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t. A fun
tional data-parallel language 
alled BSML was designed for programming Bulk-Syn
hronous Parallel algo-rithms, a model of 
omputing whi
h allows parallel programs to be ported to a wide range of ar
hite
tures. BSML is based on anextension of the ML language with parallel operations on a parallel data stru
ture 
alled parallel ve
tor. The exe
ution time 
an beestimated. Dead-lo
ks and indeterminism are avoided. For large s
ale appli
ations where parallel pro
essing is helpful and wherethe total amount of data often ex
eeds the total main memory available, parallel disk I/O be
omes a ne
essity. In this paper, wepresent a library of I/O features for BSML and its formal semanti
s. A 
ost model is also given and some preliminary performan
eresults are shown for a 
ommodity 
luster.Key words. Parallel Fun
tional Programming, Parallel I/O, Semanti
s, BSP.1. Introdu
tion. Some problems require performan
e that 
an only be provided by massively parallel
omputers. Programming these kind of 
omputers is still di�
ult. Many important 
omputational appli
ationsinvolve solving problems with very large data sets [44℄. Su
h appli
ations are also referred as out-of-
oreappli
ations. For example astronomi
al simulation [47℄, 
rash test simulation [10℄, geographi
 informationsystems [32℄, weather predi
tion [52℄, 
omputational biology [17℄, graphs [40℄ or 
omputational geometry [11℄and many other s
ienti�
 problems 
an involve data sets that are too large to �t in the main memory andtherefore fall into this 
ategory. For another example, the Large Hadron Collider of the CERN laboratoryfor �nding tra
es of exoti
 fundamental parti
les (web page at lh
-new-homepage.web.
ern.
h), when startsrunning, this instrument will produ
es about 10 Petabytes a month. The earth-simulator, the most powerfulparallel ma
hine in the top500 list, has 1 Petabyte of total main memory and 100 Petabytes of se
ondarymemories. Using the main memory is not enough to store all the data of an experiment.Using parallelism 
an redu
e the 
omputation time and in
rease the available memory size, but for 
hal-lenging appli
ations, the memory is always insu�
ient in size. For instan
e, in a mesh de
omposition of ame
hani
al problem, a s
ientist might want to in
rease the mesh size. To in
rease the available memory size, atrivial solution is to use the virtual memory me
hanism present in modern operating systems. This has beenestablished as a standard method for managing external memory. Its main advantage is that it allows theappli
ation to a

ess to a large virtual memory without having to deal with the intri
a
ies of blo
ked se
ondarymemory a

esses. Unfortunately, this solution is ine�
ient if standard paging poli
y is employed [7℄. To get thebest performan
es, the algorithms must be restru
tured with expli
it I/O 
alls on this se
ondary memory.Su
h algorithms are generally 
alled external memory (EM) algorithms and are designed for large 
ompu-tational problems in whi
h the size of the internal memory of the 
omputer is only a small fra
tion of the sizeof the problem ([55, 53℄ for a survey). Parallel pro
essing is an important issue for EM algorithms for the samereasons that parallel pro
essing is of pra
ti
al interest in non-EM algorithm design. Existing algorithm anddata stru
tures were often unsuitable for out-of-
ore appli
ations. This is largely due to the need of lo
ality ondata referen
es, whi
h is not generally present when algorithms are designed for internal memory due to thepermissive nature of the PRAM model: parallel EM algorithms [54℄ are �new� and do not work optimally and
orre
tly in �
lassi
al� parallel environments.De
larative parallel languages are needed to simplify the programming of massively parallel ar
hite
tures.Fun
tional languages are often 
onsidered. The design of parallel programming languages is a tradeo� betweenthe possibility to express the parallel features that are ne
essary for predi
table e�
ien
y (but with programsthat are more di�
ult to write, prove and port) and the abstra
tion of su
h features that are ne
essary tomake parallel programming easier (but whi
h should not hinder e�
ien
y and performan
e predi
tion). Onthe one hand the programs should be e�
ient but without the pri
e of non portability and unpredi
tabilityof performan
es. The portability of 
ode is needed to allow 
ode reuse on a wide variety of ar
hite
tures.The predi
tability of performan
es is needed to guarantee that the e�
ien
y will always be a
hieved, whateverar
hite
ture is used.
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Fig. 2.1. The BSP model of 
omputationAnother important 
hara
teristi
 of parallel programs is the 
omplexity of their semanti
s. Deadlo
ksand non-determinism often hinder the pra
ti
al use of parallelism by a large number of users. To avoid theseundesirable properties, there is a trade-o� between the expressiveness of the language and its stru
ture whi
h
ould de
rease the expressiveness.We are 
urrently exploring the intermediate position of the paradigm of algorithmi
 skeletons [6, 42℄ inorder to obtain universal parallel languages where the exe
ution 
ost 
an easily be determined from the sour
e
ode. In this 
ontext, 
ost means the estimate of parallel exe
ution time. This last requirement for
es the useof expli
it pro
esses 
orresponding to the pro
essors of the parallel ma
hine. Bulk-Syn
hronous Parallel ML orBSML is an extension of ML for programming Bulk-Syn
hronous Parallel algorithms as fun
tional programswith a 
ompositional 
ost model. Bulk-Syn
hronous Parallel (BSP) 
omputing is a parallel programming modelintrodu
ed by Valiant [46, 50℄ to o�er a high degree of abstra
tion like PRAM models and yet to allow portableand predi
table performan
e on a wide variety of ar
hite
tures with a realisti
 
ost model based on a stru
turedparallelism. Deadlo
ks and indeterminism are avoided. BSP programs are portable a
ross many parallel ar
hi-te
tures. Su
h algorithms o�er predi
table and s
alable performan
es ([38℄ for a survey) and BSML expressesthem with a small set of primitives taken from the 
on�uent BSλ 
al
ulus [37℄. Su
h operations are implementedas a library for the fun
tional, with a stri
t evaluation strategy, programming language Obje
tive Caml [33℄.We refer to [27℄ for more details about the 
hoi
e of this strategy for massively parallel 
omputing.Parallel disk I/O has been identi�ed as a 
riti
al 
omponent of a suitable high performan
e 
omputer.Resear
h in EM algorithms has re
ently re
eived 
onsiderable attention. Over the last few years, 
omprehensive
omputing and 
ost models that in
orporate disks and multiple pro
essors have been proposed [35, 55, 54℄, butnot with all the above elements. [14, 16℄ showed how an EM ma
hine 
an take full advantage of parallel disk I/Oand multiple pro
essors. This model is based on an extension of the BSP model for I/O a

esses. Our resear
haims at 
ombining the BSP model with fun
tional programming. We naturally need to also extend BSML withI/O a

esses for programming EM algorithms. This paper is the follow-up to our work on imperative featuresof our fun
tional data-parallel language [22℄.This paper des
ribes a further step after [21℄ towards this dire
tion. The remainder of this paper is organizedas follows. First we review the BSP model in Se
tion 2 and, then, brie�y present the BSML language. Inse
tion 3 we introdu
e the EM-BSP model and the problems that appear in BSML. In se
tion 4, we then givenew primitives for our language. In se
tion 5, we des
ribe the formal semanti
s of our language with persistentfeatures. Se
tion 6 is devoted to the formal 
ost model asso
iated to our language and Se
tion 7 to someben
hmarks of a parallel program. We dis
uss related work in se
tion 8 and we end with 
on
lusions and futureresear
h (se
tion 9).2. Fun
tional Bulk-Syn
hronous Parallel ML.2.1. Bulk-Syn
hronous Parallelism. A BSP 
omputer 
ontains a set of pro
essor -memory pairs, a
ommuni
ation network allowing inter-pro
essor delivery of messages and a global syn
hronization unit whi
h
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utes 
olle
tive requests of a syn
hronization barrier. For the sake of 
on
iseness, we refer to [5, 46℄ for moredetails. In this model, a parallel 
omputation is subdivided into supersteps (Figure 2.1) at the end of whi
h abarrier syn
hronization and a routing are performed. After that, all requests for data posted during a pre
edingsuperstep are ful�lled. The performan
e of the ma
hine is 
hara
terized by 3 parameters expressed as multiplesof the lo
al pro
essing speed r:(i) p is the number of pro
essor-memory pairs;(ii) l is the time required for a global syn
hronization and(iii) g is the time for 
olle
tively delivering a 1-relation, a 
ommuni
ation phase where every pro
essorre
eives/sends at most one word. The network 
an deliver an h-relation in time g × h for any arity h.These parameters 
an easily be obtained using ben
hmarks [28℄. The exe
ution time of a superstep s is thusthe sum of the maximal lo
al pro
essing time, the maximal data delivery time and the global syn
hronizationtime, i.e, Time(s) = maxi:processor ws
i + maxi:processor hs

i ∗ g + l where ws
i= lo
al pro
essing time on pro
essor

i during superstep s and hs
i =max{hs

i+, hs
i−} where hs

i+ (resp. hs
i−) is the number of words transmitted (resp.re
eived) by pro
essor i during superstep s. The exe
ution time ∑

s Time(s) of a BSP program 
omposed of Ssupersteps is therefore the sum of 3 terms:
tcomp + tcomm + L where 





tcomp =
∑

s maxi ws
i

tcomm = H × g where H =
∑

s maxi hs
i

L = S × l.In general tcomp, H and S are fun
tions of p and of the size of data n, or of more 
omplex parameters like dataskew and histogram sizes. To minimize exe
ution time, the BSP algorithm design must jointly minimize thenumber S of supersteps and the total volume h (resp. tcomp) and imbalan
e hs (resp. tcomm) of 
ommuni
ation(resp. lo
al 
omputation). Bulk Syn
hronous Parallelism and the Coarse-Grained Multi
omputer (CGM),whi
h 
an be seen as a spe
ial 
ase of the BSP model are used for a large variety of appli
ations. As statedin [13℄ �A 
omparison of the pro
eedings of the eminent 
onferen
e in the �eld, the ACM Symposium onParallel Algorithms and Ar
hite
tures between the late eighties and the time from the mid-nineties to todayreveals a startling 
hange in resear
h fo
us. Today, the majority of resear
h in parallel algorithms is within the
oarse-grained, BSP style, domain�.bsp_p: unit→int bsp_l: unit→�oat bsp_g: unit→�oatmkpar: (int→α )→αparapply: (α→β )par→αpar→β partype α option = None | Some of αput: (int→α option)par→(int→α option)parat: αpar→int→α Fig. 2.2. The Core Bsmllib Library2.2. Bulk-Syn
hronous Parallel ML. BSML does not rely on SPMD programming. Programs areusual �sequential� Obje
tive Caml (OCaml) programs [33℄ but work on a parallel data stru
ture. Some of theadvantages are simpler semanti
s and better readability. The exe
ution order follows the reading order in thesour
e 
ode (or, at least, the results are su
h as seems to follow the exe
ution order). There is 
urrently noimplementation of a full BSML language but rather a partial implementation as a library for OCaml (web pageat http://bsmllib.free.fr/).The so-
alled BSMLlib library is based on the elements given in Figure 2.2. They give a

ess to the BSPparameters of the underling ar
hite
ture: bsp_p() is p the stati
 number of pro
esses (this value does not
hange during exe
ution), bsp_g() is g the time for 
olle
tively delivering a 1-relation and bsp_l() is l thetime required for a global syn
hronization barrier.There is an abstra
t polymorphi
 type αpar whi
h represents the type of p-wide parallel ve
tors of obje
tsof type α one per pro
essor. BSML parallel 
onstru
ts operate on parallel ve
tors. Those parallel ve
tors are
reated by mkpar so that (mkpar f) stores (f i) on pro
ess i for i between 0 and p− 1:mkpar f = (f 0) (f 1) · · · (f i) · · · (f (p−1))We usually write f as fun pid→e to show that the expression e may be di�erent on ea
h pro
essor. Thisexpression e is said to be lo
al, i.e, a usual ML expression. The expression (mkpar f) is a parallel obje
t and



