cons spe
i�es



Extending Camelot With Mutable State and Con
urren
y 19that the list 
ell Cons(h,a

) should be 
onstru
ted in the diamond obje
t referred to by d, and no new spa
eshould be allo
ated on the heap.One might not always wish to re-use a diamond value immediately. This 
an sometimes 
ause di�
ultysin
e su
h diamonds might then have to be returned as part of a fun
tion result so that they 
an be re
y
ledby other parts of the program. For example, the alert reader may have noti
ed that the list reversal fun
tionabove does not in fa
t reverse lists entirely in pla
e. When the user 
alls reverse, the invo
ation of the Nil
onstru
tor in the 
all to rev will 
ause a new list 
ell to be allo
ated. Also, the Nil value at the end of theinput list o

upies a diamond, and this is simply dis
arded in the se
ond line of the rev fun
tion (and will besubje
t to garbage 
olle
tion if there are no other referen
es to it).The overall e�e
t is that we 
reate a new diamond before 
alling the rev fun
tion and are left with an extradiamond after the 
all had 
ompleted. We 
ould re
over the extra diamond by making the reverse fun
tionreturn a pair 
onsisting of the reversed list and the spare diamond, but this is rather 
lumsy and programsqui
kly be
ome very 
omplex when using this kind of te
hnique.To avoid this kind of problem, unwanted diamonds 
an be stored on a free list for later use. This is doneby using the annotation ��_� as in the following example whi
h returns the sum of the entries in an integer list,destroying the list in the pro
ess:let re
 sum l a

 = mat
h l withNil�_ -> a

| Cons (h,t)�_ -> sum t (a

+h)The question now is how the user retrieves a diamond from the free list. In fa
t, this happens automati
allyduring 
onstru
tor invo
ation. If a program uses an unde
orated 
onstru
tor su
h as Nil or Cons(4,Nil) thenif the free list is empty the JVM new instru
tion is used to allo
ate memory for a new diamond obje
t on theheap; otherwise, a diamond is removed from the head of the free list and is used to 
onstru
t the value. Itmay o

asionally be useful to expli
itly return a diamond to the free list and an operator free: <> -> unit isprovided for this purpose.There is one �nal notational re�nement. The in-pla
e list reversal fun
tion above is still not entirelysatisfa
tory sin
e the Nil value 
arries no data but is nonetheless allo
ated on the heap. We 
an over
ome thisby rede�ning the intlist type astype intlist = !Nil | Cons of int * intlistThe ex
lamation mark dire
ts the 
ompiler to represent the Nil 
onstru
tor by the JVM null referen
e. Withthe new de�nition of intlist the original list-reversal fun
tion performs true in-pla
e reversal: no heap spa
eis 
onsumed or destroyed when the reverse fun
tion is applied. The ! annotation 
an be used for a single zero-argument 
onstru
tor in any datatype de�nition. In addition, if every 
onstru
tor for a parti
ular datatype isnullary then they may all be pre
eded by!, in whi
h 
ase they will be represented by integer values at runtime.We have deliberately 
hosen to expose this 
hoi
e to the programmer (rather than allowing the 
ompiler toautomati
ally 
hoose the most e�
ient representation) in keeping with our poli
y of not allowing the 
ompilerto perform optimisations whi
h have unexpe
ted results on resour
e 
onsumption.The features des
ribed above are very powerful and 
an lead to many kinds of program error. For example,if one applied the reverse fun
tion to a sublist of some larger list then the small list would be reversed properly,but the larger list 
ould be
ome partially reversed. Perhaps worse, a diamond obje
t might be used in severaldi�erent data stru
tures of di�erent types simultaneously. Thus a list 
ell might also be used as a tree node, andany modi�
ation of one stru
ture might lead to modi�
ations of the other. The simplest way of preventing thiskind of problem is to require linear usage of heap-allo
ated obje
ts, whi
h means that variables bound to su
hobje
ts may be used at most on
e after they are bound. Details of this approa
h 
an be found in Hofmann'spaper [11℄. Stri
t linearity would require one to write the list length fun
tion as something likelet re
 length l = mat
h l withNil -> Pair (0, Nil)| Cons(h,t)�d ->let p = length tin mat
h p withPair(n, t1)�d1 -> Pair(n+1, Cons(h,t1)�d)�d1It is ne
essary to return a new 
opy of the list sin
e it is illegal to refer to l after 
alling length l.Our 
ompiler has a swit
h to enfor
e linearity, but the example demonstrates that the restri
tive nature



