
S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 4, pp. 31�41. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSE.V.E., AN OBJECT ORIENTED SIMD LIBRARYJOEL FALCOU AND JOCELYN SEROT∗Abstra
t. This paper des
ribes the eve (Expressive Velo
ity Engine) library, an obje
t oriented C++ library designed to easethe pro
ess of writing e�
ient numeri
al appli
ations using AltiVe
, the SIMD extension designed by Apple, Motorola and IBM.AltiVe
-powered appli
ations typi
ally show o� a relative speed up of 4 to 16 but need a
omplex and awkward programmationstyle. By using various template metaprogramming te
hniques, E.V.E. provides an easy to use, STL-like, interfa
e that allowsdeveloper to qui
kly write e�
ient and easy to read
ode. Typi
al appli
ations written with E.V.E.
an bene�t from a largefra
tion of theori
al maximum speed up while being written as simple C++ arithmeti

ode.1. Introdu
tion.1.1. The AltiVe
 Extension. Re
ently, SIMD enhan
ed instru
tions have been proposed as a solutionfor delivering higher mi
ropro
essor hardware utilisation. SIMD (Single Instru
tion, Multiple Data) extensionsstarted appearing in 1994 in HP's MAX2 and Sun's VS extensions and
an now be found in most of mi
ropro-
essors, in
luding Intel's Pentiums (MMX/SSE/SSE2) and Motorola/IBM's PowerPCs (Altive
). They havebeen proved parti
ularly useful for a

elerating appli
ations based upon data-intensive, regular
omputations,su
h as signal or image pro
essing.AltiVe
 [10℄ is an extension designed to enhan
e PowerPC1 pro
essor performan
e on appli
ations handlinglarge amounts of data. The AltiVe
 ar
hite
ture is based on a SIMD pro
essing unit integrated with thePowerPC ar
hite
ture. It introdu
es a new set of 128 bit wide registers distin
t from the existing generalpurpose or �oating-point registers. These registers are a

essible through 160 new �ve
tor� instru
tions that
an be freely mixed with other instru
tions (there are no restri
tion on how ve
tor instru
tions
an be intermixedwith bran
h, integer or �oating-point instru
tions with no
ontext swit
hing nor overhead for doing so). Altive
handles data as 128 bit ve
tors that
an
ontain sixteen 8 bit integers, eight 16 bit integers, four 32 bitintegers or four 32 bit �oating points values. For example, any ve
tor operation performed on a ve
tor
haris in fa
t performed on sixteen
har simultaneously and is theoreti
ally running sixteen times faster as thes
alar equivalent operation. AltiVe
 ve
tor fun
tions
over a large spe
trum, extending from simple arithmeti
fun
tions (additions, subtra
tions) to boolean evaluation or lookup table solving.Altive
 is natively programmed by means of a C API [5℄. Programming at this level
an o�er signi�
antspeedups (from 4 to 12 for typi
al signal pro
essing algorithms) but is a rather tedious and error-prone task,be
ause this C API is really �assembly in disguise�. The appli
ation-level ve
tors (arrays, in variable numberand with variable sizes) must be expli
itly mapped onto the Altive
 ve
tors (�xed number, �xed size) and theprogrammer must deal with several low-level details su
h as ve
tor padding and alignment. To
orre
tly turn as
alar fun
tion into a ve
tor-a

elerated one, a large part of
ode has to be rewritten.Consider for example a simple 3x1 smoothing �lter (Fig. 1.1):void C_filter(
har* d, short* r){ for(int i=1; i<SIZE-1; i++)r[i℄ = (d[i-1℄+2*d[i℄+d[i+1℄)/4;} Fig. 1.1. A simple 3x1 gaussian �lter written in standard C.This
ode
an be rewritten (�ve
torized") using Altive
 ve
tor fun
tions. However, this rewriting is nottrivial. We �rst have to look at the original algorithm in a parallel way. The C_filter fun
tion is based on aniterative algorithm that runs trough ea
h item of the input data, applies the
orresponding operations and writesthe result into the output array. By
ontrast, AltiVe
 fun
tions operate on a bun
h of data simultaneously.We have to re
raft the algorithm so that it works on ve
tors instead of single s
alar values. This is done by
∗LASMEA, UMR 6602 CNRS / U. Clermont Ferrand, Fran
e (fal
ou, jserot�lasmea.univ-bp
lermont.fr).
1PPC 74xx (G4) and PPC 970 (G5). 31