46 F. Gavait is said to be global. A usual ML expression whi
h is not within a parallel ve
tor is 
alled repli
ate, i.e,identi
al to ea
h pro
essor. A BSP algorithm is expressed as a 
ombination of asyn
hronous lo
al 
omputations(�rst phase of a superstep) and phases of global 
ommuni
ation (se
ond phase of a superstep) with globalsyn
hronization (third phase of a superstep). Asyn
hronous phases are programmed with mkpar and applysu
h that (apply (mkpar f) (mkpar e)) stores ((f i) (e i)) on pro
ess i:apply f0 f1 · · · fi · · · fp−1 v0 v1 · · · vi · · · vp−1

= (f0 v0) (f1 v1) · · · (fi vi) · · · (fp−1 vp−1)Let us 
onsider the following expression:let vf=mkpar(fun pid x→x+pid)and vv=mkpar(fun pid→2∗pid+1)in apply vf vvThe two parallel ve
tors are respe
tively equivalent to:fun x→x + 0 fun x→x + 1 · · · fun x→x + i · · · fun x→x + (p− 1)and
0 3 · · · 2× i + 1 · · · 2× (p− 1) + 1The expression apply vf vv is then evaluated to:
0 4 · · · 2× i + 2 · · · 2× (p− 1) + 2Readers familiar with BSPlib [28℄ will observe that we ignore the distin
tion between a 
ommuni
ation requestand its realization at the barrier. The 
ommuni
ation and syn
hronization phases are expressed by put.Consider the expression: put(mkpar(fun i→fsi)) (∗). To send a value v from pro
ess j to pro
ess i, thefun
tion fsj at pro
ess j must be su
h that (fsj i) evaluates to Some v. To send no value from pro
ess j topro
ess i, (fsj i) must evaluate to None. The expression (∗) evaluates to a parallel ve
tor 
ontaining a fun
tionfdi of delivered messages on every pro
ess i. At pro
ess i, (fdi j) evaluates to None if pro
ess j sent no messageto pro
ess i or evaluates to Some v if pro
ess j sent the value v to the pro
ess i.The full language would also 
ontain a syn
hronous proje
tion operation at. (at ve
 n) returns the nthvalue of the parallel ve
tor ve
: at v0 · · · vn · · · vp−1 n = vnat expresses 
ommuni
ation and syn
hronization phases. Without it, the global 
ontrol 
annot take into a

ountdata 
omputed lo
ally. Global 
onditional is ne
essary for expressing algorithms like: Repeat Parallel IterationUntilMax of lo
al errors < ǫ. The nesting of par types is prohibited and the proje
tion should not be evaluatedinside the s
ope of a mkpar. Our type system enfor
es these restri
tions [23℄.2.3. Examples.2.3.1. Often Used Fun
tions. Some useful fun
tions 
an be de�ned by using only the primitives. Forexample the fun
tion repli
ate 
reates a parallel ve
tor whi
h 
ontains the same value everywhere. The primitiveapply 
an be used only for a parallel ve
tor of fun
tions whi
h take only one argument. To deal with fun
tionswhi
h take two arguments we need to de�ne the apply2 fun
tion.let repli
ate x = mkpar(fun pid→x)let apply2 vf v1 v2 = apply (apply vf v1) v2It is also 
ommon to apply the same sequential fun
tion at ea
h pro
ess. This 
an be done using the parfunfun
tions. They only di�er in the number of arguments to apply:let parfun f v = apply(repli
ate f) vlet parfun2 f v1 v2 = apply(parfun f v1) v2let parfun3 f v1 v2 v3 = apply(parfun2 f v1 v2) v2
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hronous Parallel ML 47It is also 
ommon to apply a di�erent fun
tion on a pro
ess. applyat n f1 f2 v applies fun
tion f1 at pro
ess nand fun
tion f2 at other pro
esses:let applyat n f1 f2 v =apply(mkpar(fun i→if i=n then f1 else f2)) v2.3.2. Communi
ation Fun
tion. Our example is the 
lassi
al 
omputation of the pre�x of a list. Herewe make the hypothesis that the elements of the list are distributed to all the pro
esses as lists. Ea
h pro
essorperforms a lo
al redu
tion, then sends its partial result to the following pro
essors and �nally lo
ally redu
esits partial result with the sent values. Take for example the following expression:s
an_list_dire
t e (+) [1; 2] [3; 4] [5]It will be evaluated to:
[e + 1; e + 1 + 2] [e + 1 + 2 + 3; e + 1 + 2 + 3 + 4; ] [e + 1 + 2 + 3 + 4 + 5]for a pre�x of three pro
essors and where e is the neutral element (here 0). To do this, we need �rst the
omputation of the pre�x of a parallel ve
tor:(∗ s
an_dire
t:(α→α→α )→α→α par→α par ∗)let s
an_dire
t op e vv =let mkmsg pid v dst=if dst<pid then None else Some v inlet pro
s_lists=mkpar(fun pid→from_to 0 pid) inlet re
eivedmsgs=put(apply(mkpar mkmsg) vv) inlet values_lists= parfun2 List.map(parfun (
ompose noSome) re
eivedmsgs) pro
s_lists inapplyat 0 (fun _ →e) (List.fold_left op e) values_listswhere





















List.map f [v0; . . . ; vn] = [(f v0); . . . ; (f vn)]List.fold_left f e [v0; . . . ; vn] = f (· · · (f (f e v0) v1) · · · ) vnfrom_to n m = [n; n + 1; n + 2;. . . ; m]noSome (Some v) = v
ompose f g x = (f (g x)).Then, we 
an dire
tly have the pre�x of lists using some generi
 s
an:let s
an_wide s
an seq_s
an_last map op e vv =let lo
al_s
an=parfun (seq_s
an_last op e) vv inlet last_elements=parfun fst lo
al_s
an inlet values_to_add=(s
an op e last_elements) inlet pop=applyat 0 (fun x y→y) op inparfun2 map (pop values_to_add) (parfun snd lo
al_s
an)let s
an_wide_dire
t seq_s
an_last map op e vv =s
an_wide s
an_dire
t seq_s
an_last map op e vvlet s
an_list s
an op e vl =s
an_wide s
an seq_s
an_last List.map op e vl(∗ s
an_list_dire
t:(α→α→α )→α→α list par→α list par ∗)let s
an_list_dire
t op e vl = s
an_list s
an_dire
t op e vlwhere seq_s
an_last f e [v0; v1; . . . ; vn] = (last, [(f e v0); f(f e v0) v1; . . . ; last]) wherelast = f (· · · (f (f e v0) v1) · · · ) vn. The BSP 
ost formula of the above fun
tion (assuming op has a 
onstant
ost cop) is thus 2×N × cop × r + (p− 1)× s× g + l where s denotes the size in words of a value 
ompute bythe s
an and N the length of the biggest list held at a pro
ess. We have thus the time to 
ompute the partialpre�x, the time to send the partial results, time to perform the global syn
hronization and the time to �nishthe pre�x.
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@ �NetworkRouter Fig. 3.1. A BSP 
omputer with external memories2.4. Advantages of Fun
tional BSP Programming. One important bene�t of the BSP model is theability to a

urately predi
t the exe
ution time requirements of parallel algorithms. Communi
ations are 
learlyseparated from syn
hronization, i. e., this avoids deadlo
ks and it 
an be performed in any order, providedthat the information is delivered at the beginning of the next superstep. This is a
hieved by 
onstru
tinganalyti
al formulas that are parameterized by a few values whi
h 
aptured the 
omputation, 
ommuni
ationand syn
hronization performan
e of the parallel system.The 
larity, abstra
tion and formal semanti
s of fun
tional language make them desirable vehi
les for
omplex software. The fun
tional approa
h of this parallel model allows the re-use of suitable te
hniques fromfun
tional languages be
ause a few number of parallel primitives is needed. Primitives of the BSML languagewith a stri
t strategy are derived from a 
on�uent 
al
ulus [37℄ so parallel algorithms are also 
on�uent andkeep the advantages of the BSP models: no deadlo
k, e�
ient implementation using optimized 
ommuni
ationalgorithms, stati
 
ost formulas and 
ost previsions. The lazy evaluation strategy of pure fun
tional languageis not suited for the need of the massively parallel programmer. Lazy evaluation has the unwanted property ofhiding 
omplexity from the programmer [27℄. The stri
t strategy of OCaml makes the BSMLlib a better toolfor high performan
e appli
ations be
ause programs are transparent in the sense of making 
omplexity expli
itin the syntax.Also, as in fun
tional languages, we 
ould easily prove and 
ertify fun
tional implementation of su
h algo-rithms with a proof assistant [1, 4℄ as in [20℄. Using the extra
tion possibility of the proof assistant, we 
ouldgenerate a 
erti�ed implementation to be used independently of the sequential or parallel implementation ofthe BSML primitives.3. External Memory.3.1. The EM-BSP model. Modern 
omputers typi
ally have several layers of memories whi
h in
ludethe main memory and 
a
hes as well as disks. We restri
t ourselves to the two-level model [54℄ be
ause thespeed di�eren
e between disks and the main memory is mu
h more signi�
ant than between other layers ofmemories. [16℄ extended the BSP model to in
lude se
ondary lo
al memories. The basi
 idea is simple and itis illustrated in Figure 3.1. Ea
h pro
essor has, in addition to its lo
al memory, an external memory (EM) inthe form of a set of disks. This idea is applied to extend the BSP model to its EM version 
alled EM-BSP byadding the following parameters to the standard BSP parameters:(i) M is the lo
al memory size of ea
h pro
essor;(ii) D is the number of disk drives of ea
h pro
essor;(iii) B is the transfer blo
k size of a disk drive, and(iv) G is the ratio of lo
al 
omputational 
apa
ity (number of lo
al 
omputation operations) divided bylo
al I/O 
apa
ity (number of blo
ks of size B that 
an be transferred between the lo
al disks and memory)per unit time.In many pra
ti
al 
ases, all pro
essors have the same number of disks and, thus, the model is restri
ted tothat 
ase (although the model forbids di�erent memory sizes). The disk drives of ea
h pro
essor are denoted by

D0,D1, . . . ,DD−1. Ea
h drive 
onsists of a sequen
e of tra
ks whi
h 
an be a

essed by dire
t random a

ess. Atra
k stores exa
tly one blo
k of B words. Ea
h pro
essor 
an use all its D disk drives 
on
urrently and transfer
D × B words from/to the lo
al disks to/from its lo
al memory in a single I/O operation being at 
ost G. Insu
h an operation, only one tra
k per disk is permitted to be a

essed without any restri
tion and ea
h tra
kis set on ea
h disk. Note that an operation involving fewer disk drives in
urs the same 
ost. Ea
h pro
essor is
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hronous Parallel ML 49assumed to be able to store in its lo
al main memory at least some blo
ks from ea
h disk at the same time,i. e., M >> DB.Like 
omputation on the BSP model, the 
omputation of the EM-BSP model pro
eeds in a su

ession ofsupersteps. The 
ommuni
ation 
osts are the same as for the BSP model. The EM-BSP model allows multipleI/O operations during the 
omputation phase of the superstep. The total 
ost of ea
h superstep is thus de�ned as
tcomp,io + tcomm +L where tcomp,io is the 
omputational 
ost and additional I/O 
ost 
harged for the supersteps,i.e, tcomp,io =