20 S. Gilmore et al.of linear typing 
an lead to unne
essary 
ompli
ations. Aspinall and Hofmann [1℄ give a type system whi
hrelaxes the linearity 
ondition while still allowing safe in-pla
e updates, and Mi
hal Kone£ný generalises thisstill further in [15, 16℄. As part of the MRG proje
t, Kone£ný has implemented a type
he
ker for a variant ofthe type system of [15℄ adapted to Camelot.A di�erent approa
h to providing heap-usage guarantees is given by Hofmann and Jost in [13℄, where analgorithm is presented whi
h 
an be used to stati
ally infer heap-usage bounds for fun
tional programs of asuitable form. In 
ollaboration with the MRG proje
t, Ste�en Jost has implemented a variant of this inferen
ealgorithm for Camelot: the implementation is des
ribed in [14℄. Both of these implementations are 
urrentlystand-alone programs, but we are in the pro
ess of integrating them with the Camelot 
ompiler.One of our goals in the design of Camelot was to de�ne a language whi
h 
ould be used as a testbed fordi�erent heap-usage analysis methods. The in
lusion of expli
it diamonds �ts the type systems of [1, 15, 16℄, andthe in
lusion of the free list fa
ilitates the Hofmann-Jost inferen
e algorithm, whi
h requires that all memorymanagement takes pla
e via a free list.2.3. Compilation of expressions. Camelot is initially 
ompiled into the Grail intermediate language[5, 19℄ whi
h is essentially a fun
tional form of Java byte
ode. This pro
ess is fa
ilitated by an initial phase inwhi
h several transformations are applied to the abstra
t syntax tree.2.3.1. Monomorphisation. Firstly, all polymorphism is removed from the program. For polymorphi
types (αn, . . . , α1) t su
h as α list we examine the entire program to determine all instantiations of the typevariables, and 
ompile a separate datatype for ea
h distin
t instantiation. Similarly, whenever a polymorphi
fun
tion is de�ned the program is examined to �nd all uses of the fun
tion and a monomorphi
 fun
tion of theappropriate type is generated for ea
h distin
t instantiation of types.2.3.2. Normalisation. After monomorphisation there is a phase referred to as normalisation whi
h trans-forms the Camelot program into a form whi
h 
losely resembles Grail.Firstly the 
ompiler ensures that all variables have unique names. Any dupli
ations are resolved by gener-ating new names. This allows us to map Camelot variable names dire
tly onto Grail variable names (whi
h inturn map onto JVM lo
al variable lo
ations) with no danger of 
lashes arising.Next, we give names to intermediate results in many 
ontexts by repla
ing 
omplex expressions with vari-ables. For example, the expression f(a + b + c) would be repla
ed by an expression of the form let t1 =
a + b in let t2 = t1 + c in f(t2). The introdu
tion of names for intermediate results 
an produ
e a largenumber of Grail (and hen
e JVM) variables. After the sour
e 
ode has been 
ompiled to Grail the number oflo
al variables is minimised by applying a standard register allo
ation algorithm (see [30℄).A �nal transformation ensures that let-expressions are in a �straight-line� form. After all of these trans-formations have been performed expressions have been redu
ed to a form whi
h we refer to as normalisedCamelotThe stru
ture of normalised Camelot (whi
h is in fa
t in a type of A-normal form [9℄) is su�
iently 
loseto that of Grail that it is fairly straightforward to translate from the former to the latter. Another bene�t ofnormalisation is that it is easier to write and implement type systems for normalised Camelot. The fa
t thatthe 
omponents of many expressions are atoms rather than 
omplex subexpressions means that typing rules
an have very simple premisses.2.4. Compilation of values. Camelot has various primitive types (int, float, et
.) whi
h 
an betranslated dire
tly into 
orresponding JVM types. The 
ompilation of user-de�ned datatypes, however, israther more 
ompli
ated. Obje
ts belonging to datatypes are represented by members of a single JVM 
lasswhi
h we will refer to as the diamond 
lass. Obje
ts of the diamond 
lass 
ontain enough �elds to representany member of any datatype de�ned in the program. Ea
h instan
e X of the diamond 
lass 
ontains an integertag �eld whi
h identi�es the 
onstru
tor with whi
h X is asso
iated. The diamond 
lass also 
ontains a stati
�eld pointing to the free list. The free list is managed via the stati
 methods allo
 (whi
h returns the diamondat the head of the free list, or 
reates a new diamond by 
alling new if the free list is empty), and free whi
hpla
es a diamond obje
t on the free list. The diamond 
lass also has overloaded stati
 methods 
alled makeand fill, one instan
e of ea
h for every sequen
e of types appearing in a 
onstru
tor. The make methods areused to implement ordinary 
onstru
tor appli
ation; ea
h takes an integer tag value and a sequen
e of argumentvalues and 
alls allo
 to obtain an instan
e of the diamond 
lass, and then 
alls a 
orresponding fill method
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y 21to �ll in the appropriate �elds with the tag and the arguments. The fill methods are also used when theprogrammer reuses an existing diamond to 
onstru
t a datatype value.It 
an be argued that this representation is ine�
ient in that datatype values are often represented by JVMobje
ts whi
h are larger than they need to be. This is true, but is di�
ult to avoid due to the type-safe natureof JVM memory management whi
h prevents one from re-using the heap spa
e o

upied by a value of one typeto store a value of a di�erent type. We wish to be able to reuse heap spa
e, but this 
an be impossible if obje
ts
an 
ontain only one type of data. With the 
urrent s
heme one 
an easily write a heapsort program whi
hoperates entirely in-pla
e. List 
ells are large enough to be reused as heap nodes and this allows a heap to bebuilt using 
ells obtained by destroying the input list. On
e the heap has been built it 
an in turn be destroyedand the spa
e reused to build the output list. In this 
ase, the amount of memory o

upied by a list 
ell islarger than it needs to be, but the overall amount of store required is less than would be the 
ase if separate
lasses were used to 
ontain list 
ells and heap nodes.In the 
urrent 
ontext it 
an be 
laimed that it is better to have an ine�
ient representation about whi
h we
an give 
on
rete guarantees than an e�
ient one whi
h about we 
an say nothing. Most of the programs whi
hwe have written so far use a limited number of datatypes so that the overhead introdu
ed by the monolithi
representation for diamonds is not too severe. However, it is likely that for very large programs this overheadwould be
ome una

