ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 6, Number 4, pp. 17-30. http://www.scpe.org © 2005 SWPS

0,..

EXTENDING RESOURCE-BOUNDED FUNCTIONAL PROGRAMMING LANGUAGES
WITH MUTABLE STATE AND CONCURRENCY

STEPHEN GILMORE, KENNETH MACKENZIE AND NICHOLAS WOLVERSON*

Abstract. Camelot is a resource-bounded functional programming language which compiles to Java byte code to run on the
Java Virtual Machine. We extend Camelot to include language support for Camelot-level threads which are compiled to native
Java threads. We extend the existing Camelot resource-bounded type system to provide safety guarantees about the heap usage of
Camelot threads. We demonstrate the usefulness of our concurrency extensions to the language by implementing a multi-threaded
graphical network chat application which could not have been expressed as naturally in the sequential, object-free sublanguage of
Camelot which was previously available.

1. Introduction. Functional programming languages allow programmers to express algorithms concisely
using high-level language constructs operating over structured data, secured by strong type-systems. Together
these properties support the production of high-quality software for complex application problems. Functional
programs in strongly-typed languages typically have relatively few programming errors when compared to similar
applications implemented in languages without these beneficial features.

These desirable language properties mean that developers shed the burdens of explicit memory manage-
ment, but this has the associated cost that they typically lose all control over the allocation and deallocation of
memory. The Camelot language provides an intermediate way between completely automatic memory manage-
ment and unassisted allocation and deallocation in that it provides type-safe storage management by re-binding
of addresses. The address of a datum can be obtained in a pattern match and used in an expression (to store a
different data value at that address), overwriting the currently-held value.

The Camelot compiler targets the Java Virtual Machine but the JVM does not provide an instruction
to free memory, consigning this to the garbage collector, a generational collector with three generations and
implementations of stop-and-copy and mark-sweep collections. Camelot allows more precise control of memory
allocation, allowing in-place modification of user-defined data structures. The Camelot compiler supports various
resource-aware type systems which ensure that memory re-use takes place in a safe manner and also allow static
prediction of heap-space usage. Camelot uses a uniform representation for types which are generated by the
compiler, allowing data types to exchange storage cells. This uniform representation is called the diamond
type [10, 12|, implemented by a Diamond class in the Camelot run-time. The Camelot language implements
a type system which assigns types to functions which record the number of parameters which they consume,
and their types; the type of the result; and the number of diamonds consumed or freed. The outcome is that
the storage consumption requirements of a function are statically computed at compile-time along with the
traditional Hindley-Milner type inference procedure.

The novel contribution of the present paper is to explain how such an unusually rich programming model
can be extended to incorporate object-oriented and concurrent programming idioms. This contribution is not
just a design: it has been realised in the latest release of the Camelot compiler.

Structure of this paper. In Section 2 we present the Camelot language in order that the reader may under-
stand the operational context of the work. We follow this in Section 3 with a discussion of our object-oriented
extensions to Camelot. This leads on to a presentation of the use of threads in Section 4 followed by an analysis
of the management of threads by the run-time system in Section 5. Section 6 explains the relationship between
threads in Camelot and threads as traditionally implemented in concurrent functional languages using first-class
continuations. Section 7 details the implications for verification of Camelot programs. Related work is surveyed
in Section 8 and conclusions follow after that.

2. The Camelot language. The core of Camelot is a standard polymorphic ML-like functional language
whose syntax is based upon that of O’Caml; the main novelty lies in extensions which allow the programmer to
perform in-place modifications to heap-allocated data-structures. These features are similar to those described
in by Hofmann in [11], but include some extra extensions for free list management. To retain a purely functional
semantics for the language in the presence of these extensions a linear type system can be employed: in the
present implementation, linearity can be enforced via a compiler switch. We are in the process of enhancing

*Laboratory for Foundations of Computer Science, The University of Edinburgh, King’s Buildings, Edinburgh, EH9 3JZ, Scotland
17

18 S. Gilmore et al.

the compiler by the addition of other, less restrictive type systems which still allow safe in-place modifications:
more details will be given below.

Crucial design choices for the compilation are transparency and an exact specification of the compilation
process. The former ensures that the compilation does not modify the resource consumption in an unpredictable
way. The latter provides a formal basis for using resource information inferred for the high-level language in
proofs on the intermediate language.

In the following sections we will give a brief description of the structure of the language. We will then outline
how the language is compiled, and in particular how the memory-management extensions are implemented.

2.1. The structure of Camelot. We will give some examples to indicate the basic structure of Camelot;
full details can be found in [20].
Datatypes are defined in the normal way:
type intlist = Nil | Cons of int * intlist
type ’a polylist = NIL | CONS of ’a * ’a polylist
type (’a, ’b) pair = Pair of ’a *’b
Values belonging to user-defined types are created by applying constructors and are deconstructed using the
match statement:
let rec length 1 = match 1 with
Nil -> O
| Cons (h,t) -> 1+length t

let test () = let 1 = Cons(2, Cons(7,Nil))
in length 1

As can be seen from this example, constructor arguments are enclosed in parentheses and are separated by
commas. In contrast, function definitions and applications which require multiple arguments are written in a
“curried” style:

let add a b = a+b

let £ x y z = add x (add y z)

Despite this notation, the present version of Camelot does not support higher-order functions; any appli-

cation of a function must involve exactly the same number of arguments as are specified in the definition of the
function.

2.2. Diamonds and Resource Control. The Camelot compiler targets the Java Virtual Machine, and
values from user-defined datatypes are represented by heap-allocated objects from a certain JVM class. Details
of this representation will be given in Section 2.4.

Consider the following function which uses an accumulator to reverse a list of integers (as defined by the
intlist type above).

let rec rev 1 acc = match 1 with
Nil -> acc
| Cons (h,t) -> rev t (Cons (h,acc))
let reverse 1 = rev 1 Nil

This function allocates an amount of memory equal to the amount occupied by the input list. If no further
reference is made to the input list then the heap space which it occupies may eventually be reclaimed by the
JVM garbage collector.