∑

s maxi(w
s
i +ms

i ) where ms
i is the I/O 
ost in
urred by pro
essor i during superstep s. We referto [16℄ to have the EM-BSP 
omplexity of some 
lassi
al BSP algorithms.3.2. Examples of EM algorithms. Our �rst example is the matrix inversion whi
h is used by manyappli
ations as a dire
t method to solve linear systems. The 
omputation of the inverse of a matrix A 
anbe derived from its LU fa
torization. [8℄ presents the LU fa
torization by blo
ks. For this parallel out-of-
orefa
torization, the matrix is divided in blo
ks of 
olumns 
alled superblo
ks. The width of the superblo
k isdetermined by the amount of physi
al available memory: only blo
ks of the 
urrent superblo
k are in the mainmemory, the others are on disks. The algorithm fa
torize the matrix from left to right, superblo
k by superblo
k.Ea
h time a new superblo
k of the matrix is fet
hed in the main memory (
alled the a
tive superblo
k), allprevious pivoting and update of a history of the right-looking algorithm are applied to the a
tive superblo
ks.On
e the last superblo
k is fa
torized, the matrix is re-read to apply the remaining row pivoting of the re
ursivephases. Note that the 
omputation is done data in pla
e, the matrix has been �rst distributed on pro
essorsand thus, for load balan
ing, a 
y
li
 distribution of the data is used.[9℄ presents PRAM algorithms using external-memory for graph problems as bi
onne
ted 
omponents of agraph or minimum spanning forest. One of them is the 3-
oloring of a 
y
le applied to �nding large independentssets for the problem of list ranking (determine, for ea
h node v of a list, the rank of v de�ne as the number oflinks from v to the end of the list). The methods for solving it is to update s
attered su

essor and prede
essor
olors as needed after re-
oloring a group of nodes of the list without sorting or s
anning the entire list. Asbefore, the algorithms works group by groups with only one group in the main memory.The last example is the multi-string sear
h problem whi
h 
onsists of determining whi
h of k pattern stringso

ur in another string. Important appli
ations on biologi
al databases make use of very large text 
olle
tionsrequiring spe
ialized nontrivial sear
h operations. [19℄ des
ribes an algorithm for this problem with a 
onstantnumber of supersteps and based on the distribution of a proper data stru
ture among the pro
essors and thedisks to redu
e and balan
e the 
ommuni
ation 
ost. This data stru
ture is based on a bind tree built on thesu�xes of the strings and the algorithm works on longest 
ommon pre�x on su
h trees and by lexi
ographi
order. The algorithm takes advantage of disks by only keeping a part of a bind tree in the main memory andby 
olle
ting subpart of trees during the supersteps.4. External Memory in BSML.4.1. Problems by Adding I/O in BSML. The main problem by adding external memory and so I/Ooperators to BSML is to keep safe the fa
t that in the global 
ontext, the repli
ate values, i.e, usual OCamlvalues repli
ate on ea
h pro
essor, are the same. Su
h values are dedi
ated to the global 
ontrol of the parallelalgorithms. Take for example the following expression:let 
han=open_in "�le.dat" inif (at (mkpar(fun pid→(pid mod 2)=0)) (input_value 
han))then s
an_dire
t (+) 0 (repli
ate 1)else (repli
ate 1)It is not true that the �le on ea
h pro
essor 
ontains the same value. In this 
ase, ea
h pro
essor reads on itsse
ondary memory a di�erent value. We would have obtained an in
oherent result be
ause ea
h pro
essor reads adi�erent integer on the 
hannel 
han and some of them would exe
ute s
an_dire
t whi
h need a syn
hronization.Others would exe
ute repli
ate whi
h does not need a syn
hronization. This breaks the 
on�uent result of theBSML language and the BSP model of 
omputation with its global syn
hronizations. If this expression hadbeen evaluated with the BSMLlib library, we would have a breakdown of the BSP 
omputer be
ause at is aglobal syn
hronous primitive. Note that we also have this kind of problems in the BSPlib [28℄ where the authorsnote that only the I/O operations of the �rst pro
essor are �safe�. Another problem 
omes from side-e�e
tsthat 
an o

ur on ea
h pro
essor. Take for example the following expression:
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omputer with shared diskslet a=mkpar(fun i→if i=0 then(open_in "�le.dat");()else ())in (open_out "�le.dat")where () is an empty value. If this expression had been evaluated with the BSMLlib library, only the �rstpro
essor would have opened the �le in a read mode. After, ea
h pro
essor opened the �le with the same namein a write mode ex
ept the �rst one. This �le has already been opened in read mode. We would also have anin
oherent result be
ause the �rst pro
essor raised an ex
eption whi
h is not 
aught at all by other pro
essesin the global 
ontext. This problem of side-e�e
ts 
ould also be 
ombined with the �rst problem if there is no�le at the beginning of the 
omputation. Take for example the following expression:let 
han=open_out "�le.dat" inlet x=mkpar(fun i→if i=0 then (ouput_value 0) else ()) inouput_value 1; 
lose 
ha;let 
han=open_in "�le.dat" inif (at (mkpar(fun pid→(pid mod 2)=0)) (input_value 
han))then s
an_dire
t (+) 0 (repli
ate 1)else (repli
ate 1)The �rst pro
essor adds the integers 1 and 2 on its �le and other pro
essors add the integer 2 on their �les. Asin the �rst example, we would have a breakdown of the BSP 
omputer be
ause the integer read would not bethe same and at is a global syn
hronous primitive.4.2. The proposed solution. Our solution is to have two kinds of �les: global and lo
al ones. In thisway, we have two kinds of I/O operators. Lo
al I/O operators do not have to o

ur in the global 
ontext andglobal I/O ones do not have to o

ur lo
ally. Lo
al �les are in lo
al �le systems whi
h are presents in ea
hpro
essor as in the EM-BSP model. Global �les are in a global �le system. These �les need to be the same fromthe point of view of ea
h node. The global �le system is thus in shared disks (as in Figure 4.1) or as a 
opy inea
h pro
essor. They thus always give the same values for the global 
ontext. Note that if they are only shareddisks and not lo
al ones, the lo
al �le systems 
ould be in di�erent dire
tories, one per pro
essor in the global�le system.An advantage of having shared disks is the 
ase of some algorithms whi
h do not have distributed data atthe beginning of the 
omputation. As those whi
h sort, the list of data to sort is in a global �le at the beginningof the program and in another global �le at the end. On the other hand, in the 
ase of a distributed global �lesystem, the global data are also distributed and programs are less sensitive to the problem of faults. Thus, wehave two important 
ases for the global �le system whi
h 
ould be seen as a new parameter of the EM-BSPma
hine: have we shared disks or not?In the �rst 
ase, the 
ondition that the global �les are the same for ea
h pro
essor point of view requiressome syn
hronizations for some global I/O operators as 
reated, opened or deleted a �le. For example, it isimpossible or un-deterministi
 for a pro
essor to 
reate a �le in the global �le system if at the same time anotherpro
essor deleted it. On the other hand, reading (resp. writing) values from (resp. to) �les do not need anysyn
hronization. All the pro
essors read the same values in the global �le and only one of the pro
essors needsto really write the value on the shared disks. In the 
ase of a global output operator only one of the pro
essorswrites the value and in the 
ase of a global input operator the value is �rst read from the disks by a pro
essorand then is read by other pro
essors from the operating system bu�ers. In this way, for all global operators,there is not a bottlene
k of the shared disks.In the se
ond 
ase, all the �les, lo
al and global ones, are distributed and no syn
hronization is needed atall. Ea
h pro
essor reads/writes/deletes et
. in its own �le system. But at the beginning, the global �le systemneeds to be empty or repli
ated to ea
h pro
essor and the global and lo
al �le systems in di�erent dire
tories.
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hronous Parallel ML 51Note that many modern parallel ma
hines have 
on
urrent shared disks. Su
h disks are always 
onsideredas user disks, i.e, disks where the users put the data needed for the 
omputations whereas lo
al disks are onlygenerally used for the parallel 
omputations of programs. For example, the earth simulator has 1,5 Petabytesfor users as mass storage disks and a spe
ial network to a

ess them. If there are no shared disks, NFS ors
alable low level libraries as in [36℄ are able to simulate 
on
urrent shared disks. Note also that if they are onlyshared disks, lo
al disks 
ould be simulated by using di�erent dire
tories for the lo
al disks of the pro
essors(one dire
tory for one pro
essor).
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Fig. 4.2. Ben
hmarks of EM parameters4.3. Our new model. After some experiments to determine the EM-BSP parameters of our parallelma
hine, we have found that operating systems do not read/write data in a 
onstant time but in a linear timedepending on the size of the data. We also noti
e that there is an overhead depending on the size of the blo
ks,i. e., if we have n× (DB) < s < (n + 1)×DB, where s is the size in words of the data, there is n + 1 overheads



52 F. Gavato read/write this value from/to the D 
on
urrent disks. Figure 4.2 gives the results of this experiment on aPC with 3 disks, ea
h disk with blo
ks of 4096 words (se
onds are plotted on the verti
al axis). This programwas run 10000 times and the average was taken. Su
h results are not altered if we de
rease the number of disks.Our proposed solution gives the pro
essors a

ess to two kinds of �les: global and lo
al ones. By this way,our model 
alled EM2-BSP extends the BSP model to its EM2 version with two kinds of external memories,lo
al and global ones. Ea
h lo
al �le system will be on lo
al 
on
urrent disks as in the EM-BSP model. Theglobal one will be on 
on
urrent shared disks (as in Figure 4.1) if they exist or repli
ate on the lo
al disks. TheEM2-BSP model is thus able to take into a

ount the time to read the data and to distributed them into thepro
essors. The following parameters are thus adding to the standard BSP parameters:(i) M is the lo
al memory size of ea
h pro
essor;(ii) Dl is the number of independent disks of ea
h pro
essor;(iii) Bl is the transfer blo
k size of a lo
al disk;(iv) Gl is the time to read or write in parallel one word on ea
h lo
al disk;(v) Ol is the overhead of the 
on
urrent lo
al disks;(vi) Dg is the number of independent shared disks (or global disks);(vii) Bg is the transfer blo
k size of a global disk;(viii) Gg is the time to read or write in parallel one word on ea
h global disk and(ix) Og is the overhead of the 
on
urrent global disks.Of 
ourse, if there are no shared disks or no lo
al disks: Dl = Dg, Bl = Bg, Gl = Gg and Ol = Og. A pro
essoris able to read/write n words to its lo
al disks in time ⌈ n
Dl⌉ ×Gl + ⌈n+1

DlBl⌉ ×Ol and n words to the global disksin time ⌈ n
Dg⌉ ×Gg + ⌈ n+1

DgBg⌉ ×Og.As in the EM-BSP model, the 
omputation of the EM2-BSP model pro
eeds in a su

ession of supersteps.The 
ommuni
ation 
osts are the same as for the EM-BSP model and multiple I/O operations are also allowedduring the 
omputation phase of a superstep.Note that Gg is not g even if pro
essors a

ess to the shared disks by the network (in 
ase of some parallelma
hines): g is the time to perform a 1-relation and Gg is the time to read/write D words on the shared
on
urrent disks. It 
ould depend on g in some parallel ma
hine as 
lusters but it 
ould depend on many otherhardware parameters if, for example, there is a spe
ial network to a

ess to the shared 
on
urrent disks.4.4. New Primitives. In this se
tion we des
ribe the 
ore of our I/O library, i. e., the minimal set ofprimitives for programming EM2-BSP algorithms. This library will be in
orporated in the next release of theBSMLlib. This I/O library is based on the elements given in Figure 4.3. As in the BSMLlib library, we havefun
tions to a

ess to the EM2-BSP parameters of the underlining ar
hite
ture. For example, embsp_lo
_D()is Dl the number of lo
al disks and glo_shared() gives if the global �le system is shared or not. Sin
e wehave two �le systems, we need two kinds of names and two kinds of abstra
t types of output 
hannels (resp.input 
hannels): glo_out_
hannel (resp. glo_in_
hannel) and lo
_out_
hannel (resp. lo
_in_
hannel) toread/write values from/to global or lo
al �les.We 
an open a named �le for writing. The primitive returns a new output 
hannel on that �le. The �le istrun
ated to zero length if it already exists. Either it is 
reated or the primitive will raise an ex
eption if the �le
ould not be opened. For this, we have two kinds of fun
tions for global and lo
al �les: (glo_open_out F)whi
h opens the global �le F in write mode and returns a global 
hannel positioned at the beginning of that�le and (lo
_open_out f) whi
h opens the lo
al �le f in write mode and returns a lo
al 
hannel positionedat the beginning of that �le. In the same manner, we have two fun
tions, glo_open_in and lo
_open_infor opening a named �le in read mode. Su
h fun
tions return new lo
al or global input 
hannels positioned atthe beginning of the �les. In the 
ase of global shared disks, a syn
hronization o

urs for ea
h global �open�.With this global syn
hronization, ea
h pro
essor 
ould signal to the other ones if it managed to open the �lewithout errors or not and ea
h pro
essor would raise an ex
eption if one of them has failed to open the �le.Now, with our 
hannels, we 
an read/write values from/to the �les. This feature is generally 
alled per-sisten
e. To write the representation of a stru
tured value of any type to a 
hannel (global or lo
al), we usedthe following fun
tions: (glo_output_value Cha v) whi
h writes the repli
ate value v to the opened global�le and (lo
_output_value 
ha v) whi
h lo
ally writes the lo
al value v to the opened lo
al �le. The obje
t
an be then read ba
k, by the reading fun
tions: (glo_input_value Cha) (resp. (lo
_input_value 
ha))whi
h returns from the global 
hannel Cha (resp. lo
al 
hannel 
ha) the repli
ate value Some v (resp. lo
alvalue) or None if there is no more value in the opened global �le (resp. lo
al �le). This is the end of the �le.