eptably large. One possibility whi
h we have not yet explored is that it might be possibleto a
hieve more e�
ient heap usage by using data�ow te
hniques to follow the �ow of diamonds through theprogram and dete
t datatypes whi
h are never used in an overlapping way. One 
ould then equip a programwith several smaller diamond 
lasses whi
h would represent su
h non-overlapping types.These problems 
ould be avoided by 
ompiling to some platform other than the JVM (for example toC or to a spe
ialised virtual ma
hine) where 
ompa
tion of heap regions would be possible. The Hofmann-Jost algorithm is still appli
able in this situation, so it would still be feasible to produ
e resour
e guarantees.However, it was a fundamental de
ision of the MRG proje
t to use the JVM, based on the fa
ts that the JVMis widely deployed and very well-known, and that resour
e usage is a genuine 
on
ern in many 
ontexts wherethe JVM is used. Our present approa
h allows us to produ
e 
on
rete guarantees at the 
ost of some overhead;we hope that at a later stage a more sophisti
ated approa
h (su
h as the one suggested above) might allow usto redu
e the overheads while still obtaining guaranteed resour
e bounds.2.5. Remarks. There are various ways in whi
h Camelot 
ould be extended. The la
k of higher-orderfun
tions is in
onvenient, but the resour
e-aware type systems whi
h we use are presently unable to deal withhigher-order fun
tions, partly be
ause of the fa
t that these are normally implemented using heap-allo
ated
losures whose size may be di�
ult to predi
t. A possible strategy for dealing with this whi
h we are 
urrentlyinvestigating is Reynolds' te
hnique of defun
tionalization [24℄ whi
h transforms higher-order programs into�rst-order ones, essentially by performing a transformation of the sour
e 
ode whi
h repla
es 
losures withmembers of datatypes. This has the advantage that extra spa
e required by 
losures is exposed at the sour
elevel, where it is amenable to analysis by the heap-usage inferen
e te
hniques mentioned earlier.3. Obje
t-oriented extensions. The 
ore Camelot language as des
ribed in Se
tion 2 above enables theprogrammer to write a program with a predi
table resour
e usage; however, only primitive intera
tion with theoutside world is possible, through 
ommand line arguments, �le input and printed output. To be able to writea full interfa
e for a game or utility to be run on a mobile devi
e, Camelot programs must be able to interfa
ewith external Java libraries. Similarly, the programmer may wish to utilise devi
e-spe
i�
 libraries, or Java'sextensive 
lass library.This se
tion des
ribes our obje
t-oriented extension to Camelot. This is primarily intended to allow Camelotprograms to a

ess Java libraries. It would also be possible to write resour
e-
erti�ed libraries in Camelot for
onsumption by standard Java programs, or indeed use the obje
t system for OO programming for its own sake,but giving Camelot programs a

ess to the outside world is the main obje
tive.In designing an obje
t system for Camelot, many 
hoi
es are made for us, or at least tightly 
onstrained.We wish to 
reate a system allowing inter-operation with Java, and we wish to 
ompile an obje
t system toJVML. So we are almost for
ed into drawing the obje
t system of the JVM up to the Camelot level, and 
annotseriously 
onsider a fundamentally di�erent system.On the other hand, the type system is strongly in�uen
ed by the existing Camelot type system. Thereis more s
ope for 
hoi
e, but implementation 
an be
ome 
omplex, and an overly 
omplex type system is



22 S. Gilmore et al.undesirable from a programmer's point of view. We also do not want to interfere with type systems for resour
esas mentioned above.We shall �rst attempt to make the essential features of Java obje
ts visible in Camelot in a simple form,with the view that a simple abbreviation or module system 
an be added at a later date to make things morepalatable if desired.3.1. Basi
 Features. We shall view obje
ts as re
ords of possibly mutable �elds together with relatedmethods, although Camelot has no existing re
ord system. We de�ne the usual operations on these obje
ts,namely obje
t 
reation, method invo
ation, �eld a

ess and update, and 
asting and mat
hing. As one mightexpe
t we 
hoose a 
lass-based system 
losely modelling the Java obje
t system. Consequently we must a
-knowledge Java's uses of 
lasses for en
apsulation, and asso
iate stati
 methods and �elds with 
lasses also.We now 
onsider these features. The examples below illustrate the new 
lasses of expressions we add toCamelot.Stati
 method 
alls There is no 
on
eptual di�eren
e between stati
 methods and fun
tions, ignoring the useof 
lasses for en
apsulation, so we 
an treat stati
 method 
alls just like fun
tion 
alls.java.lang.Math.max a bStati
 �eld a

ess Some libraries require the use of stati
 �elds. We should only need to provide a

ess to
onstant stati
 �elds, so they 
orrespond to simple values.java.math.BigInteger.ONEObje
t 
reation We 
learly need a way to 
reate obje
ts, and there is no need to deviate from the newoperator. By analogy with standard Camelot fun
tion appli
ation syntax (i.e. 
urried form) we have:new java.math.BigInteger "101010" 2Instan
e �eld a

ess To retrieve the value of an instan
e variable, we writeobje
t#fieldwhereas to update that value we use the syntaxobje
t#field <- valueassuming that field is de
lared to be a mutable �eld.It 
ould be argued that allowing unfettered external a

ess to an obje
t's variables is against the spiritof OO, and more to the point inappropriate for our small language extension, but we wish to allow easyinteroperability with any external Java 
ode.Method invo
ation Drawing inspiration from the O'Caml syntax, and again using a 
urried form, we haveinstan
e method invo
ation:myMap#put key valueNull values In Java, any method with obje
t return type may return the null obje
t. For this reason we adda 
onstru
tisnull ewhi
h tests if the expression e is a null value.Casts and type
ase It may be o