32 J. Fal
ou and J. Serotloading data into AltiVe
 ve
tors, shifting these ve
tors left and right, and performing ve
tor multipli
ation andaddition. The resulting
ode�whi
h is indeed signi�
antly longer than the original one�is given in Appendix A.We have ben
hmarked both the s
alar and ve
torized implementation on a 2 GHz PowerPC G5 and obtainedthe results shown in Table 1.1. Both
ode were
ompiled using g

 3.3 using -O3. On this example, a ten folda

eleration
an be observed with the AltiVe
 extension. However, the time spent to rewrite the algorithm in a�ve
torized" way and the somehow awkward Altive
 API
an hinder the development of larger s
ale appli
ations.Table 1.1Exe
ution time and relative speed-up for 3x1 �lters.SIZE value C_filter AV_filter Speed Up
16 K 0.209 ms 0.020 ms 10.5
64 K 0.854 ms 0.075 ms 11.4

256 K 3.737 ms 0.322 ms 11.6
1024 K 16.253 ms 1.440 ms 11.32. AltiVe
 in high level API. As eviden
ed in the previous se
tion, writing AltiVe
-based appli
ations
an be a tedious task. A possible approa
h to
ir
umvent this problem is to en
apsulate Altive
 ve
tors andthe asso
iated operations within a C++
lass. Instantiating this
lass and using
lassi
 in�x notations willprodu
e the AltiVe

ode. We a
tually built su
h a
lass (AVe
tor) and used it to en
ode the �ltering exampleintrodu
ed in se
tion 1.1. The resulting
ode is shown below.AVe
tor<
har> img(SIZE);AVe
tor<short> res(SIZE);res = (img.sr(1)+2*img+img.sl(1))/4;In this formulation, expli
it iterations have been repla
ed by appli
ation of overloaded operators on AVe
torobje
ts. The sr and sl methods implements the shifting operations. The performan
e of this
ode, however,is very disappointing. With the array sizes shown in Table 1.1, the measured speed-ups never ex
eed 1. Thereasons for su
h behaviour are given below.Consider a simple
ode fragment using overloaded operators as shown below:AVe
tor<
har> r(SIZE),x(SIZE),y(SIZE),z(SIZE);r = x + y + z;When a C++
ompiler analyses this
ode, it redu
es the su

essive operator
alls iteratively, resolving �rsty+z then x+(y+z) where y+z is in fa
t stored in a temporary obje
t. Moreover, to a
tually
ompute x+y+z,the involved operations are
arried out within a loop that applies the ve
_add fun
tion to every single ve
torelement of the array. An equivalent
ode, after operator redu
tion and loop expansion is:AVe
tor<
har> r(SIZE),x(SIZE),y(SIZE),z(SIZE);AVe
tor<
har> tmp1(SIZE),tmp2(SIZE);for(i=0;i<SIZE/16);i++) tmp1[i℄ = ve
_add(y[i℄,z[i℄);for(i=0;i<SIZE/16);i++) tmp2[i℄ = ve
_add(x[i℄,tmp1[i℄);for(i=0;i<SIZE/16);i++) r[i℄ = tmp2[i℄;Fig. 2.1. Expanded
ode for overloaded operator
ompilationThis
ode
an be
ompared to an �optimal", hand-written Altive

ode like the one shown on �gure 2.2. The
ode generated by the �naive" AltiVe

lass
learly exhibits unne
essary loops and
opies. When expressionsget more
omplex, the situation gets worse. The time spent in loop index
al
ulation and temporary obje
t
opies qui
kly over
omes the bene�ts of the SIMD parallelization, resulting in poor performan
es.This
an be explained by the fa
t that all C++
ompilers use a dyadi
 redu
tion s
heme to evaluateoperators
omposition. Some
ompilers2
an output a slightly better
ode when
ertain optimisations are

2Like Code Warrior or g

.

E.V.E., An Obje
t Oriented SIMD Library 33AVe
tor<
har> r(SIZE),x(SIZE),y(SIZE),z(SIZE);for(i=0;i<SIZE/16);i++) r[i℄ = ve
_add(x[i℄,ve
_add(y[i℄,z[i℄));Fig. 2.2. Optimal, hand written AltiVe

ode for x+y+z
omputationturned on. However, large expressions or
omplex fun
tions
all
an't be totally optimised. Another fa
tor isthe impa
t of the order of AltiVe
 instru
tions. When writing AltiVe