In order to allow more precise control of heap usage, Camelot includes constructs allowing re-use of heap
cells. There is a special type known as the diamond type (denoted by <>) whose values represent blocks of heap-
allocated memory, and Camelot allows explicit manipulation of diamond objects. This is achieved by equipping
constructors and match rules with special annotations referring to diamond values. Here is the reverse function
rewritten using diamonds so that it performs in-place reversal:

let rec rev 1 acc = match 1 with
Nil -> acc
| Cons (h,t)@d -> rev t (Cons (h,acc)@d)
let reverse 1 = rev 1 Nil

The annotation “@d” on the first occurrence of Cons tells the compiler that the diamond value d is to be

bound to a reference to the space used by the list cell. The annotation on the second occurrence of Cons specifies

Extending Camelot With Mutable State and Concurrency 19

that the list cell Cons(h,acc) should be constructed in the diamond object referred to by d, and no new space
should be allocated on the heap.

One might not always wish to re-use a diamond value immediately. This can sometimes cause difficulty
since such diamonds might then have to be returned as part of a function result so that they can be recycled
by other parts of the program. For example, the alert reader may have noticed that the list reversal function
above does not in fact reverse lists entirely in place. When the user calls reverse, the invocation of the Nil
constructor in the call to rev will cause a new list cell to be allocated. Also, the Nil value at the end of the
input list occupies a diamond, and this is simply discarded in the second line of the rev function (and will be
subject to garbage collection if there are no other references to it).

The overall effect is that we create a new diamond before calling the rev function and are left with an extra
diamond after the call had completed. We could recover the extra diamond by making the reverse function
return a pair consisting of the reversed list and the spare diamond, but this is rather clumsy and programs
quickly become very complex when using this kind of technique.

To avoid this kind of problem, unwanted diamonds can be stored on a free list for later use. This is done
by using the annotation “@_" as in the following example which returns the sum of the entries in an integer list,
destroying the list in the process:

let rec sum 1 acc = match 1 with
Nil@_ -> acc
| Cons (h,t)@_ -> sum t (acc+h)

The question now is how the user retrieves a diamond from the free list. In fact, this happens automatically
during constructor invocation. If a program uses an undecorated constructor such as Nil or Cons(4,Nil) then
if the free list is empty the JVM new instruction is used to allocate memory for a new diamond object on the
heap; otherwise, a diamond is removed from the head of the free list and is used to construct the value. It
may occasionally be useful to explicitly return a diamond to the free list and an operator free: <> -> unit is
provided for this purpose.

There is one final notational refinement. The in-place list reversal function above is still not entirely
satisfactory since the Nil value carries no data but is nonetheless allocated on the heap. We can overcome this
by redefining the intlist type as

type intlist = !Nil | Cons of int * intlist

The exclamation mark directs the compiler to represent the Nil constructor by the JVM null reference. With
the new definition of intlist the original list-reversal function performs true in-place reversal: no heap space
is consumed or destroyed when the reverse function is applied. The ! annotation can be used for a single zero-
argument constructor in any datatype definition. In addition, if every constructor for a particular datatype is
nullary then they may all be preceded by!, in which case they will be represented by integer values at runtime.
We have deliberately chosen to expose this choice to the programmer (rather than allowing the compiler to
automatically choose the most efficient representation) in keeping with our policy of not allowing the compiler
to perform optimisations which have unexpected results on resource consumption.

The features described above are very powerful and can lead to many kinds of program error. For example,
if one applied the reverse function to a sublist of some larger list then the small list would be reversed properly,
but the larger list could become partially reversed. Perhaps worse, a diamond object might be used in several
different data structures of different types simultaneously. Thus a list cell might also be used as a tree node, and
any modification of one structure might lead to modifications of the other. The simplest way of preventing this
kind of problem is to require linear usage of heap-allocated objects, which means that variables bound to such
objects may be used at most once after they are bound. Details of this approach can be found in Hofmann’s
paper [11]. Strict linearity would require one to write the list length function as something like

let rec length 1 = match 1 with
Nil -> Pair (0, Nil)
| Cons(h,t)@ed ->
let p = length t
in match p with
Pair(n, t1)@d1 -> Pair(n+1, Comns(h,t1)@d)@d1
It is necessary to return a new copy of the list since it is illegal to refer to 1 after calling length 1.
Our compiler has a switch to enforce linearity, but the example demonstrates that the restrictive nature

20 S. Gilmore et al.

of linear typing can lead to unnecessary complications. Aspinall and Hofmann [1] give a type system which
relaxes the linearity condition while still allowing safe in-place updates, and Michal Kone¢ny generalises this
still further in [15, 16]. As part of the MRG project, Kone¢ny has implemented a typechecker for a variant of
the type system of [15] adapted to Camelot.

A different approach to providing heap-usage guarantees is given by Hofmann and Jost in [13], where an
algorithm is presented which can be used to statically infer heap-usage bounds for functional programs of a
suitable form. In collaboration with the MRG project, Steffen Jost has implemented a variant of this inference
algorithm for Camelot: the implementation is described in [14]. Both of these implementations are currently
stand-alone programs, but we are in the process of integrating them with the Camelot compiler.

One of our goals in the design of Camelot was to define a language which could be used as a testbed for
different heap-usage analysis methods. The inclusion of explicit diamonds fits the type systems of [1, 15, 16], and
the inclusion of the free list facilitates the Hofmann-Jost inference algorithm, which requires that all memory
management takes place via a free list.

2.3. Compilation of expressions. Camelot is initially compiled into the Grail intermediate language
[5, 19] which is essentially a functional form of Java bytecode. This process is facilitated by an initial phase in
which several transformations are applied to the abstract syntax tree.

2.3.1. Monomorphisation. Firstly, all polymorphism is removed from the program. For polymorphic
types (@, ...,a1) t such as « 1ist we examine the entire program to determine all instantiations of the type
variables, and compile a separate datatype for each distinct instantiation. Similarly, whenever a polymorphic
function is defined the program is examined to find all uses of the function and a monomorphic function of the
appropriate type is generated for each distinct instantiation of types.

2.3.2. Normalisation. After monomorphisation there is a phase referred to as normalisation which trans-
forms the Camelot program into a form which closely resembles Grail.

Firstly the compiler ensures that all variables have unique names. Any duplications are resolved by gener-
ating new names. This allows us to map Camelot variable names directly onto Grail variable names (which in
turn map onto JVM local variable locations) with no danger of clashes arising.