asionally be ne
essary to 
ast obje
ts up to super
lasses, for example tofor
e the intended 
hoi
e between overloaded methods. We will also want to re
over sub
lasses, su
has when removing an obje
t from a 
olle
tion. Here we propose a simple notation for up-
asting:obj :> ClassThis notation is that of O'Caml, also borrowed by MLj (des
ribed in [3℄). To handle down-
asting weshall extend patterns in the manner of type
ase (again like MLj) as follows:mat
h obj with o :> C1 -> o.a()| o :> C2 -> o.b()| _ -> obj.
()Here o is bound in the appropriate subexpressions to the obje
t obj viewed as an obje
t of type C1 orC2 respe
tively. As in datatype mat
hes we require that every possible 
ase is 
overed; here this meansthat the default 
ase is mandatory. We also require that ea
h 
lass is a sub
lass of the type of obj, andsuggest that a 
ompiler warning should be given for any redundant mat
hes.Unlike MLj we 
hoose not to allow down
asting outside of the new form of mat
h statement, partlybe
ause at present Camelot has no ex
eption support to handle invalid down-
asts.As usual, the arguments of a (stati
 or instan
e) method invo
ation may be sub
lasses of the method's argumenttypes, or 
lasses implementing the spe
i�ed interfa
es.
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urren
y 23The following example demonstrates some of the above features, and illustrates the ease of interoperability.Note that the type of the parameter l is spe
i�ed by a 
onstraint here. Type inferen
e does not 
ross 
lassboundaries in Camelot.let 
onvert (l: string list) =mat
h l with [℄ -> new java.util.LinkedList ()| h::t ->let ll = 
onvert tin let _ = ll#addFirst hin ll3.2. De�ning 
lasses. On
e we have the ability to write and 
ompile programs using obje
ts, we may aswell start writing 
lasses in Camelot. We must be able to 
reate 
lasses to implement 
allba
ks, su
h as in theSwing GUI system whi
h requires us to write stateful adaptor 
lasses. Otherwise, as mentioned previously, wemay wish to write Camelot 
ode to be 
alled from Java, for example to 
reate a resour
e-
erti�ed library foruse in a Java program, and de�ning a 
lass is a natural way to do this. Implementation of these 
lasses willobviously be tied to the JVM, but the form these take in Camelot has more s
ope for variation.We allow the programmer to de�ne a 
lass whi
h may expli
itly sub
lass another 
lass, and implement anumber of interfa
es. We also allow the programmer to de�ne (possibly mutable) �elds and methods, as wellas stati
 methods and �elds for the purpose of 
reating a spe
i�
 
lass for interfa
ing with Java. We naturallyallow referen
e to this.The form of a 
lass de
laration is given below. Items within angular bra
kets 〈. . .〉 are optional.
classdecl ::= 
lass cname = 〈scname with〉 body end

body ::= 〈interfaces〉 〈fields〉 〈methods〉

interfaces ::= implement iname 〈interfaces〉

fields ::= field 〈fields〉

methods ::= method 〈methods〉This de�nes a 
lass 
alled cname, implementing the spe
i�ed interfa
es. The optional scname gives the nameof the dire
t super
lass; if it is not present, the super
lass is taken to be the root of the 
lass hierar
hy, namelyjava.lang.Obje
t. The 
lass cname inherits the methods and values present in its super
lass, and these maybe referred to in its de�nition.As well as a super
lass, a 
lass 
an de
lare that it implements one or more interfa
es. These 
orresponddire
tly to the Java notion of an interfa
e. Java libraries often require the 
reation of a 
lass implementing aparti
ular interfa
e�for example, to use a Swing GUI one must 
reate 
lasses implementing various interfa
esto be used as 
allba
ks. Note that at the 
urrent time it is not possible to de�ne interfa
es in Camelot, theyare provided purely for the purpose of interoperability.Now we des
ribe �eld de
larations.
field ::= field x : τ | field mutable x : τ | val x : τInstan
e �elds are de�ned using the keyword field, and 
an optionally be de
lared to be mutable. Stati
 �eldsare de�ned using val, and are non-mutable. In a sense these mutable �elds are the �rst introdu
tion of side-e�e
ts into Camelot. While the Camelot language is de�ned to have an array type, this has largely been ignoredin our more formal treatments as it is not fundamental to the language. Mutable �elds, on the other hand,are fundamental to our notion of obje
t orientation, so we expe
t any extension of Camelot resour
e-
ontrolfeatures to obje
t-oriented Camelot to have to deal with this properly.Methods are de�ned as follows, where 1 ≤ i1, . . . , im ≤ n.