ode, one have to take in a

ount thefa
t that
a
he lines have to be �lled up to their maximum. The typi
al way for doing so is to pa
k the loadinginstru
tions together, then the operations and �nally the storing instru
tions. When loading,
omputing andstoring instru
tions are mixed in an unordered way, AltiVe
 performan
es generally drop.The aforementioned problem has already been identi�ed�in [13℄ for example�and is the major in
on-venient of the C++ language when it is used for high-level s
ienti�

omputations. In the domain of C++s
ienti�

omputing, it has led to the development of the so-
alled A
tive Libraries [15, 2, 14, 1℄, whi
h bothprovide domain-spe
i�
 abstra
tions and dedi
ated
ode optimisation me
hanisms. This paper des
ribes howthis approa
h
an be applied to the spe
i�
 problem of generating e�
ient Altive

ode from a high-level C++API.It is organized as follows. Se
t. 3 explains why generating e�
ient
ode for ve
tor expressions is not trivialand introdu
es the
on
ept of template-based meta-programming. Se
t. 4 explains how this
on
ept
an used togenerate optimised Altive

ode. Se
t. 5 rapidly presents the API of the library we built upon these prin
iples.Performan
e results are presented in Se
t. 6. Se
t. 7 is a brief survey of related work and Se
t. 8
on
ludes.3. Template based Meta Programming. The evaluation of any arithmeti
 expression
an be viewedas a two stages pro
ess:
• A �rst step, performed at
ompile time, where the stru
ture of the expression is analysed to produ
e a
hain of fun
tion
alls.
• A se
ond step, performed at run time, where the a
tual operands are provided to the sequen
e offun
tion
alls and the a�erent
omputations are
arried out.When the expression stru
ture mat
hes
ertain pattern or when
ertain operands are known at
ompile time, itis often possible to perform a given set of
omputations at
ompile time in order to produ
e an optimised
hainof fun
tion
alls. For example, if we
onsider the following
ode:for(int i=0;i<SIZE;i++){ table[i℄ =
os(2*i);} If the size of the table is known at
ompile time, the
ode
ould be optimised by removing the loop entirelyand writing a linear sequen
e of operations:table[0℄ =
os(0);table[1℄ =
os(2);// later \dotstable[98℄ =
os(196);table[99℄ =
os(198);Furthermore, the value
os(0), . . . ,
os(198)
an be
omputed on
e and for all at
ompile-time, so thatthe runtime
ost of su
h initialisation boils down to 100 store operations.Te
hni
ally speaking, su
h a �lifting� of
omputations from runtime to
ompile-time
an be implementedusing a me
hanism known as template-based metaprogramming. The sequel of this se
tion gives a brief a

ountof this te
hnique and of its
entral
on
ept, expressions templates. More details
an be found, for example, inVeldhuizen's papers [11, 12, 13℄. We fo
us here on how this te
hnique
an be used to remove unne
essary loopsand obje
t
opies from the
ode produ
ed for the evaluation of ve
tor based expressions.The basi
 idea behind expressions templates is to en
ode the abstra
t syntax tree (AST) of an expressionas a C++ re
ursive template
lass and use overloaded operators to build this tree. Combined with an array-like

34 J. Fal
ou and J. Serot
ontainer
lass, it provides a way to build a stati
 representation of an array-based expression. For example, ifwe
onsider an �oat Array
lass and an addition fun
tor add, the expression D=A+B+C
ould be represented bythe following C++ type:Xpr<Array,add,Xpr<Array,add,Array>>Where Xpr is de�ned by the following type:template<
lass LEFT,
lass OP,
lass RIGHT>
lass Xpr{ publi
:Xpr(float* lhs, float* rhs) : mLHS(lhs), mRHS(rhs) {}private:LEFT mLHS;RIGHT mRHS;}; The Array
lass is de�ned as below:
lass Array{ publi
:Array(size_t s) { mData = new float[s℄; mSize = s;}~Array() {if(mData) delete[℄ mData; }float* begin() { return mData; }private:float *mData;size_t mSize;}; This type
an be automati
ally built from the
on
rete syntax of the expression using an overloaded versionof the '+' operator that takes an Array and an Xpr obje
t and returns a new Xpr obje
t:Xpr< Array,add,Array> operator+(Array a, Array b){ return Xpr<T,add,Array>(a.begin(),b.begin());} Using this kind of operators, we
an simulate the parsing of the above
ode (�A+B+C") and see how the
lasses get
ombined to build the expression tree:Array A,B,C,D;D = A+B+C;D = Xpr<Array,add,Array> + CD = Xpr<Xpr<Array,add,Array>,add,Array>Following the
lassi
 C++ operator resolution, the A+B+C expression is parsed as (A+B)+C. The A+Bpart gets en
oded into a �rst template type. Then, the
ompiler redu
e the X+C part, produ
ing the �nal type,en
oding the whole expression.Handling the assignation of A+B+C to D
an then be done using an overloaded version of the assignmentoperator:template<
lass XPR> Array& Array::operator=(
onst XPR& xpr){ for(int i=0;i<mSize;i++) mData[i℄ = xpr[i℄;return *this;}