External Memory in Bulk-syn
hronous Parallel ML 53EM2-BSP parametersembsp_lo
_D:unit→int embsp_lo
_B:unit→int embsp_lo
_G:unit→�oatembsp_glo_D:unit→int embsp_glo_B:unit→int embsp_glo_G:unit→�oatembsp_lo
_O:unit→�oat embsp_glo_O:unit→�oat glo_shared:unit→boolGlobal I/O primitives Lo
al I/O primitivesglo_open_out:glo_name→glo_out_
hannelglo_open_in:glo_name→glo_in_
hannelglo_output_value:glo_out_
hannel→α→unitglo_input_value:glo_in_
hannel→α optionglo_
lose_out:glo_out_
hannel→unitglo_
lose_in:glo_in_
hannel→unitglo_delete:glo_name→unitglo_seek:glo_in_
hannel→int→unit
lo
_open_out: lo
_name→lo
_out_
hannello
_open_in:lo
_name→lo
_out_
hannello
_output_value:lo
_out_
hannel→α→unitlo
_input_value:lo
_in_
hannel→α optionlo
_
lose_out:lo
_out_
hannel→unitlo
_
lose_in:lo
_in_
hannel→unitlo
_delete:lo
_name→unitlo
_seek:lo
_in_
hannel→int→unitFrom lo
al to globalglo_
opy:int→lo
_name→glo_name→unitFig. 4.3. The Core I/O Bsmllib LibrarySu
h fun
tions read the representation of a stru
tured value and we refer to [34℄ about having type safety in
hannels and reading them in a safe way. We also have (glo_seek Cha n) (resp. lo
_seek) whi
h allows topositioned the 
hannel at the nth value of a global �le (resp. lo
al �le). The behavior is unspe
i�ed if any ofthe above fun
tions is 
alled with a 
losed 
hannel.Note that only lo
al or repli
ate values 
ould be written on lo
al or global �les. Nesting of parallel ve
torsis prohibited and thus lo
_output_value 
ould only write lo
al values. It is also impossible to write on ashared global �le a parallel ve
tor of values (global values) be
ause these values are di�erent on ea
h pro
essorand glo_output_value is an asyn
hronous primitive. Su
h values 
ould be written in any order and 
ouldbe mixed with other values. This is why only lo
al and repli
ate values should be read/write from/to disks (seese
tion 6 for more details).After, read/write values from/to 
hannels, we need to 
lose them. As previously, we need four kinds offun
tions: two for the input 
hannels (lo
al and global ones) and two for the output 
hannels. For example,(glo_
lose_out Cha), 
loses the global output 
hannel Cha whi
h had been 
reated by glo_open_out. Theglo_delete and lo
_delete primitives delete a global or a lo
al �le if it is �rst 
losed.The last primitive 
opies a lo
al �le from a pro
essor to the global �le system. It is thus a global primitive.(glo_
opy n f F) 
opies the �le f from the pro
essor n to the global �le system with the name F. This primitive
ould be used at the end of a BSML program to 
opy the lo
al results from lo
al �les to the global (user) �lesystem. It is not a 
ommuni
ation primitive be
ause used as a 
ommuni
ation primitive, glo_
opy has a moreexpensive 
ost than any 
ommuni
ation primitive (see se
tion 6). In the 
ase of a distributed global �le system,the �le is dupli
ated on all the global �le systems of ea
h pro
essor and thus all the data of the �le are allput into the network. On the 
ontrary, in the 
ase of global shared disks, it is just a 
opy of the �le be
ause,a

ess to the global shared disks is generally slower than putting values into the network and read them ba
kby another pro
essor.Using these primitives, the �nal result of any program would be the same (but naturally without the sametotal time, i. e., without the same 
osts) with shared disk or not. Now, to better understand how these newprimitives work, we des
ribe a formal semanti
s of our language with su
h persistent features.5. High Order Formal Semanti
s.5.1. Mini-BSML. Reasoning on the 
omplete de�nition of a fun
tional and parallel language su
h asBSML, would have been 
omplex and tedious. In order to simplify the presentation and to ease the formalreasoning, this se
tion introdu
es a 
ore language as a mini programming language. It is an attempt to tradebetween integrating the prin
ipal features of persisten
e, fun
tional, BSP language and being simple. The



54 F. Gavaexpressions of mini-BSML, written e possibly with a prime or subs
ript, have the following abstra
t syntax:
e ::= x variables | c 
onstants

| op operators | fun x→ e abstra
tion
| (e e) appli
ation | let x = e in e binding
| (e, e) pairs | if e then e else e 
onditional
| (mkpar e) parallel ve
tor | (apply e e) parallel appli
ation
| (put e) 
ommuni
ation | (at e e) proje
tion
| f �le names or 
hannelsIn this grammar, x ranges over a 
ountable set of identi�ers. The form (e e′) stands for the appli
ation of afun
tion or an operator e, to an argument e′. The form fun x → e is the so-
alled and well-known lambda-abstra
tion that de�nes the �rst-
lass fun
tion of whi
h the parameter is x and the result is the value of e.Constants c are the integers, the booleans, the number of pro
esses p and we assume having a unique valuefor the type unit: (). The set of primitive operations op 
ontains arithmeti
 operations, pair operators, testfun
tion isn
 of the n
 
onstru
tor whi
h plays the role of the None 
onstru
tor in OCaml, �xpoint to de�nednatural iteration fun
tions and our I/O operators: openr (resp. openw) to open a �le as a 
hannel in readmode (resp. write mode), 
loser (resp. 
losew) to 
lose a 
hannel in read mode (resp. write mode), read,write to read or write in a 
hannel, delete to delete a �le and seek to 
hange the reading position. All thoseoperators are distinguished with a subs
ript whi
h is l for a lo
al operator and g for a global one. We also haveour parallel operators: mkpar, apply, put and at. We also have two kinds of �le systems, the lo
al and theglobal ones, de�ned with (possibly with a prime):

• f for a �le name;
• fw for a write 
hannel, fr for a read 
hannel and gξ

k for a 
hannel pointed on the kth value of a �lewhere ξ is the name of the 
hannel;
• ?f

vn.
..

v0

is a �le where ? is 
, r or w for a 
lose �le or an open �le in read or write mode and where
v0, . . . , vn the values hold in the �le.When a �le is opened in read mode, it 
ontains the name [ga

n, . . . , gz
m] of the 
hannels that pointed to it and theposition of these 
hannels. Before presenting the dynami
 semanti
s of the language, i. e., how the expressionsof mini-BSML are 
omputed to values, we present the values themselves and the simple ML types [39℄ of thevalues. There is one semanti
s per value of p, the number of pro
esses of the parallel ma
hine. In the following,the expressions are extended with the parallel ve
tors: 〈e, . . . , e〉 (nesting of parallel ve
tors is prohibited; ourstati
 analysis enfor
es this restri
tion [23℄). The values of mini-BSML are de�ned by the following grammar:

v ::= fun x → e fun
tional value | c 
onstant
| op primitive | (v, v) pair value
| 〈v, . . . , v〉 p-wide parallel ve
tor value | f �le names or 
hannelsand the simple ML types of values are de�ned by the following grammar:

τ ::= κ base type (bool, int, unit, �le names or 
hannels) | α type variables
| τ1 → τ2 type of fun
tional values from τ1 to τ2 | τ1 ∗ τ2 type for pair valuesWe note ⊢ v : τ to say that the value v has the type τ and we refer to [39℄ for an introdu
tion to the types ofthe ML language and to [23℄ for those of BSML.5.2. High Order Semanti
s. The dynami
 semanti
s is de�ned by an evaluation me
hanism that relatesexpressions to values. To express this relation, we used a small-step semanti
s. It 
onsists of a predi
atebetween an expression and another expression de�ned by a set of axioms and rules 
alled steps. The small-step semanti
s des
ribes all the steps of the language from an expression to a value. We suppose that weevaluate only expressions that have been type-
he
ked [23℄ (nesting of parallel ve
tors has been prohibited).Unlike in a sequential 
omputer with a sequential programming language, a unique �le system (a set of �les)for persistent operators is not su�
ient. We need to express the �le system of all our pro
essors and ourglobal �le system. We assume a �nite set N = {0, . . . , p − 1} whi
h represents the set of pro
essor namesand we write i for these names and ⋊⋉ for the whole parallel 
omputer. Now, we 
an formalize the �les forea
h pro
essor and for the network. We write {fi} for the �le system of pro
essor i with i ∈ N . We assumethat ea
h pro
essor has a �le system as an in�nite mapping of �les whi
h are di�erent at ea
h pro
essor. Wewrite {f} = {{f0}, . . . , {fp−1}} for all the lo
al �le systems of our parallel ma
hine and {F} for our global �le
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(bsp_p ()) ⇀

δ
p

(fst (v1, v2)) ⇀
δ

v1if true then e1 else e2 ⇀
δ

e1

(isn
 n
) ⇀
δ

true
(�x op) ⇀

δ
op (+ (n1, n2)) ⇀

δ
n with n = n1 + n2

(snd (v1, v2)) ⇀
δ

v2if false then e1 else e2 ⇀
δ

e2

(isn
 v) ⇀
δ

false if v 6= n

(�x (fun x→ e)) ⇀

δ
e[x← (�x (fun x→ e))]Fig. 5.1. Fun
tional δ-rulessystem. The persistent version of the small-steps semanti
s has the following form: {F}/e/{f}⇀ {F ′}/e′/{f ′}.We note ∗

⇀, for the transitive and re�exive 
losure of ⇀, e. g., we note {F0}/e0/{f
0}

∗
⇀ {F}/v/{f} for

{F0}/e0/{f0} ⇀ {F1}/e1/{f1} ⇀ {F2}/e2/{f2} ⇀ . . . ⇀ {F}/v/{f}. To de�ne the relation ⇀, we beginwith some rules for two kinds of redu
tions:(i) e/{fi}
i

⇀ e′/{f ′
i} whi
h 
ould be read as �with the initial lo
al �le system {fi}, at pro
essor i, theexpression e is redu
ed to e′ with the �le system {f ′

i}";(ii) {F}/e/{f}
⋊⋉

⇀ {F ′}/e′/{f} whi
h 
ould be read as �with the initial global �le system {F} and withthe initial set of lo
al �le systems, the expression e is redu
ed to e′ with the global �le system F ′ and with thesame set of lo
al �le systems".To de�ne these relations, we begin with some axioms for the fun
tional head redu
tion ε
⇀:

(fun x→ e) v
ε
⇀ e[x← v] and let x = v in e

ε
⇀ e[x← v]We write e[x ← v] for the expression obtained by substituting all the free o

urren
es of x in e by v. Freeo

urren
es of a variable are de�ned as a 
lassi
al and trivial indu
tive fun
tion on our expressions. Thisfun
tional head redu
tion has two versions. First, a lo
al redu
tion, ε

⇀
i
, of just the pro
essor i and se
ond, aglobal redu
tion, ε

⇀
⋊⋉

, of the whole parallel ma
hine:
e

ε
⇀ e′

e / {fi}
ε
⇀
i

e′ / {fi}
(1)

e
ε
⇀ e′

{F} / e / {f}
ε
⇀
⋊⋉

{F} / e′ / {f}
(2)For primitive operators we also have some axioms, the δ-rules. The fun
tional δ-rules ⇀

δ
are given in Figure 5.1.First, we have fun
tional δ-rules whi
h 
ould be used by one pro
essor i, ⇀

δi

or by the parallel ma
hine, ⇀
δ⋊⋉

. Asin the fun
tional head redu
tion, we have two di�erent 
ases for using fun
tional δ-rules:
e⇀

δ
e′

e / {fi}⇀
δi

e′ / {fi}
(3)

e⇀
δ

e′

{F} / e / {f}⇀
δ⋊⋉

{F} / e′ / {f}
(4)Su
h redu
tions, whi
h are not persistent redu
tions, do not 
hange and do not need the �les. Only persistentoperators 
hange and need them.