Next, we give names to intermediate results in many contexts by replacing complex expressions with vari-
ables. For example, the expression f(a + b+ ¢) would be replaced by an expression of the form let t; =
a+b in let to = t1 + ¢ in f(t2). The introduction of names for intermediate results can produce a large
number of Grail (and hence JVM) variables. After the source code has been compiled to Grail the number of
local variables is minimised by applying a standard register allocation algorithm (see [30]).

A final transformation ensures that let-expressions are in a “straight-line” form. After all of these trans-
formations have been performed expressions have been reduced to a form which we refer to as normalised
Camelot

The structure of normalised Camelot (which is in fact in a type of A-normal form [9]) is sufficiently close
to that of Grail that it is fairly straightforward to translate from the former to the latter. Another benefit of
normalisation is that it is easier to write and implement type systems for normalised Camelot. The fact that
the components of many expressions are atoms rather than complex subexpressions means that typing rules
can have very simple premisses.

2.4. Compilation of values. Camelot has various primitive types (int, float, etc.) which can be
translated directly into corresponding JVM types. The compilation of user-defined datatypes, however, is
rather more complicated. Objects belonging to datatypes are represented by members of a single JVM class
which we will refer to as the diamond class. Objects of the diamond class contain enough fields to represent
any member of any datatype defined in the program. Each instance X of the diamond class contains an integer
tag field which identifies the constructor with which X is associated. The diamond class also contains a static
field pointing to the free list. The free list is managed via the static methods alloc (which returns the diamond
at the head of the free list, or creates a new diamond by calling new if the free list is empty), and free which
places a diamond object on the free list. The diamond class also has overloaded static methods called make
and £il1, one instance of each for every sequence of types appearing in a constructor. The make methods are
used to implement ordinary constructor application; each takes an integer tag value and a sequence of argument
values and calls alloc to obtain an instance of the diamond class, and then calls a corresponding £i11 method

Extending Camelot With Mutable State and Concurrency 21

to fill in the appropriate fields with the tag and the arguments. The £ill methods are also used when the
programmer reuses an existing diamond to construct a datatype value.

It can be argued that this representation is inefficient in that datatype values are often represented by JVM
objects which are larger than they need to be. This is true, but is difficult to avoid due to the type-safe nature
of JVM memory management which prevents one from re-using the heap space occupied by a value of one type
to store a value of a different type. We wish to be able to reuse heap space, but this can be impossible if objects
can contain only one type of data. With the current scheme one can easily write a heapsort program which
operates entirely in-place. List cells are large enough to be reused as heap nodes and this allows a heap to be
built using cells obtained by destroying the input list. Once the heap has been built it can in turn be destroyed
and the space reused to build the output list. In this case, the amount of memory occupied by a list cell is
larger than it needs to be, but the overall amount of store required is less than would be the case if separate
classes were used to contain list cells and heap nodes.

In the current context it can be claimed that it is better to have an inefficient representation about which we
can give concrete guarantees than an efficient one which about we can say nothing. Most of the programs which
we have written so far use a limited number of datatypes so that the overhead introduced by the monolithic
representation for diamonds is not too severe. However, it is likely that for very large programs this overhead
would become unacceptably large. One possibility which we have not yet explored is that it might be possible
to achieve more efficient heap usage by using dataflow techniques to follow the flow of diamonds through the
program and detect datatypes which are never used in an overlapping way. One could then equip a program
with several smaller diamond classes which would represent such non-overlapping types.

These problems could be avoided by compiling to some platform other than the JVM (for example to
C or to a specialised virtual machine) where compaction of heap regions would be possible. The Hofmann-
Jost algorithm is still applicable in this situation, so it would still be feasible to produce resource guarantees.
However, it was a fundamental decision of the MRG project to use the JVM, based on the facts that the JVM
is widely deployed and very well-known, and that resource usage is a genuine concern in many contexts where
the JVM is used. Our present approach allows us to produce concrete guarantees at the cost of some overhead;
we hope that at a later stage a more sophisticated approach (such as the one suggested above) might allow us
to reduce the overheads while still obtaining guaranteed resource bounds.

2.5. Remarks. There are various ways in which Camelot could be extended. The lack of higher-order
functions is inconvenient, but the resource-aware type systems which we use are presently unable to deal with
higher-order functions, partly because of the fact that these are normally implemented using heap-allocated
closures whose size may be difficult to predict. A possible strategy for dealing with this which we are currently
investigating is Reynolds’ technique of defunctionalization [24] which transforms higher-order programs into
first-order ones, essentially by performing a transformation of the source code which replaces closures with
members of datatypes. This has the advantage that extra space required by closures is exposed at the source
level, where it is amenable to analysis by the heap-usage inference techniques mentioned earlier.

3. Object-oriented extensions. The core Camelot language as described in Section 2 above enables the
programmer to write a program with a predictable resource usage; however, only primitive interaction with the
outside world is possible, through command line arguments, file input and printed output. To be able to write
a full interface for a game or utility to be run on a mobile device, Camelot programs must be able to interface
with external Java libraries. Similarly, the programmer may wish to utilise device-specific libraries, or Java’s
extensive class library.

This section describes our object-oriented extension to Camelot. This is primarily intended to allow Camelot
programs to access Java libraries. It would also be possible to write resource-certified libraries in Camelot for
consumption by standard Java programs, or indeed use the object system for OO programming for its own sake,
but giving Camelot programs access to the outside world is the main objective.

In designing an object system for Camelot, many choices are made for us, or at least tightly constrained.
We wish to create a system allowing inter-operation with Java, and we wish to compile an object system to
JVML. So we are almost forced into drawing the object system of the JVM up to the Camelot level, and cannot
seriously consider a fundamentally different system.

On the other hand, the type system is strongly influenced by the existing Camelot type system. There
is more scope for choice, but implementation can become complex, and an overly complex type system is

22 S. Gilmore et al.

undesirable from a programmer’s point of view. We also do not want to interfere with type systems for resources
as mentioned above.

We shall first attempt to make the essential features of Java objects visible in Camelot in a simple form,
with the view that a simple abbreviation or module system can be added at a later date to make things more
palatable if desired.

3.1. Basic Features. We shall view objects as records of possibly mutable fields together with related
methods, although Camelot has no existing record system. We define the usual operations on these objects,
namely object creation, method invocation, field access and update, and casting and matching. As one might
expect we choose a class-based system closely modelling the Java object system. Consequently we must ac-
knowledge Java’s uses of classes for encapsulation, and associate static methods and fields with classes also.