E.V.E., An Obje
t Oriented SIMD Library 35The Array and Xpr
lasses have to provide a operator[℄ method to be able to evaluate xpr[i℄:int Array::operator[℄(size_t index){ return mData[index℄;}template<
lass L,
lass OP,
lass R>int Xpr<L,OP,R>::operator[℄(size_t index){ return OP::eval(mLHS[i℄,mRHS[i℄);} We still have to de�ne the add
lass
ode. Simply enough, add is a fun
tor that exposes a stati
 method
alled eval performing the a
tual
omputation. Su
h fun
tors
an be freely extended to in
lude any otherarithmeti
 or mathemati
al fun
tions.
lass add{ stati
 int eval(int x,int y) { return x+y; }} With these methods, ea
h referen
e to xpr[i℄
an be evaluated. For the above example, this gives:data[i℄ = xpr[i℄;data[i℄ = add::eval(Xpr<Array,add,Array>,C[i℄);data[i℄ = add::eval(add::apply(A[i℄,B[i℄),C[i℄);data[i℄ = add::eval(A[i℄+B[i℄,C[i℄);data[i℄ = A[i℄+B[i℄+C[i℄;4. Appli
ation to e�
ient AltiVe

ode generation. At this stage, we
an add AltiVe
 supportto this meta-programming engine. If we repla
e the s
alar
omputations and the indexed a

esses by ve
toroperations and loads, we
an write an AltiVe
 template
ode generator. These
hanges a�e
t all the
lasses andfun
tions shown in the previous se
tions.The Array
lass now provides a load method that return a ve
tor instead of a s
alar:int Array::load(size_t index) { return ve
ld(data,index*16); }The add fun
tor now use ve
_add fun
tions instead of the standard + operator:
lass add{ stati
 ve
tor int eval(ve
tor int x,ve
tor int y){ return ve
_add(x,y); }} Finally, we use ve
_st to store results:template<
lass XPR> Array& Array::operator=(
onst XPR& xpr){ for(size_t i=0;i<mSize/4;i++) ve
_st(xpr.load(i),0,mData);return *this;} The �nal result of this
ode generation
an be observed on �gure 4.1.b for the A+B+C example. Figure 4.1.agives the
ode produ
ed by g

 when using the std::valarray
lass.For this simple task, one
an easily see that the minimum number of loads operation is three and theminimum number of store operations is one. For the standard
ode, we have seven extraneous lwz instru
tionsto load pointers, three lsfx to load the a
tual data and one stfs to store the result. For the optimised
ode,we have repla
ed the s
alar lsfx with the AltiVe
 equivalent lvx, the s
alar fadds with vaddfp and stfsxwith the ve
tor stvx. Only three load instru
tions and one store instru
tions, redu
ing op
ode
ount from 17to 9.

36 J. Fal
ou and J. Serot(a) std::valarray
ode (b) optimized
odeL253: L117:lwz r9,0(r3) slwi r2,r9,4slwi r2,r12,2 addi r9,r9,1lwz r4,4(r3) lvx v1,r5,r2addi r12,r12,1 lvx v0,r4,r2lwz r11,4(r9) lvx v13,r6,r2lwz r10,0(r9) vaddfp v0,v0,v1lwz r7,4(r11) vaddfp v1,v0,v13lwz r6,4(r10) stvx v1,r2,r8lfsx f0,r7,r2 bdnz L117lfsx f1,r6,r2lwz r0,4(r4)fadds f2,f1,f0lfsx f3,r2,r0fadds f1,f2,f3stfs f1,0(r5)addi r5,r5,4bdnz L253 Fig. 4.1. Assembly
ode for a simple ve
tor operation5. The EVE library. Using the
ode generation te
hnique des
ribed in the previous se
tion, we haveprodu
ed a high-level array manipulation library aimed at s
ienti�

omputing and taking advantage of theSIMD a

eleration o�ered by the Altive
 extension on PowerPC pro
essors. This library,
alled eve (forExpressive Velo
ity Engine) basi
ally provides two
lasses, ve
tor and matrix�for 1D and 2D arrays �, and ari
h set of operators and fun
tions to manipulate them. This set
an be roughly divided in four families:1. Arithmeti
 and boolean operators, whi
h are the dire
t ve
tor extension of their C++
ounterparts.For example:ve
tor<
har> a(64),b(64),
(64),d(64);d = (a+b)/
;2. Boolean predi
ates. These fun
tions
an be used to manipulate boolean ve
tors and use them assele
tion masks. For example:ve
tor <
har> a(64),b(64),
(64);//
[i℄ = a[i℄ if a[i℄<b[i℄, b[i℄ otherwise
 = where(a < b, a, b);3. Mathemati
al and STL fun
tions. These fun
tions work like their STL or math.h
ounterparts.The only di�eren
e is that they take an array (or matrix) as a whole argument instead of a
oupleof iterators. Apart from this di�eren
e, eve fun
tions and operators are very similar to their STL
ounterparts (the interfa
e to the eve array
lass is a
tually very similar to the one o�ered by the STLvalarray
lass. This allows algorithms developed with the STL to be ported (and a

elerated) with aminimum e�ort on a PowerPC platform with eve. For example:ve
tor <float> a(64),b(64);b = tan(a);float r = inner_produ
t(a, b);4. Signal pro
essing fun
tions. These fun
tions allow the dire
t expression (without expli
it de
om-position into sums and produ
ts) of 1D and 2D FIR �lters. For example:matrix<float> image(320,240),res(320,240);filter<3,horizontal> gauss_x = 0.25, 0.5, 0.25;res = gauss_x(image);

E.V.E., An Obje
t Oriented SIMD Library 37The eve API allows the developer to write a large variety of algorithms as long as these algorithm
an beexpressed as a serie of global operation on ve
tor.6. Performan
e. Two kinds of performan
e tests have been performed: basi
 tests, involving only oneve
tor operation and more
omplex tests, in whi
h several ve
tor operations are
omposed into more
omplexexpressions. All tests involved ve
tors of di�erent types (8 bit integers, 16 bit integers, 32 bit integers and32 bit �oats) but of the same total length (16 Kbytes) in order to redu
e the impa
t of
a
he e�e
ts on theobserved performan
es3. They have been
ondu
ted on a 2GHz PowerPC G5 with g

 3.3.1 and the following
ompilation swit
hes: -faltive
 -ftemplate-deph-128 -O3. A sele
tion of performan
e results is given inTable 6.1. For ea
h test, four numbers are given: the maximum theoreti
al speedup4 (TM), the measuredspeedup for a hand-
oded version of the test using the native C Altive
 API (N.C), the measured speedup witha �naive� ve
tor library�whi
h does not use the expression template me
hanism des
ribed in Se
t. 3 (N.V),and the measured speedup with the eve library. Table 6.1Sele
ted performan
e resultsTest Ve
tor type TM N.C N.V EVE1. v3=v1+v2 8 bit integer 16 15.7 8.0 15.42. v2=tan(v1) 32 bit �oat 4 3.6 2.0 3.53. v3=v1/v2 32 bit �oat 4 4.8 2.1 4.64. v3=v1/v2 16 bit integer 8(4) 3.0 1.0 3.05. v3=inner_prod(v1,v2) 8 bit integer 8 7.8 4.5 7.26. v3=inner_prod(v1,v2) 32 bit �oat 4 14.1 4.8 13.87. 3x1 Filter 8 bit integer 8 7.9 0.1 7.88. 3x1 Filter 32 bit �oat 4 4.12 0.1 4.089. v5=sqrt(tan(v1+v2)/
os(v3*v4)) 32 bit �oat 4 3.9 0.04 3.9It
an be observed that, for most of the tests, the speedup obtained with eve is
lose to the one obtainedwith a hand-
oded version of the algorithm using the native C API. By
ontrast, the performan
es of the �naive�
lass library are very disappointing (espe
ially for tests 7-10). This
learly demonstrates the e�e
tiveness of themetaprogramming-based optimisation.Tests 1�3
orrespond to basi
 operations, whi
h are mapped dire
tly to a single AltiVe
 instru
tion. In this
ase, the measured speedup is very
lose to the theoreti
al maximum. For test 3, it is even greater. This e�e
t
an be explained by the fa
t that on G5 pro
essors, and even for non-SIMD operations, the Altive
 FPU isalready faster than the s
alar FPU5. When added to the speedup o�ered by the SIMD parallelism, this leadsto super-linear speedups. The same e�e
t explains the result obtained for test 6. By
ontrast, test 4 exhibitsa situation in whi
h the observed performan
es are signi�
antly lower than expe
ted. In this
ase, this is dueto the asymmetry of the Altive
 instru
tion set, whi
h does not provide the basi
 operations for all types ofve
tors. In parti
ular, it does not in
lude division on 16 bit integers. This operation must therefore be emulatedusing ve
tor �oat division. This involves several type
asting operations and pra
ti
ally redu
es the maximumtheoreti
al speedup from 8 to 4.Tests 5-9
orrespond to more
omplex operations, involving several AltiVe
 instru
tions. Note that fortests 5 and 7, despite the fa
t that the operands are ve
tors of 8 bit integers, the
omputations are a
tually
arried out on ve
tors of 16 bit integers, in order to keep a reasonable pre
ision. The theoreti
al maximumspeedup is therefore 8 instead of 16.6.1. Realisti
 Case Study. In order to show that eve
an be used to solve realisti
 problems, while stilldelivering signi�
ant speedups, we have used it to ve
torize several
omplete image pro
essing algorithms. Thisse
tion des
ribes the implementation of an algorithm performing the dete
tion of points of interest in grey s
aleimages using the Harris �lter [7℄.
3I.e. the ve
tor size (in elements) was 16K for 8 bit integers, 8K for 16 bit integers and 4K for 32 bits integers or �oats.
4This depends on the type of the ve
tor elements: 16 for 8 bit integers, 8 for 16 bit integers and 4 for 32 bit integers and �oats.
5It has more pipeline stages and a shortest
y
le time.