{F} / (mkpar v) / {f} ⇀
δ≎

{F} / 〈(v 0), . . . , (v (p − 1))〉 / {f}

{F}/(apply 〈v0, . . . , vp−1〉 〈v′0, . . . , v′p−1
〉) / {f} ⇀

δ≎

{F}/〈(v0 v′
0
), . . . , (vp−1 v′p−1

)〉/{f}

{F} / (at 〈. . . , vn, . . .〉 n) / {f} ⇀
δ≎

{F} / vn / {f} if Ac(vn) 6= True
{F} / (put 〈v0, . . . , vp−1〉) / {f}⇀

δ≎

{F} / (mkfun (〈send (init v0 p), . . . , send (init vp−1 p)〉)) / {f}

{F} / 〈send [v0

0 , .., vp−1

0
], . . . , send [v0

p−1, .., vp−1

p−1
]〉 / {f}

⇀
δ≎

{F} / 〈[v0

0 , .., v0

p−1], . . . , [vp−1

0
, .., vp−1

p−1
]〉 / {f} if ∀n, m ∈ 0, . . . , p− 1 Ac(v

m
n ) 6= Truewhere mkfun = apply (mkpar (fun j t i→ if (and (≤(0, i), <(i,p))) then (a

ess t i) else n
))Fig. 5.2. Parallel δ-rules
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ond, for the parallel primitives, we naturally have δ-rules but we do not have those δ-rules on a singlepro
essor but only for the parallel ma
hine (Figure 5.2). For simple reasons it is impossible for a pro
essor tosend a 
hannel to another pro
essor. This se
ond pro
essor does not have to read in this 
hannel be
ause it
ould be seen as a hidden 
ommuni
ation. In this way, we have to test if the sent values 
ontain 
hannels ornot. To do this, we used a trivial indu
tive fun
tion Ac whi
h tells whether an expression 
ontains a 
hannelor not. Note that this work is done when OCaml serializes values. This raises an ex
eption when an abstra
tdatum like a 
hannel has been found. The evaluation of a put primitive pro
eeds in two steps. In a �rst step,ea
h pro
essor 
reates a pure fun
tional array of values. Thus, we need a new kind of expression, arrays written
[e, . . . , e]. init and a

ess operators are used to manipulate these fun
tional arrays:a

ess [v0, . . . , vn, . . . , vm] n ⇀

δ
vn and init f m ⇀

δ
[(f 0), . . . , (f (m−1))]In the se
ond step, the send operations ex
hange these arrays. For example, the value at the index j of thearray held at pro
ess i is sent to pro
ess j and is stored at index i of the result. The fun
tion mkfun 
onstru
tsa parallel ve
tor of fun
tions from the resulting ve
tor of arrays.

(openr f)/{f ′, . . . , 
f vn.
..

v0

, . . . , f ′′}
io
⇀
δ

far / {f ′, . . . , rf vn.
..

v0

[ga
0
], . . . , f ′′}

(openr f)/{f ′, . . . , rf vn.
..

v0

[ga, . . . , gz ], . . . , f ′′}
io
⇀
δ

fξr / {f ′, . . . , rf vn.
..

v0

[ga, . . . , gz , gξ
0
], . . . , f ′′}

(openw f)/{f ′, . . . , 
f vn.
..

v0

, . . . , f ′′}
io
⇀
δ

fξw / {f ′, . . . ,wf ∅, . . . , f ′′}

(openwl f)/{f ′, . . . , f ′′}
io
⇀
δ

fξw / {f ′, . . . ,wf ∅, . . . , f ′′} if f /∈{f ′, . . . , f ′′}

(
loser fξr )/{f ′, . . . , rf vn.
..

v0

[ga, . . . , gξ
k
, . . . , gz ], . . . , f ′′}

io
⇀
δ

() / {f ′, . . . , rf vn.
..

v0

[ga, . . . , gz ], . . . , f ′′}

(
loser fξr )/{f ′, . . . , rf vn.
..

v0

[ga, . . . , gz ], . . . , f ′′}
io
⇀
δ

() / {f ′, . . . , rf vn.
..

v0

[ga, . . . , gz ], . . . , f ′′}

(
loser fξr )/{f ′, . . . , rf vn.
..

v0

[gξ
k
], . . . , f ′′}

io
⇀
δ

() / {f ′, . . . , 
f vn.
..

v0

, . . . , f ′′}

(
loser fξr )/{f ′, . . . , 
f vn.
..

v0

, . . . , f ′′}
io
⇀
δ

() / {f ′, . . . , 
f vn.
..

v0

, . . . , f ′′}

(
losew fξw/{f ′, . . . , ?f vn.
..

v0

, . . . , f ′′}
io
⇀
δ

() / {f ′, . . . , 
f vn.
..

v0

, . . . , f ′′} where ?=w or ?=

(readτ fξr )/{f ′, . . . , rf .

..
vk.
..

[ga, .., gξ
k
, . . . , gz ], . . . , f ′′}

io
⇀
δ

vk / {f ′, . . . , rf .
..

vk.
..

[ga, .., gξ
m, . . . , gz ], . . . , f ′′}if ⊢ vk : τ and m = k + 1. vk is the kth value of f

(readτ fξr )/{f ′, . . . , rf vn.
..

v0

[ga, .., gξ
k
, . . . , gz ], . . . , f ′′}

io
⇀
δ
n
 / {f ′, . . . , rf vn.

..
v0

[ga, .., gξ
k
, . . . , gz], . . . , f ′′}if k > n

(seek fξr k)/{f ′, . . . , rf vn.
..

v0

[ga, .., gξ
m, . . . , gz ], . . . , f ′′}

io
⇀
δ
n
 / {f ′, . . . , rf vn.

..
v0

[ga, .., gξ
k
, . . . , gz ], . . . , f ′′}

(write (v, fξw))/{f ′, . . . ,wf
.
.., . . . , f ′′}

io
⇀
δ
()/{f ′, . . . ,wf

v
.
.. , . . . , f ′′} if Ac(vn) 6= True

(delete f)/{f ′, . . . , 
f .
.., . . . , f ′′}

io
⇀
δ

()/{f ′, . . . , f ′′}Fig. 5.3. δ-rules of the persistent operatorsThird, we 
omplete our semanti
s by giving the δ-rules io
⇀
δ
of the I/O operators given in Figure 5.3. Theopen operation opens a �le (in read or write mode) and returns a new 
hannel, pointing to this �le, to a

essto the values of the �le or write values in this �le. Opening a �le in write mode, gives an empty �le. If possible,readτ gives the value of type τ 
ontained in the �le from the 
hannel. If no more value 
ould be read thenreadτ returns an empty value. The write operation writes a new value into the �le using the 
hannel. delete
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Γ ::= []
| Γ e
| v Γ
| let x = Γ in e
| (Γ, e)
| (v, Γ)
| if Γ then e else e
| (mkpar Γ)
| (apply Γ e)
| (apply v Γ)
| (put Γ)
| (at Γ e)
| (at v Γ)

Γi
l

::= Γi
l

e
| v Γi

l
| let x = Γi

l
in e

| (Γi
l
, e)

| (v, Γi
l
)

| if Γi
l
then e else e

| (mkpar Γi
l
)

| (apply Γi
l

e)
| (apply v Γi

l
)

| (put Γi
l
)

| (at Γi
l

e)
| (at v Γi

l
)

| 〈e, . . . ,

i
z}|{

Γl , e, . . . , e〉

Γl ::= []
| Γl e
| v Γl

| let x = Γl in e
| let re
 g x = Γl in e
| (Γl, e)
| (v, Γl)
| if Γl then e else e
| (send Γl)
| [Γl, e1, . . . , en]
| [v0,Γl, . . . , en]
| . . .
| [v0, v1, . . . , Γl]Fig. 5.4. Context of evaluationdeletes a �le from the �le system if it has been fully 
losed. 
lose 
loses a 
hannel or do nothing if the 
hannelhas been �rst 
losed. All those rules 
ould be distinguished with a subs
ript (l or g) for the lo
al or the globaloperators. Thus, we need two kinds of redu
tions, one for the lo
al redu
tion io

⇀
δi

and another one for the globalredu
tion io
⇀
δ⋊⋉

:
e / {fi}

io
⇀
δ

e′ / {f ′
i}

e / {fi}
io
⇀
δi

e′ / {f ′
i}

(5)
e / {F}

io
⇀
δ

e′ / {F ′}

{F} / e / {f}
io
⇀
δ⋊⋉

{F ′} / e′ / {f}
(6)First, for a single pro
essor i su
h persistent operations work on the lo
al �le system of the pro
essor i wherethey are exe
uted. Se
ond, for the whole parallel ma
hine, we have the same operations ex
ept for the global�le system. The spe
ial operator 
opy

⋊⋉

opies one �le of one pro
essor into the global �le system:

{F ′, .., F ′′}/(
opy i f F)/{f0, . . . , fi, . . . , fp−1}
io
⇀
δ⋊⋉

{F ′, .., F ′′, 
F vn.
..

v0

}/()/{f0, . . . , fi, . . . , fp−1}if F /∈{F ′, .., F ′′} and fi = {f ′, . . . , 
f vn.
..

v0

, . . . , f ′′}Now, the 
omplete de�nitions of our two kinds of redu
tions are:
i

⇀ =
ε
⇀
i
∪ ⇀

δi

∪
io
⇀
δi

and ⋊⋉

⇀ =
ε
⇀
⋊⋉

∪ ⇀
δ⋊⋉

∪ ⇀
δ≎

∪
io
⇀
δ⋊⋉5.3. Contexts of evaluation. It is easy to see that we 
annot always make a head redu
tion. We haveto redu
e �in depth� in the sub-expressions. To de�ne this deep redu
tion, we de�ne two kinds of 
ontexts,i.e, expressions with a hole noted [] that have the abstra
t syntax given in Figure 5.4. The hole gives whereexpressions 
ould be redu
ed. In this way, the 
ontexts give the order of evaluation of the arguments of the
onstru
tion of the language, i.e, the strategy of the language.The Γ 
ontext is used to de�ne a global redu
tion of the parallel ma
hine. For example:

Γ = let x = [] in mkpar (fun pid→ e)The redu
tion will o

ur at the hole to �rst 
ompute the value of x. The Γi
l 
ontext is used to de�ne inwhi
h 
omponent i of a parallel ve
tor the redu
tion is done, i.e., whi
h pro
essor i redu
es its lo
al expression.This 
ontext uses the Γl 
ontext whi
h de�nes a lo
al redu
tion on a pro
essor i. Note that, in this way, thehole is always inside a parallel ve
tor. For example, the following 
ontext: Γi

l = apply v 〈v0, e1, . . . , Γl〉 and
Γl = openrl [] is used to de�ne that the last pro
essor �rst 
omputes the argument of the openrl primitive.Now we 
an redu
e �in depth� in the sub-expressions. To de�ne this deep redu
tion, we use the inferen
erules of the lo
al 
ontext rule:

e / {fi}
i

⇀ e′ / {f ′
i}

{F} / Γi
l
(e) / {f}⇀ {F} / Γi

l
(e′) / {f ′}

where 
{f} = {{f0}, . . . , {fi}, . . . , {fp−1}}
{f ′} = {{f0}, . . . , {f ′

i}, . . . , {fp−1}}
(7)
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an redu
e the parallel ve
tors and the 
ontext gives the name of the pro
essor where the expression isredu
ed. The global 
ontext rule is:
{F} / e / {f}