We now consider these features. The examples below illustrate the new classes of expressions we add to
Camelot.

Static method calls There is no conceptual difference between static methods and functions, ignoring the use
of classes for encapsulation, so we can treat static method calls just like function calls.
java.lang.Math.max a b

Static field access Some libraries require the use of static fields. We should only need to provide access to
constant static fields, so they correspond to simple values.
java.math.BigInteger.ONE

Object creation We clearly need a way to create objects, and there is no need to deviate from the new
operator. By analogy with standard Camelot function application syntax (i.e. curried form) we have:
new java.math.BigInteger "101010" 2

Instance field access To retrieve the value of an instance variable, we write
object#field
whereas to update that value we use the syntax
object#field <- value
assuming that field is declared to be a mutable field.

It could be argued that allowing unfettered external access to an object’s variables is against the spirit
of OO0, and more to the point inappropriate for our small language extension, but we wish to allow easy
interoperability with any external Java code.

Method invocation Drawing inspiration from the O’Caml syntax, and again using a curried form, we have
instance method invocation:
myMap#put key value

Null values In Java, any method with object return type may return the null object. For this reason we add
a construct
isnull e
which tests if the expression e is a null value.

Casts and typecase It may be occasionally be necessary to cast objects up to superclasses, for example to
force the intended choice between overloaded methods. We will also want to recover subclasses, such
as when removing an object from a collection. Here we propose a simple notation for up-casting:
obj :> Class
This notation is that of O’Caml, also borrowed by MLj (described in [3]). To handle down-casting we
shall extend patterns in the manner of typecase (again like MLj) as follows:
match obj with o :> C1 -> o0.a()

| o :>C2 -> 0.b()

| _ -> obj.cQ
Here o is bound in the appropriate subexpressions to the object obj viewed as an object of type C1 or
C2 respectively. As in datatype matches we require that every possible case is covered; here this means
that the default case is mandatory. We also require that each class is a subclass of the type of obj, and
suggest that a compiler warning should be given for any redundant matches.
Unlike MLj we choose not to allow downcasting outside of the new form of match statement, partly
because at present Camelot has no exception support to handle invalid down-casts.

As usual, the arguments of a (static or instance) method invocation may be subclasses of the method’s argument
types, or classes implementing the specified interfaces.

Extending Camelot With Mutable State and Concurrency 23

The following example demonstrates some of the above features, and illustrates the ease of interoperability.
Note that the type of the parameter [is specified by a constraint here. Type inference does not cross class
boundaries in Camelot.
let convert (1: string list) =

match 1 with [] -> new java.util.LinkedList ()

| h::t ->
let 11 = convert t
in let _ = ll#addFirst h
in 11

3.2. Defining classes. Once we have the ability to write and compile programs using objects, we may as
well start writing classes in Camelot. We must be able to create classes to implement callbacks, such as in the
Swing GUI system which requires us to write stateful adaptor classes. Otherwise, as mentioned previously, we
may wish to write Camelot code to be called from Java, for example to create a resource-certified library for
use in a Java program, and defining a class is a natural way to do this. Implementation of these classes will
obviously be tied to the JVM, but the form these take in Camelot has more scope for variation.

We allow the programmer to define a class which may explicitly subclass another class, and implement a
number of interfaces. We also allow the programmer to define (possibly mutable) fields and methods, as well
as static methods and fields for the purpose of creating a specific class for interfacing with Java. We naturally
allow reference to this.

The form of a class declaration is given below. Items within angular brackets (...) are optional.

classdecl ::= class cname = (scname with) body end
body := (inter faces) (fields) (methods)
inter faces ::= implement iname (inter faces)
fields ::= field (fields)
methods ::= method (methods)

This defines a class called cname, implementing the specified interfaces. The optional scname gives the name
of the direct superclass; if it is not present, the superclass is taken to be the root of the class hierarchy, namely
java.lang.0Object. The class cname inherits the methods and values present in its superclass, and these may
be referred to in its definition.

As well as a superclass, a class can declare that it implements one or more interfaces. These correspond
directly to the Java notion of an interface. Java libraries often require the creation of a class implementing a
particular interface—for example, to use a Swing GUI one must create classes implementing various interfaces
to be used as callbacks. Note that at the current time it is not possible to define interfaces in Camelot, they
are provided purely for the purpose of interoperability.

Now we describe field declarations.

field :=fieldx : 7 | fieldmutablex : 7 | valx : T

Instance fields are defined using the keyword field, and can optionally be declared to be mutable. Static fields
are defined using val, and are non-mutable. In a sense these mutable fields are the first introduction of side-
effects into Camelot. While the Camelot language is defined to have an array type, this has largely been ignored
in our more formal treatments as it is not fundamental to the language. Mutable fields, on the other hand,
are fundamental to our notion of object orientation, so we expect any extension of Camelot resource-control
features to object-oriented Camelot to have to deal with this properly.

Methods are defined as follows, where 1 < iq,..., 4, <n.

method ::= maker(z1:71) ... (x:7,) (i super x;, ...x;,) = exp
| method m(a1:71) ... (xp:7y) + T =exp
| method m() : 7 = exp
| let m(x1:71) ... (@p:7y) : T =eaxp

| let m() : 7 =exp

24 S. Gilmore et al.

Again, we use the usual let syntax to declare what Java would call static methods. Static methods are simply
monomorphic Camelot functions which happen to be defined within a class, although they are invoked using
the syntax described earlier. Instance methods, on the other hand, are actually a fundamentally new addition
to the language. We consider the instance methods of a class to be a set of mutually recursive monomorphic
functions, in which the special variable this is bound to the current object of that class.

We can consider the methods as mutually recursive without using any additional syntax (such as and
blocks) since they are monomorphic. ML uses and blocks to group mutually recursive functions because its
let-polymorphism prevents any of these functions being used polymorphically in the body of the others, but this
is not an issue here. In any case this implicit mutual recursion feels appropriate when we are compiling to the
Java Virtual Machine, and have to come to terms with open recursion.