38 J. Fal
ou and J. SerotStarting from an input image I(x, y), horizontal and verti
al gaussian �lters are applied to remove noiseand the following matrix is
omputed:
M(x, y) =

(

(∂I
∂x

)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(∂I
∂y

)2

)Where (∂I
∂x

) and (∂I
∂y

) are respe
tively the horizontal and verti
al gradient of I(x, y). M(x, y) is �lteredagain with a gaussian �lter and the following quantity is
omputed:
H(x, y) = Det(M) − k.trace(M)2, k ∈ [0.04; 0.06]

H is viewed as a measure of pixel interest. Lo
al maxima of H are then sear
hed in 3x3 windows and the
nth �rst maxima are �nally sele
ted. Figure 6.1 shows the result of the dete
tion algorithm on a video framepi
turing an outdoor s
ene.

In this implementation, only the �ltering and the pixel dete
tion are ve
torized. Sorting an array
annotbe easily ve
torized with the AltiVe
 instru
tion set. It's not worth it anyway, sin
e the time spent in the �nalsorting and sele
tion pro
ess only a

ounts for a small fra
tion (around 3%) of the total exe
ution time of thealgorithm. The
ode for
omputing M
oe�
ients and H values is shown in Fig. 6.1. It
an be split into threese
tions:1. A de
larative se
tion where the needed matrix and filter obje
ts are instantiated. matrix obje
tsare de
lared as float
ontainers to prevent over�ow when �ltering is applied on the input image and to speedup �nal
omputation by removing the need for type
asting.2. A �ltering se
tion where the
oe�
ients of the M matrix are
omputed. We use eve �lter obje
ts,instantiated for gaussian and gradient �lters. Filter support an overloaded * operator that is semanti
ally usedas the
omposition operator.3. A
omputing se
tion where the �nal value of H(x, y) is
omputed using the overloaded versions ofarithmeti
 operators.The performan
es of this dete
tor implementation have been
ompared to those of the same algorithmwritten in C, both using 320*240 pixels video sequen
e as input. The tests were run on a 2GHz Power PC G5and
ompiled with g

 3.3. As the two steps of the algorithm (�ltering and dete
tion) use two di�erent partsof the E.V.E. API, we give the exe
ution time for ea
h step along with the total exe
ution time.Step Exe
ution Time Speed UpFiltering 1.4ms 5.21Evaluation 0.45ms 4.23Total Time 1.85ms 4.98The performan
e of both parts of the algorithm are satisfa
tory. The �ltering se
tion speed-up is near 65%of maximum speed-up while the se
ond part bene�ts from a superlinear a

eleration.7. Related Work. Proje
ts aiming at simplifying the exploitation of the SIMD extensions of modernmi
ro-pro
essors
an be divided into two broad
ategories:
ompiler-based approa
hes and library-based ap-proa
hes.