⋊⋉

⇀ {F ′} / e′ / {f}

{F} / Γ(e) / {f}⇀ {F ′} / Γ(e′) / {f}
(8)We 
an remark that the 
ontext gives an order to evaluate an expression but not for the parallel ve
tors and thisrule is not deterministi
. It is not a problem be
ause the BSλ-
al
ulus is 
on�uent [37℄. We 
an also noti
e thatour two kinds of 
ontexts used in the rules ex
lude ea
h other by 
onstru
tion be
ause the hole in a Γi

l 
ontextis always in a 
omponent of a parallel ve
tor and never for a Γ one. Thus, we have a rule to redu
e globalexpressions and another one to redu
e usual expressions within the parallel ve
tors and we have the followingresult of 
on�uen
e:Theorem 5.1. if {F}/e/{f}
∗
⇀ {F1}/v1/{f1} and {F}/e/{f}

∗
⇀ {F2}/v2/{f2} then v1 = v2, F1 = F2and f1 = f2.Proof. (Sket
h of) The BSML language is known to be 
on�uent [37℄. With our two kinds of �le systems,it is easy to see that a global rule never modi�es a lo
al �le system and never a lo
al rule modi�es the globalone. To be more formal, the global (resp. lo
al) �les are always the same before and after a lo
al (resp. global)redu
tion. Thus, the global values are the same on all the pro
essors as proof of 
on�uent of the BSML languageneeded. All the δ-rules working on �les are deterministi
 (lo
al and global ones). So, the BSML language withparallel I/O features is 
on�uent.We refer to appendix 9 for a full proof. Note that the semanti
s is not deterministi
. Several rules 
an beapplied at the same time, parallelism 
omes from 
ontext rules.6. Formal Cost Model. A formal 
ost model 
an be asso
iated to redu
tions in the BSML language.�
ost terms� are de�ned and ea
h rule of the semanti
s is asso
iated to a 
ost rule on 
ost terms. Given the weak
all-by-value strategy, i.e., arguments to fun
tions and operators need to be values (see se
tion 5), a program isalways redu
ed in the �same way�. As stated in [41℄, �Ea
h evaluation order has its advantages and disanvatages,but stri
t evaluation is 
learly superior in at least one area: ease of reasoning about asymptoti
 
omplexity�.In this 
ase, 
osts 
an be asso
iated with terms rather than redu
tions. It is the way we 
hoose to ease thedis
ussion about the 
ompositional nature of the 
ost model of our language and the 
ost of our I/O primitives.6.1. Costs of the Parallel Operators. No order of redu
tion is given between the di�erent 
omponentsof a parallel ve
tor and their evaluations are done in parallel. The 
ost in this 
ase is independent from the orderof redu
tion. We will not des
ribe the 
osts of the evaluation of lo
al terms, i. e., fun
tional terms. They arethe same as those of a stri
t fun
tional language (OCaml for example) but we give the 
osts of the evaluationof global and I/O operations.The 
ost model asso
iated to our programs follows the EM2-BSP 
ost model. We noted C(e) the 
ost termasso
iated to an expression, S(v) the size in words of a serialized value v and ⊕ for the sum of 
ost with thefollowing rules:

c⊕ 〈◦c0, . . . , cp−1◦〉 = 〈◦c + c0, . . . , c + cp−1◦〉
c1 ⊕ c2 = c2 ⊕ c1

〈◦c1
0, . . . , c

1
p−1◦〉 ⊕ 〈◦c

2
0, . . . , c

2
p−1◦〉 = 〈◦c1

0 + c2
0, . . . , c

1
p−1 + c2

p−1◦〉where c, c1 c2 are 
ost terms and 〈◦c0, . . . , cp−1◦〉 is the 
ost term asso
iated to a parallel ve
tor. Su
h rules saythat the 
ost of repli
ate terms 
ould be inside or outside a parallel ve
tor 
ost term and when we have the 
ostterm of a full-evaluated superstep, this 
ost 
ould also be inside or outside a parallel ve
tor 
ost term. This is nota problem be
ause, using the BSP model of 
omputation, at the end of a superstep, we take the maximal of the
osts. + and × are 
lassi
al 
ost addition and multipli
ation using the EM2-BSP parameters (g, l, r, Gl et
.).We also noted ⊎ for the maximal 
ost of parallel ve
tor 
ost terms with this rules: ⊎

〈◦c0, . . . , cn, . . . , cp−1◦〉 = cnif cn is the maximal 
ost of the 
omponent of the parallel ve
tor 
ost term. We also noted ⊕p−1
i=0 hi for themaximal of sent/re
eived words. The EM2-BSP 
osts of the parallel primitives are given in Figure 6.1. The 
ostof a program e is thus ⊎

(C(e)) the maximal time for a pro
essor to perform all the supersteps of the program.Let us explain su
h formal rules with more details and more �readable notations�.If the 
omputational and I/O time for the evalution of the fun
tional parameter e of mkpar is wall (itis a repli
ate fun
tion and thus 
omputed by all the pro
essors) and if the sequential evaluation time of ea
h
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C(mkpar e)  C(e)⊕ 〈◦C((f 0)), . . . , C((f (p− 1)))◦〉 if e

∗
⇀ f

C(apply e1 e2)  C(e1)⊕ C(e2)⊕ 〈◦C((f0 v0)), . . . , C((fp−1 vp−1))◦〉if {

e1
∗
⇀ 〈f0, . . . , fp−1〉

e2
∗
⇀ 〈v0, . . . , vp−1〉

C(put e)  

⊎

(C(e)⊕ 〈◦
p−1
∑

j=0

C((f0 j)), . . . ,
p−1
∑

j=0

C((fp−1 j))◦〉)⊕ (
p−1
⊕

i=0

hi)× g ⊕ lwhere

















if e
∗
⇀ 〈f0, . . . , fp−1〉if ∀i, j ∈ {0, . . . , p− 1} (fi j)

∗
⇀ vi

jand hi =
⊕

(
p−1
∑

j=0

S(vi
j),

p−1
∑

j=0

S(vj
i ))

C(at e1 e2)  

⊎

(C(e1)⊕ C(e2))⊕ (p− 1)× S(vn)× g ⊕ lif {

e2
∗
⇀ n

e1
∗
⇀ 〈v0, . . . , vn, . . . , vp−1〉Fig. 6.1. Costs of our parallel operators
omponent of the parallel ve
tor is wi + mi (
omputational time and I/O time) then, the parallel evaluationtime of the parallel ve
tor is 〈◦wall + w0 + m0, . . . , wall + wp−1 + mp−1◦〉, i.e, it is a lo
al 
omputation.Provided the two arguments of the parallel appli
ation are parallel ve
tors of values, and if wi (resp.

mi) is the 
omputational time (resp. I/O time) of (fi vi) at pro
essor i, the parallel evaluation time of
(apply 〈f0, . . . , fp−1〉 〈v0, . . . , vp−1〉) is 〈◦wall +w0+m0, . . . , wall +wp−1+mp−1◦〉 where wall is the 
omputationaland I/O time to 
reate the two parallel ve
tors.The evaluation of put 〈f0, . . . , fp−1〉 requires a full superstep. Ea
h pro
essor evaluates the p lo
al terms
(fi j), 0 ≤ j < p leading to p2 sending values vj

i (�rst phase of the superstep). If the value vj
i of pro
essor iis di�erent from None, it is sent to pro
essor j (
ommuni
ation phase of the superstep). On
e all values havebeen ex
hanged, a syn
hronization barrier o

urs. So, the parallel evaluation time is:

max
0≤i<p

(wi + mi + wall)⊕ max
0≤i<p

(hi × g)⊕ lwhere wi (resp. mi) is the 
omputation time (resp. I/O time) of (fi j), hi is the number of words transmitted(or re
eived) by pro
essor i and wall is the 
omputation time to 
reate the parallel ve
tor 〈f0, . . . , fp−1〉.The evaluation of a global proje
tion (at 〈v0, . . . , vp−1〉 n) where n is an integer value also requires a fullsuperstep. First the pro
essor n sends the value vn to all other pro
essors and then a syn
hronization barriero

urs. The parallel evaluation time is thus the time to send this data, the time for 
ompute n and the maximallo
al 
omputation and I/O time to 
reate the parallel ve
tor 〈v0, . . . , vp−1〉.6.2. Cost of I/O operators. Our I/O operators have naturally some 
omputational and I/O 
osts.We also made sure that arguments of the I/O operators be evaluated �rst (weak 
all-by-value strategy). Asexplained in the EM2-BSP model, ea
h transfer from (resp. to) the lo
al external memory to (resp. from) themain memory has the 
ost ⌈ n
Dl⌉ × Gl + ⌈n+1

DlBl⌉ × Ol (resp. ⌈ n
Dg⌉ × Gg + ⌈ n+1

DgBg⌉ × Og for the global externalmemory) for n words. Note that, in the 
ase of an empty �le, the value to be read would be an empty valuewith an empty size. Thus the 
ost would just be the overhead. In this way, we have the 
ost of the �operatingsystem I/O 
alls�. Depending on whether the global �le system is shared or not, the global I/O operators havedi�erent 
osts and some barrier syn
hronizations are needed (Figure 6.2).Lo
al operators are asyn
hronous operators. They belong to the �rst phase of a superstep. In the 
aseof a distributed global �le system, a global operator has the same 
ost as a lo
al operator. But, in the 
aseof global shared disks, global operators are syn
hronous operators be
ause they modify the global behaviourof the EM2-BSP 
omputer. The two ex
eptions are glo_output_value and glo_input_value whi
h areasyn
hronous global operators be
ause only one pro
ess really has to write this repli
ate value (whi
h is thus thesame on ea
h pro
essor) or ea
h pro
essor read this value. The reading of this value 
ould be done in any order.Di�erent 
hannels are positioned at di�erent pla
es in the �le but read the same value for the same position. Forexample, opening a global �le needs a syn
hronization be
ause glo_output_value and glo_input_value



60 F. GavaOperator Costlo
_open_in (resp. out) 
onstant time tlor (resp. tlow)(lo
_output_value v) ⌈size(v)
Dl ⌉×Gl + ⌈size(v)+1

DlBl ⌉×Ollo
_input_value ⌈size(v)
Dl ⌉×Gl + ⌈size(v)+1

DlBl ⌉×Ol where v is the readed valuelo
_
lose_in (resp. out) 
onstant time tlcr (resp. tlcw)lo
_delete 
onstant time tldglo_open_in {

(p− 1)× g + tgor + l If global �le system shared
tlor Otherwiseglo_open_out {

(p− 1)× g + tgor + l If global �le system shared
tlow Otherwise(glo_output_value v)

{

⌈size(v)
Dg ⌉×Gg + ⌈size(v)+1

DgBg ⌉×Og If shared
⌈size(v)

Dl ⌉×Gl + ⌈size(v)+1
DlBl ⌉×Ol Otherwiseglo_input_value 





⌈size(v)
Dg ⌉×Gg + ⌈size(v)+1

DgBg ⌉×Og If shared
⌈size(v)

Dl ⌉×Gl + ⌈size(v)+1
DlBl ⌉×Ol Otherwiseand where v is the readed valueglo_
lose_in {

(p− 1)× g + tgcr + l If global �le system shared
tlcr Otherwiseglo_
lose_out {

(p− 1)× g + tgcw + l If global �le system shared
tlcw Otherwiseglo_delete {

(p− 1)× g + tgd + l If global �le system shared
tld Otherwise(glo_
opy F f)















⌈size(F )
Dg ⌉×Gg+⌈size(F )

DgBg ⌉×Og+⌈size(F )
Dl ⌉×Gl+⌈size(F )

DlBl ⌉×Ol+lIf global �le system shared
(⌈size(F )