In addition to static and instance methods, we also allow a special kind of method called a maker. This is
just what would be called a constructor in the Java world, but as in [8] we use the term maker in order to avoid
confusion between object and datatype constructors. The maker term above defines a maker of the containing
class C' such that if new C is invoked with arguments of type 7y ...7,, an object of class C is created, the
superclass maker is executed (this is the zero-argument maker of the superclass if none is explicitly specified),
expression exp (of unit type) is executed, and the object is returned as the result of the new expression. Every
class has at least one maker; a class with no explicit maker is taken to have the maker with no arguments which
invokes the superclass zero-argument maker and does nothing. This implicit maker is inserted by the compiler.

3.3. Polymorphism. We remarked earlier that static methods are basically monomorphic Camelot func-
tions together with a form of encapsulation, but it is worth considering polymorphism more explicitly. object-
oriented Camelot methods, whether static or instance methods, are not polymorphic. That is, they have subtype
polymorphism but not parametric polymorphism (genericity), unlike Camelot functions which have parametric
but not subtype polymorphism. This is not generally a problem, as most polymorphic functions will involve
manipulation of polymorphic datatypes, and can be placed in the main program, whereas most methods will
be interfacing with the Java world and thus should conform to Java’s subtyping polymorphism.

3.4. Translation. As mentioned earlier, the present Camelot compiler targets the JVM, via the inter-
mediate language Grail. Translating the object-oriented features which have just been described is relatively
straightforward, as the JVM (and Grail) provide what we need. A detailed formal description of the translation
process can be found in [31]

3.5. Objects and Resource Types. As described earlier, the use of diamond annotations on Camelot
programs in combination with certain resource-aware type systems allows the heap usage of those programs
to be inferred, as well as allowing some in-place update to occur. Clearly the presence of mutable objects in
object-oriented Camelot also provides for in-place update. However by allowing arbitrary object creation we
also replicate the unbounded heap-usage problem solved for datatypes. Perhaps more seriously, we are allowing
Camelot programs to invoke arbitrary Java code, which may use an unlimited amount of heap space.

Firstly consider the second problem. Even if we have some way to place a bound on the heap space used by
our new OO features within a Camelot program, external Java code may use arbitrary amounts of heap. There
seem to be a few possible approaches to this problem, none of which are particularly satisfactory. We could
decide to only allow the use of external classes if they came with a proof of bounded heap usage. Constructing
a resource-bounded Java class library or inferring resource bounds for an existing library would be a massive
undertaking, although perhaps less problematic with the smaller class libraries used with mobile devices. This
suggestion seems somewhat unrealistic.

Alternatively, we could simply allow the resource usage of external methods to be stated by the programmer
or library creator. This extends the trusted computing base in the sense of resources, but seems a more
reasonable solution. The other alternative considering resource-bound proofs to only refer to the resources
directly consumed by the Camelot code—seems unrealistic, as one could easily (and even accidentally) cheat
by using Java libraries to do some memory-consuming “dirty work”.

The issue of heap-usage internal to object-oriented Camelot programs seems more tractable, although we
do not propose a solution here. A first attempt might mimic the techniques used earlier for datatypes; perhaps
we can adapt the use of diamonds and linear type systems? The use of diamonds for in-place update is irrelevant
here, and indeed relies on the uniform representation of datatypes by objects of a particular Java class. Since
we are hardly going to represent every Java object by an object of one class we could not hope to have such a
direct correlation between diamonds and chunks of storage.

Extending Camelot With Mutable State and Concurrency 25

However, we could imagine an abstract diamond which represents the heap storage used by an arbitrary
object, and require any instance of new to supply one of these diamonds, in order that the total number of
objects created is limited. Unfortunately reclamation of such an abstract diamond would only correspond to
making an object available to garbage collection, rather than definitely being able to re-use the storage. Even
so, such a system might be able to give a measure of the total number of objects created and the maximum
number in active use simultaneously.

4. Using threads in Camelot. Previously the JVM had been used simply as a convenient run-time
for the Camelot language but the object-oriented extensions described above allow the Java namespace to be
accessed from a Camelot application. Thus a Camelot application can now create Java objects and invoke Java
methods. Figure 4.1 shows the implementation of a remote input reader in RoundTable, a networked chat
application written in Camelot. This example class streams input from a network connection and renders it in
a display area in the graphical user interface of the application.

(* Thread to read from the network, passing data to a display object *)
class remote = java.lang. Thread
with
field input : java.io. BufferedReader
field disp : display
maker (i : java.io. BufferedReader)(d : display) =
let = input «— iin disp — d
method run() : unit =
let line = this#input#readLine()
in if isnullobj line then () else
let = this#disp#append line
in this#run()

end

Fia. 4.1. An extract from the RoundTable chat application showing the OO extensions to Camelot

This example shows the Camelot syntax for method invocation (obj#meth()), field access (obj#field) and
mutable field update (f <- exp). Both of these are familiar from Objective Caml.

This example also shows that even in the object-oriented fragment of the Camelot language that the natural
definition style for unbounded repetition is to write recursive method calls. The Camelot compiler converts tail-
calls of instance methods (such as this#run) into while-loops so that methods implemented as in Figure 4.1
run in constant space and do not overflow the Java run-time stack. In contrast recursive method calls in Java
are not optimised in this way and would lead to the program overflowing the stack.

A screenshot of a window from the RoundTable application is shown in Figure 4.2. This shows date-and-
time-stamped messages arriving spontaneously in the window. The application offers the ability to thread
messages by content or to sort them by time. The sorting routine is guaranteed by typechecking to run in
constant space because addresses of cons cells in the list of messages are re-cycled using the free list as described
in Section 2.2.

% ==l

Re-sort

[2004-04-3005:31:44] Hithere -
[2004-04-30 05:31:48] How are you getting an?
[2004-04-30 05:35:53] Having funy

Fia. 4.2. Screenshot of the Camelot RoundTable application

26 S. Gilmore et al.

The extension of the Camelot compiler to support interoperation with Java facilitates the implementation
of graphical applications such as these. The Java APIs used by this application include the Swing graphical
user interface components, networking, threads and pluggable look-and-feel components such as the Skin look-
and-feel shown above.

5. Management of threads. In designing a thread management system for Camelot our strongest re-
quirement was to have a system which works harmoniously with the storage management system already in
place for Camelot. One aspect of this is that the resource consumption of a single-threaded Camelot program
can be computed in line with the reasoning explained in Section 1.