method ::= maker(x1:τ1) . . . (xn:τn) 〈: super xi1
. . . xim

〉 = exp

| method m(x1:τ1) . . .(xn:τn) : τ = exp

| method m() : τ = exp

| let m(x1:τ1) . . . (xn:τn) : τ = exp

| let m() : τ = exp
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lare what Java would 
all stati
 methods. Stati
 methods are simplymonomorphi
 Camelot fun
tions whi
h happen to be de�ned within a 
lass, although they are invoked usingthe syntax des
ribed earlier. Instan
e methods, on the other hand, are a
tually a fundamentally new additionto the language. We 
onsider the instan
e methods of a 
lass to be a set of mutually re
ursive monomorphi
fun
tions, in whi
h the spe
ial variable this is bound to the 
urrent obje
t of that 
lass.We 
an 
onsider the methods as mutually re
ursive without using any additional syntax (su
h as andblo
ks) sin
e they are monomorphi
. ML uses and blo
ks to group mutually re
ursive fun
tions be
ause itslet-polymorphism prevents any of these fun
tions being used polymorphi
ally in the body of the others, but thisis not an issue here. In any 
ase this impli
it mutual re
ursion feels appropriate when we are 
ompiling to theJava Virtual Ma
hine, and have to 
ome to terms with open re
ursion.In addition to stati
 and instan
e methods, we also allow a spe
ial kind of method 
alled a maker. This isjust what would be 
alled a 
onstru
tor in the Java world, but as in [8℄ we use the term maker in order to avoid
onfusion between obje
t and datatype 
onstru
tors. The maker term above de�nes a maker of the 
ontaining
lass C su
h that if new C is invoked with arguments of type τ1 . . . τn, an obje
t of 
lass C is 
reated, thesuper
lass maker is exe
uted (this is the zero-argument maker of the super
lass if none is expli
itly spe
i�ed),expression exp (of unit type) is exe
uted, and the obje
t is returned as the result of the new expression. Every
lass has at least one maker; a 
lass with no expli
it maker is taken to have the maker with no arguments whi
hinvokes the super
lass zero-argument maker and does nothing. This impli
it maker is inserted by the 
ompiler.3.3. Polymorphism. We remarked earlier that stati
 methods are basi
ally monomorphi
 Camelot fun
-tions together with a form of en
apsulation, but it is worth 
onsidering polymorphism more expli
itly. obje
t-oriented Camelot methods, whether stati
 or instan
e methods, are not polymorphi
. That is, they have subtypepolymorphism but not parametri
 polymorphism (generi
ity), unlike Camelot fun
tions whi
h have parametri
but not subtype polymorphism. This is not generally a problem, as most polymorphi
 fun
tions will involvemanipulation of polymorphi
 datatypes, and 
an be pla
ed in the main program, whereas most methods willbe interfa
ing with the Java world and thus should 
onform to Java's subtyping polymorphism.3.4. Translation. As mentioned earlier, the present Camelot 
ompiler targets the JVM, via the inter-mediate language Grail. Translating the obje
t-oriented features whi
h have just been des
ribed is relativelystraightforward, as the JVM (and Grail) provide what we need. A detailed formal des
ription of the translationpro
ess 
an be found in [31℄3.5. Obje
ts and Resour
e Types. As des
ribed earlier, the use of diamond annotations on Camelotprograms in 
ombination with 
ertain resour
e-aware type systems allows the heap usage of those programsto be inferred, as well as allowing some in-pla
e update to o

ur. Clearly the presen
e of mutable obje
ts inobje
t-oriented Camelot also provides for in-pla
e update. However by allowing arbitrary obje
t 
reation wealso repli
ate the unbounded heap-usage problem solved for datatypes. Perhaps more seriously, we are allowingCamelot programs to invoke arbitrary Java 
ode, whi
h may use an unlimited amount of heap spa
e.Firstly 
onsider the se
ond problem. Even if we have some way to pla
e a bound on the heap spa
e used byour new OO features within a Camelot program, external Java 
ode may use arbitrary amounts of heap. Thereseem to be a few possible approa
hes to this problem, none of whi
h are parti
ularly satisfa
tory. We 
ouldde
ide to only allow the use of external 
lasses if they 
ame with a proof of bounded heap usage. Constru
tinga resour
e-bounded Java 
lass library or inferring resour
e bounds for an existing library would be a massiveundertaking, although perhaps less problemati
 with the smaller 
lass libraries used with mobile devi
es. Thissuggestion seems somewhat unrealisti
.Alternatively, we 
ould simply allow the resour
e usage of external methods to be stated by the programmeror library 
reator. This extends the trusted 
omputing base in the sense of resour
es, but seems a morereasonable solution. The other alternative�
onsidering resour
e-bound proofs to only refer to the resour
esdire
tly 
onsumed by the Camelot 
ode�seems unrealisti
, as one 
ould easily (and even a

identally) 
heatby using Java libraries to do some memory-
onsuming �dirty work�.The issue of heap-usage internal to obje
t-oriented Camelot programs seems more tra
table, although wedo not propose a solution here. A �rst attempt might mimi
 the te
hniques used earlier for datatypes; perhapswe 
an adapt the use of diamonds and linear type systems? The use of diamonds for in-pla
e update is irrelevanthere, and indeed relies on the uniform representation of datatypes by obje
ts of a parti
ular Java 
lass. Sin
ewe are hardly going to represent every Java obje
t by an obje
t of one 
lass we 
ould not hope to have su
h adire
t 
orrelation between diamonds and 
hunks of storage.
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y 25However, we 
ould imagine an abstra
t diamond whi
h represents the heap storage used by an arbitraryobje
t, and require any instan
e of new to supply one of these diamonds, in order that the total number ofobje
ts 
reated is limited. Unfortunately re
lamation of su
h an abstra
t diamond would only 
orrespond tomaking an obje
t available to garbage 
olle
tion, rather than de�nitely being able to re-use the storage. Evenso, su
h a system might be able to give a measure of the total number of obje
ts 
reated and the maximumnumber in a
tive use simultaneously.4. Using threads in Camelot. Previously the JVM had been used simply as a 
onvenient run-timefor the Camelot language but the obje
t-oriented extensions des
ribed above allow the Java namespa
e to bea