Dl ⌉×Gl+⌈size(F )
DlBl ⌉×Ol)×2+size(F )×g+lFig. 6.2. Formal 
osts of our I/O operatorsare asyn
hronous operators and a pro
essor 
ould never write in a global �le when another reads in this �le oropens it in read mode. With this barrier of syn
hronization, all the pro
essors open (resp. 
lose) the �le andthey 
ould 
ommuni
ate to ea
h other whether they managed to open (resp. 
lose) that �le without errors ornot. In this way, p− 1 booleans are sent on the network and a global ex
eption will be raised if there are anyproblems.6.3. Formal Cost Composition. The 
osts (parallel evaluation time) above are 
ontext independents.This is why our 
ost model is 
ompositional. The 
ompositional nature of this 
ost model relies on the absen
eof nesting of parallel ve
tors (our stati
 analysis enfor
es this 
ondition [23℄) and the fa
t of having two kindsof �le systems. A global I/O operator whi
h a

esses a global �le and whi
h 
ould make some 
ommuni
ationsand syn
hronizations never o

urs lo
ally. If the nesting was not forbidden, for a parallel ve
tor v and a s
anfun
tion, the following expression (mkpar (fun i → if i=0 then (s
an e (+) v) else v)) would be a 
orre
tone. The main problem is the meaning of this expression.We said that (mkpar f) evaluates to a parallel ve
tor su
h that pro
essor i holds value (f i). In the 
aseof our example, this means that pro
essor 0 should hold the value of (s
an e (+) v). Sin
e the semanti
sof the language is 
on�uent, it is possible to evaluate (s
an e (+) v) lo
ally. But in this 
ase, pro
essor 0would not have all the needed values. We 
ould 
hoose that another pro
essors broad
ast there own values topro
essor 0 and then pro
essor 0 evaluates (s
an e (+) v) lo
ally. The exe
ution time will not follow the formula
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ost model be
ause the broad
asting of these values need additional 
ommuni
ations anda syn
hronization. Thus, we have additional 
osts whi
h are 
ontext dependent. The 
ost of this expressionwill then depend on its 
ontext. The 
ost model will no be 
ompositional. This preliminary broad
ast is notneeded if (s
an e (+) v) 
ould be not under a mkpar. Furthermore, the above solution would imply the useof a s
heduler for ea
h pro
essor to know, at every time, if the pro
essor need the values of other pro
essors ornot. Su
h 
onstraints make the 
ost formulas very di�
ult to write.As explained above, if the global �le system is shared, only one pro
ess has to a
tually write a value toa global �le. In this way, if this value is di�erent on ea
h pro
essor (
ase of a parallel ve
tor of values) thenpro
essors would asyn
hronously write di�erent values on a shared �le and we will not be able to re
onstru
tthis value. The 
on�uen
e of the language would be lost. In the 
ase of a distributed global �le system, thisproblem does not o

ur be
ause ea
h pro
essor writes the value on a di�erent �le system. Programs would notbe portables be
ause they would be ar
hite
ture dependent. The 
ompositional nature of the 
ost model is alsolost be
ause the �nal results would depend on the EM2-BSP ar
hite
ture and not on the program. This is whyit is forbidden to write global values to keep safe the 
ompositional nature of the 
ost model. Note that thesemanti
s forbids a parallel operator or a parallel persistent operator to be used inside a parallel ve
tor and alsoforbid a lo
al persistent operator to be used outside a parallel ve
tor.7. Experiments.7.1. Implementation. The glo_
hannel and lo
_
hannel are abstra
t types and are implemented asarrays of 
hannels, one 
hannel per disk. The 
urrent implementation used the thread fa
ilities of OCaml towrite (or read) on the D-disks of the 
omputers: we 
reate D-threads whi
h write (or read) on the D 
hannels.Ea
h thread has a part of the data represented as a sequen
e of bytes and write it in parallel with other threads.To do this, we need to serialize our values, i.e., transform our values into a sequen
e of bytes to be written ona �le and de
oded ba
k into a data stru
ture. The module Marshal of OCaml provides this feature.In the 
ase of global shared disks, one of the pro
essors is sele
ted to really write the value, in our �rstimplementation, ea
h of them in turn. To 
ommuni
ate booleans, we used the primitives of 
ommuni
ation ofBSML. A total ex
hange of the booleans indi
ates if the pro
essors has well opened/
losed the �le or not. Theglobal and the lo
al �le systems are in di�erent dire
tories that are parameters of the language. The globaldire
tory is supposed to be mounted to a

ess to the shared disks or is in di�erent dire
tories in the 
ase of adistributed global �le system. Therefore, global operators a

essed to the global dire
tory and lo
al operatorsa

essed to the lo
al dire
tories. In the 
ase of shared disks without lo
al disks, for example, using the libraryin a sequential ma
hine as a PC, lo
al operators use the �pid� of the pro
essor to distinguish the lo
al �les ofthe di�erent pro
essors.7.2. Example of fun
tions using our library. Our example is the 
lassi
al 
omputation of the pre�xof a list. Here we make the hypothesis that the elements of the list are distributed on all the pro
esses as �leswhi
h 
ontain sub-parts of the initial list. Ea
h �le is 
ut out on sub-lists with Dl×Bl

s
elements where s isthe size of an element. We now des
ribe the algorithm. We �rst re
al the sequential OCaml 
ode part of ouralgorithm:let isn
=fun
tion None→true | _→false(∗ seq_s
an_last:(α→α→α )→α→α list→α ∗α list∗)let seq_s
an_last op e l =let re
 seq_s
an' last l a

u = mat
h l with[℄→(last,(List.rev a

u))| hd::tl→(let new_last = (op last hd)in seq_s
an' new_last tl (new_last::a

u))in seq_s
an' e l [℄where List.rev [v0; v1; . . . ; vn] = [vn; . . . ; v1; v0]. To 
ompute the pre�x of a list, we �rst lo
ally 
ompute thepre�x of the lo
al lists lo
ated on the lo
al �les. For this, we used the following 
ode:(∗ seq_s
an_list_io:(α→α→α )→α→lo
_name→lo
_name→α ∗)let seq_s
an_list_io op e name_in name_tmp=let 
ha_in =lo
_open_in name_in in
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ha_tmp=lo
_open_out name_tmp inlet re
 seq_s
an' last =let blo
k=(lo
_input_value 
ha_in) inif (isn
 blo
k) then lastelse let blo
k2=(seq_s
an_last op last (noSome blo
k)) inlo
_output_value 
ha_tmp (snd blo
k2);seq_s
an' (fst blo
k2) inlet res=seq_s
an' e inlo
_
lose_in 
ha_in;lo
_
lose_out 
ha_tmp;resThe lo
al �le is opened as well as another temporary �le. For all the sub-lists of the �le, we 
ompute the pre�xand the last elements of these pre�xes. Then, we write these pre�xes to the temporary �le and we 
lose the two�les. Se
ond, we 
ompute the parallel pre�x of the last elements of ea
h pre�x of that �le. Third, we add thosevalues to the temporary pre�xes.(∗ add_last:(α→α→α )−α→lo
_name→lo
_name→unit ∗)let add_last op e name_tmp name_out =let 
ha_tmp=lo
_open_in name_tmp inlet 
ha_out=lo
_open_out name_out inlet re
 seq_add () =let blo
k = (lo
_input_value 
ha_tmp) inif (isn
 blo
k) then () elselo
_output_value 
ha_out(List.map (op e)(noSome blo
k));seq_add () inseq_add ();lo
_
lose_in 
ha_tmp;lo
_
lose_out 
ha_out; lo
_delete name_tmpThe operating of this fun
tion is similar to seq_s
an_list_io and the full fun
tion is thus the 
omposition ofthe above fun
tions.(∗s
an:(α→α→α )→α→lo
_name→lo
_name→lo
_name→unit par∗)let s
an_list_dire
t_io op e name_in name_tmp name_out =let lasts=parfun (seq_s
an_list_io op e name_in)(repli
ate name_tmp) inlet tmp_values=s
an_dire
t op lasts inparfun3 (add_last op) tmp_values(repli
ate name_tmp) (repli
ate name_out)For example of the use of global �les, we give the 
ode of the distribution of the sub-lists to the pro
essors: forea
h blo
k of the initial list, one pro
essor writes it to its lo
al �le.(∗ distribut:glo_name→lo
_name→unit ∗)let distribut name_in name_out =let 
ha_in=glo_open_in name_in inlet 
ha_outs=parfun lo
_open_in (repli
ate name_out) inlet re
 distri m =let blo
k=glo_input_value 
ha_in inif (isn
 blo
k) then () else(apply2 (mkpar (fun pid→if pid=m then lo
_output_valueelse (fun a b→())))
ha_outs (repli
ate (noSome blo
k)));distri ((m+1) mod (bsp_p())) indistri 0;parfun lo
_
lose_out 
ha_outs;glo_
lose_in 
ha_inWe have the following 
ost formula for the I/O s
an-list version using a dire
t s
an algorithm:
(p− 1)× s× g + 4×N × (Bl ×Gl + Ol) + 2× r ×N × (Dl ×Bl) + T 1 + lif we read sub-lists of the �les by blo
k of size DlBl where s denotes the size in words of a element, N is the
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Fig. 7.1. Ben
hmarks of pre�x 
omputationsmaximal length of a �le on a pro
ess and where T 1 the time to open and 
lose the �les. We have the time toread the lo
al �les, write the temporary results of the temporary �les, 
ompute the lo
al s
an, read the lo
altempory �les and write the �nal result in the �nal �les. The 
ost formula of the distribution is:


















p×N × (⌈
DlBl

Dg
⌉ ×Gg + ⌈

DlBl

DgBg
⌉ ×Og) + N × (Bl ×Gl + Ol) + 2× l + T 2If shared global �le system

p×N × (Bl ×Gl + Og) + N × (Bl ×Gl + Ol) + T 2 Otherwisewhere T 2 the time to open and 
lose the �les. We have the time to read the data on the global �le (read byblo
k of size DlBl) and to write them on the lo
al �les. We also have two barriers of syn
hronization due toglo_open_in and glo_
lose_in. The 
ost formula for a global distributed �le system is simpler than this



64 F. Gavawith shared disks but having a distributed �le system makes the hypothesis that the global �les are repli
atedon all the pro
essors.7.3. Ben
hmarks. Preliminary experiments have been done on a 
luster with 6 Pentium IV nodes inter-
onne
ted with a Gigabit Ethernet network to show a performan
e 
omparison between a BSP algorithm usingonly the BSMLlib and the 
orresponding EM2-BSP algorithm using our library. The BSP algorithm reads thedata from a global �le and keeps them in the main memories. The EM2-BSP algorithm distributed the data asin the above se
tion. Figure 7.1 summarizes the timings. These programs were run 100 times and the averagewas taken. Only the lo
al 
omputation has been taken into a

ount be
ause the 
luster do not have a trueshared disk but a simulated shared disk using NFS. Therefore, the distribution of the data is very slow: Ggdepends on g and the distribution of the two di�erent algorithms takes approximately the same time.The 
luster has the following EM2-BSP parameters:
p = 6 nodes
r = 469 M�ops/s
g = 28 �ops
l = 22751 �ops Dl = 1 bytes