E.V.E., An Obje
t Oriented SIMD Library 39// De
larations#define W 320#define H 240matrix<short> I(W,H),a(W,H),b(W,H);matrix<short>
(W,H),t1(W,H),t2(W,H);matrix<float> h(W,H);float k = 0.05f;filter<3,horizontal> smooth_x = 1,2,1;filter<3,horizontal> grad_x = 1,0,1;filter<3,verti
al> smooth_y = 1,2,1;filter<3,verti
al> grad_y = -1,0,1;// Computes matrix M://// | a
 |// M = |
 b |t1 = grad_x(I);t2 = grad_y(I);a = (smooth_x*smooth_y)(t1*t1);b = (smooth_x*smooth_y)(t2*t2);
 = (smooth_x*smooth_y)(t1*t2);// Computes matrix HH = (a*b-
*
)-k*(a+b)*(a+b);Fig. 6.1. The Harris dete
tor,
oded with eveThe swar (SIMD Within A register, [4℄) proje
t is an example of the �rst approa
h. Its goal is to proposea versatile data parallel C language making full SIMD-style programming models e�e
tive for
ommodity mi-
ropro
essors. An experimental
ompiler (s

) has been developed that extends C semanti
s and type systemand
an target several family of mi
ropro
essors. Started in 1998, the proje
t seems to be in dormant state.Another example of the
ompiler-based approa
h is given by Kyo et al. in [8℄. They des
ribe a
ompiler fora parallel C diale
t (1d
, One Dimensional C) produ
ing SIMD
ode for Pentium pro
essors and aimed at thesu

in
t des
ription of parallel image pro
essing algorithms. Ben
hmarks results show that speed-ups in therange of 2 to 7 (
ompared with
ode generated with a
onventional C
ompiler)
an be obtained for low-levelimage pro
essing tasks. But the parallelization te
hniques des
ribed in the work�whi
h are derived from the oneused for programming linear pro
essor arrays�seems to be only appli
able to simple image �ltering algorithmsbased upon sweeping a horizontal pixel-updating line row-wise a
ross the image, whi
h restri
ts its appli
ability.Moreover, and this
an be viewed as a limitation of
ompiler-based approa
hes, retargeting another pro
essormay be di�
ult, sin
e it requires a good understanding of the
ompiler internal representations.The vast
ode optimiser [3℄ has a spe
i�
 ba
k-end for generating Altive
/Power PC
ode. This
ompilero�ers automati
 ve
torization and parallelization from
onventional C sour
e
ode, automati
ally repla
ing loopswith inline ve
tor extensions. The speedups obtained with vast are
laimed to be
losed to those obtained withhand-ve
torized
ode. vast is a
ommer
ial produ
t.There have been numerous attempts to provide a library-based approa
h to the exploitation of SIMDfeatures in mi
ro-pro
essors. Apple ve
lib [6℄, whi
h provides a set of Altive
-optimised fun
tions for signalpro
essing, is an example. But most of these attempts su�er from the weaknesses des
ribed in Se
t. 2; namely,they
annot handle
omplex ve
tor expressions and produ
e ine�
ient
ode when multiple ve
tor operationsare involved in the same algorithm. Ma
STL [9℄ is the only work we are aware of that aims at eliminating theseweaknesses while keeping the expressivity and portability of a library-based approa
h. Ma
STL is a
tuallyvery similar to eve in goals and design prin
iples. This C++
lass library provides a fast valarray
lass

40 J. Fal
ou and J. Serotoptimised for Altive
 and relies on template-based metaprogramming te
hniques for
ode optimisation. Theonly di�eren
e is that it only provides STL-
ompliant fun
tions and operators (it
an a
tually be viewed asa spe
i�
 implementation of the STL for G4/G5
omputers) whereas eve o�ers additional domain-spe
i�
fun
tions for signal and image pro
essing.8. Con
lusion. We have shown how a
lassi
al te
hnique�template-based metaprogramming�
an be ap-plied to the design and implementation of an e�
ient high-level ve
tor manipulation library aimed at s
ienti�

omputing on PowerPC platforms. This library o�ers a signi�
ant improvement in terms of expressivity overthe native C API traditionally used for taking advantage of the SIMD
apabilities of this pro
essor. It allows de-velopers to obtain signi�
ant speedups without having to deal with low level implementation details. Moreover,The eve API is largely
ompliant with the STL standard and therefore provides a smooth transition path forappli
ations written with other s
ienti�

omputing libraries. A prototype version of the library
an be down-loaded from the following URL: http://wwwlasmea.univ-bp
lermont.fr/Personnel/Joel.Fal
ou/eng/eve.We are
urrently working on improving the performan
es obtained with this prototype. This involves, forinstan
e, globally minimizing the number of ve
tor load and store operations, using more judi
iously Altive
-spe
i�

a
he manipulation instru
tions or taking advantage of fused operations (e. g. multiply/add). Finally, it
an be noted that, although the
urrent version of eve has been designed for PowerPC pro
essors with Altive
,it
ould easily be retargeted to Pentium 4 pro
essors with MMX/SSE2 be
ause the
ode generator itself (usingthe expression template me
hanism)
an be made largely independent of the SIMD instru
tion set.REFERENCES[1℄ The BOOST Library. http://www.boost.org/.[2℄ The POOMA Library. http://www.
odesour
ery.
om/pooma/.[3℄ VAST. http://www.psrv.
om/vast_altive
.html/.[4℄ The SWAR Home Page http://shay.e
n.purdue.edu/~swar Purdue University[5℄ Apple, The AltiVe
 Instru
tions Referen
es Page. http://developer.apple.
om/hardware/ve.[6℄ Apple, Ve
Lib framework. http://developer.apple.
om/hardware/ve/ve
tor_libraries.html[7℄ C. Harris and M. Stephens, A
ombined
orner and edge dete
tor. In 4th Alvey Vision Conferen
e, 1988.[8℄ S. Kyo and S. Okasaki and I. Kuroda, An extended C language and a SIMD
ompiler for e�
ient implementation ofimage �lters on media extended mi
ro-pro
essors. in Pro
eedings of A
ivs 2003 (Advan
ed Con
epts for Intelligent VisionSystems), Ghent, Belgium, Sept. 1998[9℄ G. Low, Ma
 STL. http://www.pixelglow.
om/ma
stl/.[10℄ I. Ollman, AltiVe
 Velo
ity Engine Tutorial. http://www.simdte
h.org/altive
. Mar
h 2001.[11℄ T. Veldhuizen, Using C++ Template Meta-Programs. In C++ Report, vol. 7, p. 36-43,1995.[12℄ , Expression Templates. In C++ Report, vol. 7, p. 26-31, 1995.[13℄ , Te
hniques for S
ienti�
 C++. http://osl.iu.edu/ tveldhui/papers/te
hniques/.[14℄ , Arrays in Blitz++. In Dr Dobb's Journal of Software Tools, p. 238-44, 1996.[15℄ T. Veldhuizen and D. Gannon, A
tive Libraries: Rethinking the roles of
ompilers and libraries Pro
. of the SIAMWorkshop on Obje
t Oriented Methods for Inter-operable S
ienti�
 and Engineering Computing. SIAM Press, 1998

E.V.E., An Obje
t Oriented SIMD Library 41Appendix A. A simple 3x1 gaussian �lter written with the Altive
 native C API .void AV_filter(
har* img, short* res){ ve
tor unsigned
har zu8,t1,t2,t3,t4;ve
tor signed short x1h,x1l,x2h;ve
tor signed short x2l,x3h,x3l;ve
tor signed short zs16 ,rh,rl,v0,v1,shift;// Generate
onstantsv0 = ve
_splat_s16(2);v1 = ve
_splat_s16(4);zu8 = ve
_splat_u8(0);zs16 = ve
_splat_s16(0);shift = ve
_splat_s16(8);for(int j = 0; j< SIZE/16 ; j++){ // Load input ve
torst1 = ve
_ld(j*16, img); t2 = ve
_ld(j*16+16, img);// Generate shifted ve
torst3 = ve
_sld(t1,t2,1); t4 = ve
_sld(t1,t2,2);// Cast to shortx1h = ve
_mergeh(zu8,t1); x1l = ve
_mergel(zu8,t1);x2h = ve
_mergeh(zu8,t3); x2l = ve
_mergel(zu8,t3);x3h = ve
_mergeh(zu8,t4); x3l = ve
_mergel(zu8,t4);// A
tual filteringrh = ve
_mladd(x1h,v0,zs16);rl = ve
_mladd(x1l,v0,zs16);rh = ve
_mladd(x2h,v1,rh);rl = ve
_mladd(x2l,v1,rl);rh = ve
_mladd(x3h,v0,rh);rl = ve
_mladd(x3l,v0,rl);rh = ve
_sr(rh,shift);rl = ve
_sr(rl,shift);// Pa
k and store result ve
tort1 = ve
_pa
ksu(rh,rl);ve
_st(t1,j,out);}}Edited by: Frédéri
 LoulergueRe
eived: June 26, 2004A

epted: June 5, 2005