essed from a Camelot appli
ation. Thus a Camelot appli
ation 
an now 
reate Java obje
ts and invoke Javamethods. Figure 4.1 shows the implementation of a remote input reader in RoundTable, a networked 
hatappli
ation written in Camelot. This example 
lass streams input from a network 
onne
tion and renders it ina display area in the graphi
al user interfa
e of the appli
ation.(* Thread to read from the network, passing data to a display obje
t *)
lass remote = java.lang.Threadwith�eld input : java.io.BufferedReader�eld disp : displaymaker (i : java.io.BufferedReader )(d : display) =let _ = input ← i in disp ← dmethod run() : unit =let line = this#input#readLine()in if isnullobj line then () elselet _ = this#disp#append linein this#run()endFig. 4.1. An extra
t from the RoundTable 
hat appli
ation showing the OO extensions to CamelotThis example shows the Camelot syntax for method invo
ation (obj#meth()), �eld a

ess (obj#field) andmutable �eld update (f <- exp). Both of these are familiar from Obje
tive Caml.This example also shows that even in the obje
t-oriented fragment of the Camelot language that the naturalde�nition style for unbounded repetition is to write re
ursive method 
alls. The Camelot 
ompiler 
onverts tail-
alls of instan
e methods (su
h as this#run) into while-loops so that methods implemented as in Figure 4.1run in 
onstant spa
e and do not over�ow the Java run-time sta
k. In 
ontrast re
ursive method 
alls in Javaare not optimised in this way and would lead to the program over�owing the sta
k.A s
reenshot of a window from the RoundTable appli
ation is shown in Figure 4.2. This shows date-and-time-stamped messages arriving spontaneously in the window. The appli
ation o�ers the ability to threadmessages by 
ontent or to sort them by time. The sorting routine is guaranteed by type
he
king to run in
onstant spa
e be
ause addresses of 
ons 
ells in the list of messages are re-
y
led using the free list as des
ribedin Se
tion 2.2.
Fig. 4.2. S
reenshot of the Camelot RoundTable appli
ation
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ompiler to support interoperation with Java fa
ilitates the implementationof graphi
al appli
ations su
h as these. The Java APIs used by this appli
ation in
lude the Swing graphi
aluser interfa
e 
omponents, networking, threads and pluggable look-and-feel 
omponents su
h as the Skin look-and-feel shown above.5. Management of threads. In designing a thread management system for Camelot our strongest re-quirement was to have a system whi
h works harmoniously with the storage management system already inpla
e for Camelot. One aspe
t of this is that the resour
e 
onsumption of a single-threaded Camelot program
an be 
omputed in line with the reasoning explained in Se
tion 1.In moving from one to multiple threads the most important question with respe
t to memory usage is thefollowing. Should the free list of storage whi
h 
an be reused be a single stati
 instan
e shared a
ross all threads;or should ea
h thread separately maintain its own lo
al instan
e of the free list?In the former 
ase the a

essor methods for the free list must be syn
hronised in order for data stru
turesnot to be
ome disordered by 
on
urrent write operations. Syn
hronisation in
urs an overhead of lo
king andunlo
king the parent of the �eld when entering and leaving a 
riti
al region. This imposes a run-time penalty.In the latter 
ase there is no requirement for a

ess to the free list to be syn
hronised; ea
h thread has itsown free list. In this 
ase, though, the free memory on ea
h free list is private, and not shared. This means thatthere will be times when one thread allo
ates memory (with a Java new instru
tion) while another thread hasunused memory on its lo
al free list. This imposes a penalty on the program memory usage, and this form ofthread management would lead to programs typi
ally using more memory overall.We have 
hosen the former s
heme; we have a single stati
 instan
e of a free list shared a
ross all threads. Ourprograms will take longer than their optimum run-time but memory performan
e will be improved. Cru
ially,predi
tability of memory 
onsumption is retained.There are several possible variants on this se
ond s
heme whi
h we 
onsidered. They were not right for ourpurposes but might be right for others. One interesting alternative is a hybrid of the two approa
hes is whereea
h thread had a bounded (small) lo
al free list and �ushes this to the global free list when it be
omes full.This would redu
e the overhead of 
alls to a

ess the syn
hronised global free list, while preventing threads fromkeeping too many unused memory 
ells lo
ally. This 
ould be a suitable 
ompromise between the two extremesbut the analysis of this approa
h would inevitably be more 
ompli
ated than the approa
h whi
h we adopted(a single stati
 free list).A se
ond alternative would be to implement weak lo
al free lists. In this 
onstru
tion ea
h thread would haveits own private free list implemented using weak referen
es whi
h are referen
es that are not strong enough bythemselves to keep an obje
t alive if no genuine referen
es to it are retained. Weak referen
es are typi
ally usedto implement 
a
hes and se
ondary indexes for data stru
tures. Other high-level garbage-
olle
ted languagessu
h as O'Caml implement weak referen
es also. This s
heme was not usable by us be
ause the Camelot
ompiler also targets small JVMs on handheld devi
es and the J2ME does not provide the ne
essary 
lass(java.lang.ref.WeakReferen
e).The analysis of memory 
onsumption of Camelot programs is based on the 
onsumption of memory by heap-allo
ated data stru
tures. The present analysis of Camelot programs is based on a single-threaded ar
hite
ture.To assist with the development of an analysis method for multi-threaded Camelot programs we require thatdata stru
tures in a multi-threaded Camelot program are not shared a
ross threads. For example, it is notpossible to hold part of a list in one thread and the remainder in another. This requirement means that thespa
e 
onsumption of a multi-threaded Camelot program is obtained as the sum of per-thread spa
e allo
ationplus the spa
e requirements of the threads themselves.At present our type system takes a