In moving from one to multiple threads the most important question with respect to memory usage is the
following. Should the free list of storage which can be reused be a single static instance shared across all threads;
or should each thread separately maintain its own local instance of the free list?

In the former case the accessor methods for the free list must be synchronised in order for data structures
not to become disordered by concurrent write operations. Synchronisation incurs an overhead of locking and
unlocking the parent of the field when entering and leaving a critical region. This imposes a run-time penalty.

In the latter case there is no requirement for access to the free list to be synchronised; each thread has its
own free list. In this case, though, the free memory on each free list is private, and not shared. This means that
there will be times when one thread allocates memory (with a Java new instruction) while another thread has
unused memory on its local free list. This imposes a penalty on the program memory usage, and this form of
thread management would lead to programs typically using more memory overall.

We have chosen the former scheme; we have a single static instance of a free list shared across all threads. Our
programs will take longer than their optimum run-time but memory performance will be improved. Crucially,
predictability of memory consumption is retained.

There are several possible variants on this second scheme which we considered. They were not right for our
purposes but might be right for others. One interesting alternative is a hybrid of the two approaches is where
each thread had a bounded (small) local free list and flushes this to the global free list when it becomes full.
This would reduce the overhead of calls to access the synchronised global free list, while preventing threads from
keeping too many unused memory cells locally. This could be a suitable compromise between the two extremes
but the analysis of this approach would inevitably be more complicated than the approach which we adopted
(a single static free list).

A second alternative would be to implement weak local free lists. In this construction each thread would have
its own private free list implemented using weak references which are references that are not strong enough by
themselves to keep an object alive if no genuine references to it are retained. Weak references are typically used
to implement caches and secondary indexes for data structures. Other high-level garbage-collected languages
such as O’Caml implement weak references also. This scheme was not usable by us because the Camelot
compiler also targets small JVMs on handheld devices and the J2ME does not provide the necessary class
(java.lang.ref.WeakReference).

The analysis of memory consumption of Camelot programs is based on the consumption of memory by heap-
allocated data structures. The present analysis of Camelot programs is based on a single-threaded architecture.
To assist with the development of an analysis method for multi-threaded Camelot programs we require that
data structures in a multi-threaded Camelot program are not shared across threads. For example, it is not
possible to hold part of a list in one thread and the remainder in another. This requirement means that the
space consumption of a multi-threaded Camelot program is obtained as the sum of per-thread space allocation
plus the space requirements of the threads themselves.

At present our type system takes account of heap allocations but does not take account of stack growth.
Thus Camelot programs can potentially (and sometimes do in practice) fail at runtime with a
java.lang.StackOverflowError exception if the programmer overuses the idiom of working with families of
mutually-recursive functions and methods which compute with deeply-nested recursion.

Even sophisticated functional language compilers for the JVM suffer from this problem and some, such
as MLj [4, 3|, do not even implement tail-call elimination in cases where the Camelot compiler does. Several
authors consider the absence of support for tail call elimination to be a failing of the JVM [2, 22]. An approach
to eliminating tail calls such as that used by Funnel [25] would be a useful next improvement to the Camelot
compiler. Techniques such as trampolining have also been shown to work for the JVM [29]. The principal
reason why the JVM does not automatically perform tail-call optimisation is that the Java security model may

Extending Camelot With Mutable State and Concurrency 27

require inspection of the stack to ensure that a particular method has sufficient privileges to execute another
method; eliminating tail-calls would lead to the discarding of stack frames which contain the necessary security
information. However, Clements and Felleisen have recently proposed another security model which allows
safe tail-call optimisation [7]; they claim that this requires only a minor change to the mechanism currently
used by the JVM (and other platforms), so there may be some hope that future JVM implementations will
support proper tail-call optimisation and thus simplify the process of implementing functional languages for
the JVM.

6. A simple thread model for Camelot. To retain predictability of memory behaviour in Camelot we
restrict the programming model offered by Java’s threads.

Firstly, we disallow use of the stop and suspend methods from Java’s threads API. These are deprecated
methods which have been shown to have poor programming properties in any case. Use of the stop method
allows objects to be exposed in a damaged state, part-way through an update by a thread. Use of suspend
freezes threads but these do not release the objects which they are holding locks on, thereby often leading
to deadlocks. Dispensing with pre-emptive thread interruption means that there is a correspondence between
Camelot threads and lightweight threads implemented using first-class continuations, call/cc and throw, as
are usually to be found in multi-threaded functional programming languages [6, 18].

Secondly, we require that all threads are run, again for the purposes of supporting predictability of memory
usage. In the Java language thread allocation (using new) is separated from thread initiation (using the start
method in the java.lang.Thread class) and there is no guarantee that allocated threads will ever be run at
all. In multi-threaded Camelot programs we require that all threads are started at the point where they are
constructed.

Finally, we have a single constructor for classes in Camelot because our type system does not support
overloading. This must be passed initial values for all the fields of the class (because the thread will initiate
automatically). All Camelot threads except the main thread of control are daemon threads, which means that
the Java Virtual Machine will not keep running if the main thread exits.

let rec threadname(args) =

let locals = subexps in threadname(args)
let threadInstance =

new threadname(actuals) in ...

class threadnameHolder (args) = java.lang. Thread
with
let rec threadname() =
let locals = subexps in threadname()
method run() : unit =
let _ = this#setDaemon(true)
in threadname()
end
let threadInstance =
new threadnameHolder (actuals) in
let = threadInstance#tstart() in ...

Fia. 6.1. Derived forms for thread creation and use in Camelot

This simplified idiom of thread use in Camelot allows us to define derived forms for Camelot threads which
abbreviate the use of threads in the language. These derived forms can be implemented by class hoisting,
moving a generated class definition to the top level of the program. This translation is outlined in Figure 6.1.

7. Threads and (non-)termination. The Camelot programming language is supported not only by a
strong, expressive type system but also by a program logic which supports reasoning about the time and space
usage of programs in the language. However, the logic is a logic of partial correctness, which is to say that the
correctness of the program is guaranteed only under the assumption that the program terminates. It would

28 S. Gilmore et al.

be possible to convert this logic into a logic of total correctness which would guarantee termination instead of
assuming it but proofs in such a logic would be more difficult to produce than proofs in the partial correctness
logic.