Bl = 4096 bytes
Gl = 1.2 �ops
Ol = 100 �ops Dg = 1 bytes

Bg = 4096 bytes
Gg = 33.33 �ops
Og = 120 �opsusing the MPI implementation of the BSMLlib and with 256 Mbytes of main memory per node. The BSPparameters have been obtained by using the bsmlprobe des
ribed in [5℄ and the I/O parameters have beenobtained by using ben
hmarks as those of the Figure 4.2. The predi
ted performan
es using those parametersare also given. We have used �oats as elements with e = 0, op = + and we have approximately 140 �oats inone blo
k and thus the lists are 
ut out on sub-lists with 140 elements.For small lists and thus for a small number of data the overhead for the external memory mapping makesthe BSML program outperform the EM2-BSML one. However, on
e the main memory is all utilized, theperforman
e of the BSML program degenerates (
ost of the paging me
hanism to have a virtual memory). TheEM2-BSML program 
ontinues �smoothly� and 
learly outperforms the BSML 
ode. Note that there is a stepbetween the predi
tions of the performan
es and the true performan
es. This is due to the garbage 
olle
tor ofthe OCaml language. In the ML family, the abstra
t ma
hine manages the resour
es and the memory, unlike inC or C++ where the programmer has to allo
ate and de-allo
ate the data of the memory. Using I/O operatorsand thus a less naive algorithm a
hieved a s
alability improvement for a big number of data.8. Related Work. With few ex
eptions, previous authors fo
used on a unipro
essor EM model. TheParallel Disk Model (PDM) introdu
ed by Vitter and Shriver [54℄ is used to model a two-level memory hierar
hy
onsisting of D parallel disks 
onne
ted to v ≥ 1 pro
essors via a shared memory or a network. The PDM
ost measure is the number of I/O operations required by an algorithm where items 
an be transferred betweeninternal memory and disks in a single I/O operation. While the PDM 
aptures 
omputation and I/O 
osts,it is designed for a spe
i�
 type of 
ommuni
ation network where a 
ommuni
ation operation is expe
ted totake a single unit of time, 
omparable to a single CPU instru
tion. BSP and similar parallel models 
apture
ommuni
ation and 
omputational 
osts for a more general 
lass of inter
onne
tion networks, but do not 
aptureI/O 
osts. [8℄ presents an out-of-
ore parallel algorithm for inversions of big matri
es. The algorithm only usedbroad
asts as primitive of 
ommuni
ation with a 
ost as the BSP 
ost of a dire
t broad
ast. The I/O 
osts aresimilar to ours: linear 
ost (and not 
onstant 
ost) to read/write from/to the parallel disks.Some other parallel fun
tional languages like SAC [25℄, Eden [31℄ or GpH [49℄ o�er some I/O features butwithout any 
ost model [30℄. Parallel EM algorithms need to be 
arefully hand-
rafted to work optimally and
orre
tly in EM environments. I/O operators in SAC have been written for shared disks without formal seman-ti
s and the programmer is responsible for underterministi
 results of su
h operations. In parallel extensionsof the Haskell language (web page http://haskell.org) like Eden and Gph, the safety and the 
on�uen
e ofI/O operators are ensured by the use of monads [56℄ and lo
al external memories. Using shared disks is notspe
i�ed in the semanti
s of these languages. These parallel languages also authorize pro
essor to ex
hanged
hannels and give the possibility to read/write to/from them. It in
reases the expressiveness of the languagesbut de
reases the 
ost predi
tion of the programs. Too many 
ommuni
ations are hidden. It also makes thesemanti
s di�
ult to write [3℄. [24℄ presents a dynami
 semanti
s of a mini fun
tional language with a 
all-by-value strategy but I/O operators do not work on �les. The semanti
s used a unique input entry (standardinput) and a unique output. [18℄ develops a language for reasoning about 
on
urrent pure fun
tional I/O. Theyprove that under 
ertain 
onditions the evaluation of this language is deterministi
. But the �les are only lo
al�les and no formal 
ost model is given.
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hronous Parallel ML 65In [12℄ the authors fo
used on optimization of some parallel EM sort algorithms using 
a
he performan
esand the several layers of memories of the parallel ma
hines. But they used low level languages and the largenumber of parameters in this model introdu
e a hardly tra
table 
omplexity. In [15℄ the authors have imple-mented some I/O operations to test their models but in a low level language and low level data. In the samemanner, [26℄ des
ribes an I/O library of an EM extension of its 
ost model whi
h is a spe
ial 
ase of the BSPmodel but also for a low level language. To our knowledge, our library is the �rst for an extension of the BSPmodel with I/O features 
alled EM2-BSP and for a parallel fun
tional language with a formal semanti
s anda formal 
ost model. This 
ost model and our library 
ould be used for large and parallel Data Base as in [2℄where the authors used the BSP 
ost model to balan
e the 
ommuni
ations and the lo
al 
omputations.9. Con
lusions and Future Works. The Bulk-Syn
hronous Parallel ML allows dire
t mode BSP pro-gramming and the 
urrent implementation of BSML is the BSMLlib library. But for some appli
ations wherethe size of the problem is very signi�
ant, external memories are needed. In this paper we have presented anexternal memory extension of BSP model named EM2-BSP and a way to extend the BSMLlib for I/O a

esses inthese external memories. The 
ost model of these new primitives and a formal semanti
s as persistent featureshave been investigated and some ben
hmarks have been done. This library is the follow-up to our work onimperative features of our fun
tional data-parallel language [22℄.There are several possible dire
tions for future works. The �rst dire
tion is the implementation of persistentprimitives using spe
ial parallel I/O libraries as des
ribed in [29℄. For example, low level libraries for sharedRAID disks 
ould be used for a fault toleran
e implementation of the global I/O primitives.A 
omplementary dire
tion is the implementation of BSP algorithms [13, 38, 45℄ and their transformationsinto EM2-BSP algorithms as des
ribed in [16℄. We will design a new library of 
lassi
al programs as in theBSMLlib library to be used with large 
omputational problems. We also have extended the model to in
ludeshared disks. To validate the 
ost model of these programs, we need a ben
hmark suite in order to automati
allydetermine the EM parameters. This is ongoing work. We are also working on a result of simulation of a sharedexternal memory as those of the main memory in the BS-PRAM of [48℄.A semanti
 investigation of this framework is another dire
tion of resear
h. To ensure safety and a 
om-positional 
ost model whi
h allow 
ost analysis of the programs, two kinds of persistent primitives are needed,global and lo
al ones. Su
h operators need o

ur in their 
ontext (lo
al or global) and not in another one. Weare 
urrently working on a �ow analysis [43℄ of BSML to avoid this problem stati
ally and to forbid nesting ofparallel ve
tors. Stati
 
ost analysis as in [51℄ is also another dire
tion of resear
h.A
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68 F. GavaAppendix A. Proof of the 
on�uen
e.Lemma A.1. If e/{fi}
i

⇀ e1/{f1
i } and e/{fi}

i
⇀ e2/{f2

i } then e1= e2 and {f1
i }={f

2
i }. Proof. By 
ase ofthe rules of �gures 5.1, 5.3 and by 
onstru
tion of rules (1), (3) and (5).Lemma A.2. If {F}/e/{f}

⋊⋉

⇀ {F1}/e1/{f1} and {F}/e/{f}
⋊⋉

⇀ {F2}/e2/{f2} then e1 = e2, {f} =
{f1} = {f2} and {F1} = {F2}.Proof. By 
ase of the rules of �gures 5.2, 5.3 and by 
onstru
tion of rules (2), (4) and (6).Lemma A.3. If e = Γi

l(e1) then 6 ∃ e2 as e = Γ(e2); If e = Γ(e1) then 6 ∃ e2 as e = Γi
l(e2). Proof. Byde�nition, the hole [] is inside a parallel ve
tor in the 
ase of a Γi

l 
ontext and outside a parallel ve
tor in theother 
ase. By 
onstru
tion, 
ontexts ex
luded ea
h other.Definition A.4. We noted ⇒
⋊⋉

the redu
tion ⇀ only using the rule (8) and ⇒
i
the redu
tion ⇀ only usingthe rule (7).Lemma A.5. If {F}/Γi

l(e)/{f} ⇒
i
{F1}/Γi

l(e
1)/{f1} and {F}/Γi

l(e)/{f} ⇒
i
{F2} /Γi

l(e
2)/{f2} then

e1 = e2, {f1} = {f2} and {F} = {F1} = {F2}.Proof. By appli
ation of lemma A.1 and by de�nition of rule (7).Lemma A.6. If {F}/Γ(e)/{f} ⇒
⋊⋉

{F1}/Γ(e1)/{f1} and {F}/Γ(e)/{f} ⇒
⋊⋉

{F2}/ Γ(e2)/{f2} then e1 = e2,
{f} = {f1} = {f2} and {F1} = {F2}.Proof. By appli
ation of lemma A.2 and by de�nition of rule (8).Definition A.7. We noted {F}/e/{f} ⇒

l
{F}/e1/{f ′} the redu
tion {F}/e/{f}

∗
⇒
i
{F}/e1/{f ′} ∀ i andwhere 6 ∃ e2 ∧ Γi

l as e1 = Γi
l(e2) and where e2 is not a value.Lemma A.8. If Γi

l(e1) = Γj
l (e2) and {F}/Γi

l(e1)/{f} ⇒
i
{F}/Γi

l(e3)/{f3} and {F}/Γj
l (e2)/{f} ⇒

j

{F}/Γj
l (e4)/{f

4} then ∃ Γ′j
l ∧ Γ′i

l as Γi
l(e3) = Γ′j

l (e2) and Γj
l (e4) = Γ′i

l(e1) where {F}/Γ′j
l (e

2)/{f3} ⇒
j

{F}/Γ′j
l (e5)/{f5} and {F}/Γ′i

l(e1)/{f4} ⇒
i
{F}/ Γ′i

l(e6)/{f6} and where Γ′j
l (e5) = Γ′i

l(e6) and {f5} = {f6}.Proof. It is easy to see that a ⇒
i
redu
tion only modify an expression of the ith 
omponent of a parallel ve
torand the ith �le system. Su
h redu
tion is determinist by lemma A.5 and thus we have that if two redu
tionsappear in two di�erent 
omponents of a parallel ve
tor then su
h redu
tions 
ould be done in any order andgive the same �nal result.Lemma A.9. If {F}/e/{f} ⇒

l
{F}/e1/{f1} and {F}/e/{f} ⇒

l
{F}/e2/{f2} then e1 = e2 and {f1} =

{f2}.Proof. By indu
tion on the two redu
tion ⇒
l
and using lemma A.8 to �re-sti
k� together di�erent paths of thederivations: parallel redu
tions 
ould be done in any order.Definition A.10. ⇒ = ⇒

⋊⋉

∪ ⇒
lLemma A.11. If {F}/e/{f}
∗
⇒ {F1}/v1/{f1} and {F}/e/{f}

∗
⇒ {F2}/v2/{f2} then v1 = v2, {f1} =

{f2} and {F1} = {F2}.Proof. By indu
tion of the derivation and by using lemma A.3: for the two indu
tive 
ases, we have thetwo following 
ases: if {F ′}/e′/{f ′} ⇒
⋊⋉

{F ′′}/e′′/{f ′} then the redu
tion is deterministi
 by lemma A.6 else
{F ′}/e′/{f ′} ⇒

l
{F ′}/e′′/{f ′′} and then the redu
tion is also deterministi
 by lemma A.9.Lemma A.12. If {F}/e/{f} ⇒

i
{F}/e1/{f1} then {F}/e1/{f1}

∗
⇒
i
{F}/e2/{f2} and where e2 is a value
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2} ⇒

⋊⋉

{F ′}/e3/{f
2}.Proof. By indu
tion and using lemma A.3 for ea
h steps of the derivation.Lemma A.13. if {F}/e/{f}

∗
⇀ {F ′}/v/{f ′} then {F}/e/{f}

∗
⇒ {F ′}/v/{f ′}. Proof. By indu
tion ofthe derivation. If the rule (8) is used, we are in the 
ase of a global redu
tion and then we have a ⇒

⋊⋉

redu
tion.Else if the rule (7) is used, we are in the 
ase of a lo
al redu
tion and we have by lemma A.12 that we have a
⇒
l
redu
tion.Theorem A.14. 
on�uen
e of the semanti
sProof. if {F}/e/{f}

∗
⇀ {F1}/v1/{f1} and {F}/e/{f}

∗
⇀ {F2}/v2/{f2} then {F}/e/{f}

∗
⇒ {F1}/v1/{f1} and

{F}/e/{f}
∗
⇒ {F2}/v2/{f2} by lemma A.13 and then v1 = v2, {f1} = {f2} and {F1} = {F2} by lemma A.11.Edited by: Frédéri
 LoulergueRe
eived: June 3, 2004A

epted: June 5, 2005