ount of heap allo
ations but does not take a

ount of sta
k growth.Thus Camelot programs 
an potentially (and sometimes do in pra
ti
e) fail at runtime with ajava.lang.Sta
kOverflowError ex
eption if the programmer overuses the idiom of working with families ofmutually-re
ursive fun
tions and methods whi
h 
ompute with deeply-nested re
ursion.Even sophisti
ated fun
tional language 
ompilers for the JVM su�er from this problem and some, su
has MLj [4, 3℄, do not even implement tail-
all elimination in 
ases where the Camelot 
ompiler does. Severalauthors 
onsider the absen
e of support for tail 
all elimination to be a failing of the JVM [2, 22℄. An approa
hto eliminating tail 
alls su
h as that used by Funnel [25℄ would be a useful next improvement to the Camelot
ompiler. Te
hniques su
h as trampolining have also been shown to work for the JVM [29℄. The prin
ipalreason why the JVM does not automati
ally perform tail-
all optimisation is that the Java se
urity model may
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y 27require inspe
tion of the sta
k to ensure that a parti
ular method has su�
ient privileges to exe
ute anothermethod; eliminating tail-
alls would lead to the dis
arding of sta
k frames whi
h 
ontain the ne
essary se
urityinformation. However, Clements and Felleisen have re
ently proposed another se
urity model whi
h allowssafe tail-
all optimisation [7℄; they 
laim that this requires only a minor 
hange to the me
hanism 
urrentlyused by the JVM (and other platforms), so there may be some hope that future JVM implementations willsupport proper tail-
all optimisation and thus simplify the pro
ess of implementing fun
tional languages forthe JVM.6. A simple thread model for Camelot. To retain predi
tability of memory behaviour in Camelot werestri
t the programming model o�ered by Java's threads.Firstly, we disallow use of the stop and suspend methods from Java's threads API. These are depre
atedmethods whi
h have been shown to have poor programming properties in any 
ase. Use of the stop methodallows obje
ts to be exposed in a damaged state, part-way through an update by a thread. Use of suspendfreezes threads but these do not release the obje
ts whi
h they are holding lo
ks on, thereby often leadingto deadlo
ks. Dispensing with pre-emptive thread interruption means that there is a 
orresponden
e betweenCamelot threads and lightweight threads implemented using �rst-
lass 
ontinuations, 
all/

 and throw, asare usually to be found in multi-threaded fun
tional programming languages [6, 18℄.Se
ondly, we require that all threads are run, again for the purposes of supporting predi
tability of memoryusage. In the Java language thread allo
ation (using new) is separated from thread initiation (using the startmethod in the java.lang.Thread 
lass) and there is no guarantee that allo
ated threads will ever be run atall. In multi-threaded Camelot programs we require that all threads are started at the point where they are
onstru
ted.Finally, we have a single 
onstru
tor for 
lasses in Camelot be
ause our type system does not supportoverloading. This must be passed initial values for all the �elds of the 
lass (be
ause the thread will initiateautomati
ally). All Camelot threads ex
ept the main thread of 
ontrol are daemon threads, whi
h means thatthe Java Virtual Ma
hine will not keep running if the main thread exits.let re
 threadname(args) =let locals = subexps in threadname(args)let threadInstance =new threadname(actuals) in . . .