It might seem nonsensical to have a logic of partial correctness to guarantee execution times of programs
(“this program either terminates in 20 seconds or it never does”) but even these proofs about execution times have
their use. They are used to provide a bound on the running time of a program so that if this time is exceeded the
program may be terminated forcibly by the user or the operating system because after this point it seems that
the program will not terminate. Such a priori information about execution times would be useful for scheduling
purposes. In Grid-based computing environments Grid service providers schedule incoming jobs on the basis of
estimated execution times supplied by Grid users. These estimates are sometimes significantly wrong, leading
the scheduler either to forcibly terminate an over-running job due to an under-estimated execution time or to
schedule other jobs poorly on the basis of an over-estimated execution time.

Because of the presence of threads in the language we now have meaningful (impure, side-effecting) functions
which do not terminate so a strong functional programming approach [27] requiring proofs of termination for
every function would be inappropriate for our purposes.

8. Related work. The core of the Camelot programming language is a strict, call-by-value first-order
functional programming language in the ML family extended with explicit memory deallocation commands and
an extended type system which expresses the cost of function application in terms of an increase in the size
of the allocated memory on the heap. Other authors have addressed a similar programming model with some
variations. Lee, Yang and Yi [17] present a static analysis approach which is used in applying a source-level
transformation to insert explicit free commands into the program text. Their analysis allows uses of explicit
memory deallocation which are not expressible in Camelot due to the linearity requirement of the Camelot
type system. Vasconcelos and Hammond [28] present a type system which is superior to ours in applying to
higher-order functional programs. Our primary cost computation is memory allocation whereas their primary
focus is on run-time abstracted as the number of beta-reductions in the abstract semantic interpretation of
the function term against the operational semantics of the language. Our work differs from both of these in
considering multi-threaded, not only single-threaded programs.

We have made reference to MLj, the aspects of which related to Java interoperability are described in [3].
ML is a fully formed implementation of Standard ML, and as such is a much larger language than we consider
here. In particular, MLj can draw upon features from SML such as modules and functors, for example, allowing
the creation of classes parameterised on types. Such flexibility comes with a price, and we hope that the
restrictions of our system will make the certification of the resource usage of object-oriented Camelot programs
more feasible.

By virtue of compiling an ML-like language to the JVM, we have made many of the same choices that have
been made with MLj. In many cases there is one obvious translation from high level concept to implementation,
and in others the appropriate language construct is suggested by the Java object system. However we have also
made different choices more appropriate to our purpose, in terms of transparency of resource usage and the
desire for a smaller language. For example, we represent objects as records of mutable fields whereas MLj uses
immutable fields holding references.

There have been various other attempts to add object oriented features to ML and ML-like languages.
O’Caml provides a clean, flexible object system with many features and impressive type inference—a formalised
subset is described in [23]. As in object-oriented Camelot, objects are modelled as records of mutable fields plus
a collection of methods. Many of the additional features of O’Caml could be added to object-oriented Camelot
if desired, but there are some complications caused when we consider Java compatibility. For example, there
are various ways to compile parameterised classes and polymorphic methods for the JVM, but making these
features interact cleanly with the Java world is more subtle.

The power of the O’Caml object system seems to come more from the distinctive type system employed.
O’Caml uses the notion of a row variable, a type variable standing for the types of a number of methods. This
makes it possible to express “a class with these methods, and possibly more” as a type. Where we would have
a method parameter taking a particular object type and by subsumption any subtype, in O’Caml the type of
that parameter would include a row variable, so that any object with the appropriate methods and fields could
be used. This allows O’Caml to preserve type inference, but this is less important for our application, and does
not map cleanly to the JVM.

Extending Camelot With Mutable State and Concurrency 29

A class mechanism for Moby is defined in [8] with the principle that classes and modules should be orthogonal
concepts. Lacking a module system, Camelot is unable to take such an approach, but both Moby and O’Caml
have been a guide to concrete representation. Many other relevant issues are discussed in [21], but again lack
of a module system and our desire to avoid this to keep the language small gives us a different perspective
on the issues.

9. Conclusions and further work. Our ongoing programme of research on the Camelot functional
programming language has been investigating resource consumption and providing static guarantees of resource
consumption at the time of program compilation. Our thread management system provides a layer of abstraction
over Java threads. This could allow us to modify the present implementation to multi-task several Camelot
threads onto a single Java thread. The reason to do this would be to circumvent the ungenerous thread limit on
some JVMs. This extension remains as future work but our present design strongly supports such an extension.

We have discussed a very simple thread package for Camelot. A more sophisticated one, perhaps based on
Thimble [26], would provide a much more powerful programming model.

A possibly profitable extension of Camelot would be to use defunctionalization [24] to eliminate mutual
tail-recursion. Given a set of mutually recursive functions F whose results are of type t, we define a datatype
s which has for each of the functions in F a constructor with arguments corresponding to the function’s
arguments. The collection of functions F is then replaced by a single function £: s -> t whose body is a
match statement which carries out the computations required by the individual functions in F. In this way
the mutually recursive functions can be replaced by a single tail-recursive function, and we already have an
optimisation which eliminates recursion for such functions. This technique is somewhat clumsy, and care is
required in recycling the diamonds which are required to contain members of the datatypes required by s.
Another potential problem is that several small functions are effectively combined into one large one, and there
is thus a danger that that 64k limit for JVM methods might be exceeded. Nevertheless, this technique does
overcome the problems related to mutual recursion without affecting the transparency of the compilation process
unduly, and it might be possible for the compiler to perform the appropriate transformations automatically.
We intend to investigate this in more detail.

Acknowledgements. The authors are supported by the Mobile Resource Guarantees project (MRG, project
IST-2001-33149). The MRG project is funded under the Global Computing pro-active initiative of the Future
and Emerging Technologies part of the Information Society Technologies programme of the European Comnis-
sion’s Fifth Framework Programme. The other members of the MRG project provided helpful comments on an
earlier presentation of this work. Java is a trademark of SUN Microsystems.

REFERENCES

[1] D. AspiNaLL AND M. HOFMANN, Another type system for in-place update, in Proc. 11th European Symposium on Program-
ming, Grenoble, vol. 2305 of Lecture Notes in Computer Science, Springer, 2002.

[2] N. BenTON, Some shortcomings of, and possible improvements to, the Java Virtual Machine. This is an unpublished note
which is available on-line at http://research.microsoft.com/~nick/jvmcritique.pdf, June 1999.