 
lass threadnameHolder (args) = java.lang.Threadwithlet re
 threadname() =let locals = subexps in threadname()method run() : unit =let _ = this#setDaemon(true)in threadname()endlet threadInstance =new threadnameHolder (actuals) inlet _ = threadInstance#start() in . . .Fig. 6.1. Derived forms for thread 
reation and use in CamelotThis simpli�ed idiom of thread use in Camelot allows us to de�ne derived forms for Camelot threads whi
habbreviate the use of threads in the language. These derived forms 
an be implemented by 
lass hoisting,moving a generated 
lass de�nition to the top level of the program. This translation is outlined in Figure 6.1.7. Threads and (non-)termination. The Camelot programming language is supported not only by astrong, expressive type system but also by a program logi
 whi
h supports reasoning about the time and spa
eusage of programs in the language. However, the logi
 is a logi
 of partial 
orre
tness, whi
h is to say that the
orre
tness of the program is guaranteed only under the assumption that the program terminates. It would
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onvert this logi
 into a logi
 of total 
orre
tness whi
h would guarantee termination instead ofassuming it but proofs in su
h a logi
 would be more di�
ult to produ
e than proofs in the partial 
orre
tnesslogi
.It might seem nonsensi
al to have a logi
 of partial 
orre
tness to guarantee exe
ution times of programs(�this program either terminates in 20 se
onds or it never does�) but even these proofs about exe
ution times havetheir use. They are used to provide a bound on the running time of a program so that if this time is ex
eeded theprogram may be terminated for
ibly by the user or the operating system be
ause after this point it seems thatthe program will not terminate. Su
h a priori information about exe
ution times would be useful for s
hedulingpurposes. In Grid-based 
omputing environments Grid servi
e providers s
hedule in
oming jobs on the basis ofestimated exe
ution times supplied by Grid users. These estimates are sometimes signi�
antly wrong, leadingthe s
heduler either to for
ibly terminate an over-running job due to an under-estimated exe
ution time or tos
hedule other jobs poorly on the basis of an over-estimated exe
ution time.Be
ause of the presen
e of threads in the language we now have meaningful (impure, side-e�e
ting) fun
tionswhi
h do not terminate so a strong fun
tional programming approa
h [27℄ requiring proofs of termination forevery fun
tion would be inappropriate for our purposes.8. Related work. The 
ore of the Camelot programming language is a stri
t, 
all-by-value �rst-orderfun
tional programming language in the ML family extended with expli
it memory deallo
ation 
ommands andan extended type system whi
h expresses the 
ost of fun
tion appli
ation in terms of an in
rease in the sizeof the allo
ated memory on the heap. Other authors have addressed a similar programming model with somevariations. Lee, Yang and Yi [17℄ present a stati
 analysis approa
h whi
h is used in applying a sour
e-leveltransformation to insert expli
it free 
ommands into the program text. Their analysis allows uses of expli
itmemory deallo
ation whi
h are not expressible in Camelot due to the linearity requirement of the Camelottype system. Vas
on
elos and Hammond [28℄ present a type system whi
h is superior to ours in applying tohigher-order fun
tional programs. Our primary 
ost 
omputation is memory allo
ation whereas their primaryfo
us is on run-time abstra
ted as the number of beta-redu
tions in the abstra
t semanti
 interpretation ofthe fun
tion term against the operational semanti
s of the language. Our work di�ers from both of these in
onsidering multi-threaded, not only single-threaded programs.We have made referen
e to MLj, the aspe
ts of whi
h related to Java interoperability are des
ribed in [3℄.MLj is a fully formed implementation of Standard ML, and as su
h is a mu
h larger language than we 
onsiderhere. In parti
ular, MLj 
an draw upon features from SML su
h as modules and fun
tors, for example, allowingthe 
reation of 
lasses parameterised on types. Su
h �exibility 
omes with a pri
e, and we hope that therestri
tions of our system will make the 
erti�
ation of the resour
e usage of obje
t-oriented Camelot programsmore feasible.By virtue of 
ompiling an ML-like language to the JVM, we have made many of the same 
hoi
es that havebeen made with MLj. In many 
ases there is one obvious translation from high level 
on
ept to implementation,and in others the appropriate language 
onstru
t is suggested by the Java obje
t system. However we have alsomade di�erent 
hoi
es more appropriate to our purpose, in terms of transparen
y of resour
e usage and thedesire for a smaller language. For example, we represent obje
ts as re
ords of mutable �elds whereas MLj usesimmutable �elds holding referen
es.There have been various other attempts to add obje
t oriented features to ML and ML-like languages.O'Caml provides a 
lean, �exible obje
t system with many features and impressive type inferen
e�a formalisedsubset is des
ribed in [23℄. As in obje
t-oriented Camelot, obje
ts are modelled as re
ords of mutable �elds plusa 
olle
tion of methods. Many of the additional features of O'Caml 
ould be added to obje
t-oriented Camelotif desired, but there are some 
ompli
ations 
aused when we 
onsider Java 
ompatibility. For example, thereare various ways to 
ompile parameterised 
lasses and polymorphi
 methods for the JVM, but making thesefeatures intera
t 
leanly with the Java world is more subtle.The power of the O'Caml obje
t system seems to 
ome more from the distin
tive type system employed.O'Caml uses the notion of a row variable, a type variable standing for the types of a number of methods. Thismakes it possible to express �a 
lass with these methods, and possibly more� as a type. Where we would havea method parameter taking a parti
ular obje
t type and by subsumption any subtype, in O'Caml the type ofthat parameter would in
lude a row variable, so that any obje
t with the appropriate methods and �elds 
ouldbe used. This allows O'Caml to preserve type inferen
e, but this is less important for our appli
ation, and doesnot map 
leanly to the JVM.
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y 29A 
lass me
hanism for Moby is de�ned in [8℄ with the prin
iple that 
lasses and modules should be orthogonal
on
epts. La
king a module system, Camelot is unable to take su
h an approa
h, but both Moby and O'Camlhave been a guide to 
on
rete representation. Many other relevant issues are dis
ussed in [21℄, but again la
kof a module system�and our desire to avoid this to keep the language small�gives us a di�erent perspe
tiveon the issues.9. Con
lusions and further work. Our ongoing programme of resear
h on the Camelot fun
tionalprogramming language has been investigating resour
e 
onsumption and providing stati
 guarantees of resour
e
onsumption at the time of program 
ompilation. Our thread management system provides a layer of abstra
tionover Java threads. This 
ould allow us to modify the present implementation to multi-task several Camelotthreads onto a single Java thread. The reason to do this would be to 
ir
umvent the ungenerous thread limit onsome JVMs. This extension remains as future work but our present design strongly supports su
h an extension.We have dis
ussed a very simple thread pa
kage for Camelot. A more sophisti
ated one, perhaps based onThimble [26℄, would provide a mu
h more powerful programming model.A possibly pro�table extension of Camelot would be to use defun
tionalization [24℄ to eliminate mutualtail-re
ursion. Given a set of mutually re
ursive fun
tions F whose results are of type t, we de�ne a datatypes whi
h has for ea
h of the fun
tions in F a 
onstru
tor with arguments 
orresponding to the fun
tion'sarguments. The 
olle
tion of fun
tions F is then repla
ed by a single fun
tion f: s -> t whose body is amat
h statement whi
h 
arries out the 
omputations required by the individual fun
tions in F . In this waythe mutually re
ursive fun
tions 
an be repla
ed by a single tail-re
ursive fun
tion, and we already have anoptimisation whi
h eliminates re
ursion for su
h fun
tions. This te
hnique is somewhat 
lumsy, and 
are isrequired in re
y
ling the diamonds whi
h are required to 
ontain members of the datatypes required by s.Another potential problem is that several small fun
tions are e�e
tively 
ombined into one large one, and thereis thus a danger that that 64k limit for JVM methods might be ex
eeded. Nevertheless, this te
hnique doesover
ome the problems related to mutual re
ursion without a�e
ting the transparen
y of the 
ompilation pro
essunduly, and it might be possible for the 
ompiler to perform the appropriate transformations automati
ally.We intend to investigate this in more detail.A
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