[3] N. BEnTON AND A. KENNEDY, Interlanguage working without tears: Blending SML with Java, in Proceedings of the 4th
ACM SIGPLAN Conference on Functional Programming, Paris, Sept. 1999, ACM Press.

[4] N. Benton, A. KENNEDY, AND G. RusseLL, Compiling Standard ML to Java bytecodes, in Proceedings of the 3rd ACM

SIGPLAN Conference on Functional Programming, Baltimore, sep 1998, ACM Press.

[5] L. BErINGER, K. MAcKENzIE, AND 1. STARK, Grail: a functional form for imperative mobile code, in Electronic Notes in
Theoretical Computer Science, V. Sassone, ed., vol. 85, Elsevier, 2003.

[6] E. Biacioni, K. Cring, P. Leg, C. Okasaki, anp C. STONE, Safe-for-space threads in Standard ML, Higher-Order and
Symbolic Computation, 11 (1998), pp. 209-225.

[7] J. CLemeENTS AND M. FELLEISEN, A tail-recursive machine with stack inspection, ACM Transactions on Programming
Languages and Systems. To appear.

[8] K. FisHer anp J. REPPY, Moby objects and classes, 1998. Unpublished manuscript.

[9] C. FranacaN, A. SaBry, B. F. DuBa, anp M. FeLLEISEN, The essence of compiling with continuations, in Proceedings
ACM SIGPLAN 1993 Conf. on Programming Language Design and Implementation, PLDI’93, Albuquerque, NM, USA,
23 25 June 1993, vol. 28(6), ACM Press, New York, 1993, pp. 237 247.

[10] M. HormANN, A type system for bounded space and functional in-place update, Nordic Journal of Computing, 7 (2000),
pp. 258 289.

[11] , A type system for bounded space and functional in-place update, Nordic Journal of Computing, 7 (2000), pp. 258—289.

[12] M. HormaNN AND S. Jost, Static prediction of heap space usage for first-order functional programs, in Proc. 30th ACM
Symp. on Principles of Programming Languages, 2003.

30 S. Gilmore et al.

[13] , Static prediction of heap space usage for first-order functional programs, in Proc. 30th ACM Symp. on Principles of
Programming Languages, New Orleans, 2003.

[14] S. JosT, 1fd_infer: an implementation of a static inference on heap-space usage., in Proceedings of SPACE’04, Venice,
2004. To appear.

[15] M. KoNECNY, Functional in-place update with layered datatype sharing, in TLCA 2003, Valencia, Spain, Proceedings,
Springer-Verlag, 2003, pp. 195 210. Lecture Notes in Computer Science 2701.

, Typing with conditions and guarantees for functional in-place update, in TYPES 2002 Workshop, Nijmegen, Proceed-
ings, Springer-Verlag, 2003, pp. 182 199. Lecture Notes in Computer Science 2646.

[17] O. LEer, H. Yanag, anp K. Y1, Inserting safe memory reuse commands into ML-like programs, in Proceedings of the 10th
Annual International Static Analysis Symposium, vol. 2694 of Lecture Notes in Computer Science, Springer-Verlag, 2003,
pp- 171 188.

[18] P. LEE, Implementing threads in Standard ML, in Advanced Functional Programming, Second International School, Olympia,
WA, USA, August 26-30, 1996, Tutorial Text, J. Launchbury, E. Meijer, and T. Sheard, eds., vol. 1129 of Lecture Notes
in Computer Science, Springer, 1996, pp. 115-130.

K. MacKEeNzig, Grail: a functional intermediate language for resource-bounded computation. LFCS, University of Edinburgh,
2002. Available at http://groups.inf.ed.ac.uk/mrg/publications/.

[20] K. MacKEenzie aND N. WoLvERSON, Camelot and Grail: Resource-aware functional programming for the JVM, in Trends

D
E

[16]

[19]

in Functional Programming, Intellect, 2004, pp. 29 46.
. MAcQUEEN, Should ML be object-oriented?, Formal Aspects of Computing, 13 (2002).
. MEuER AND J. MILLER, Technical Overview of the Common Language Runtime (or why the JVM is not my favourite
ezecution environment). URL: http://docs.msdnaa.net/ark/Webfiles/whitepapers.htm, 2001.

[23] D. REmy anp J. VouiLLon, Objective ML: An effective object-oriented extension to ML, Theory and Practice of Object
Systems, 4 (1998), pp. 27-50.

[24] J. C. ReYNoOLDS, Definitional interpreters for higher-order programming languages, Higher-Order and Symbolic Computation,
11 (1998), pp. 363 397.

[25] M. ScHiNz aAND M. ObERskY, Tail call elimination on the Java Virtual Machine, in Proceedings of Babel’01, vol. 59 of
Electronic Notes in Theoretical Computer Science, 2001.

[26] I. Stark, Thimble — Threads for MLj, in Proceedings of the First Scottish Functional Programming Workshop, no. RM /99/9
in Department of Computing and Electrical Engineering, Heriot-Watt University, Technical Report, 1999, pp. 337 346.

[27] D. TurNER, Elementary strong functional programming, in Proceedings of the First International Symposium on Functional
Programming Languages in Education, R.Plasmeijer and P.Hartel, eds., vol. LNCS 1022, Nijmegen, Netherlands, Dec.
1995, Springer.

[28] P. B. VasconcerLos anp K. HaMMOND, Inferring costs for recursive, polymorphic and higher-order functional programs,
in Proceedings of the 15th International Workshop on the Implementation of Functional Languages, G. Michaelson and
P. Trinder, eds., LNCS, Springer-Verlag, 2003. To appear.

[29] D. WakeLing, Compiling lazy functional programs for the Java Virtual Machine, Journal of Functional Programming, 9
(1999), pp. 579-603.

[30] N. WowLverson, Optimisation and resource bounds in Camelot compilation. Final-year project report, University of Edin-
burgh, 2003. Available at http://groups.inf.ed.ac.uk/mrg/publications/wolverson.ps.

[31] N. WowversoN anp K. MacKEenNzie, O’Camelot: adding objects to a resource-aware functional language, in Proceedings of
TFP2003, Intellect, 2004, pp. 47 62.

[21]
[22]

Edited by: Frédéric Loulergue
Received: June 15, 2004
Accepted: June 9, 2005

