ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 6, Number 4, pp. 43-69. http://www.scpe.org © 2005 SWPS

0,..

EXTERNAL MEMORY IN BULK-SYNCHRONOUS PARALLEL ML*

FREDERIC GAVAT

Abstract. A functional data-parallel language called BSML was designed for programming Bulk-Synchronous Parallel algo-
rithms, a model of computing which allows parallel programs to be ported to a wide range of architectures. BSML is based on an
extension of the ML language with parallel operations on a parallel data structure called parallel vector. The execution time can be
estimated. Dead-locks and indeterminism are avoided. For large scale applications where parallel processing is helpful and where
the total amount of data often exceeds the total main memory available, parallel disk I/O becomes a necessity. In this paper, we
present a library of /O features for BSML and its formal semantics. A cost model is also given and some preliminary performance
results are shown for a commodity cluster.

Key words. Parallel Functional Programming, Parallel I/O, Semantics, BSP.

1. Introduction. Some problems require performance that can only be provided by massively parallel
computers. Programming these kind of computers is still difficult. Many important computational applications
involve solving problems with very large data sets [44]. Such applications are also referred as out-of-core
applications. For example astronomical simulation [47], crash test simulation [10], geographic information
systems [32], weather prediction [52], computational biology [17], graphs [40] or computational geometry [11]
and many other scientific problems can involve data sets that are too large to fit in the main memory and
therefore fall into this category. For another example, the Large Hadron Collider of the CERN laboratory
for finding traces of exotic fundamental particles (web page at lhc-new-homepage.web.cern.ch), when starts
running, this instrument will produces about 10 Petabytes a month. The earth-simulator, the most powerful
parallel machine in the top500 list, has 1 Petabyte of total main memory and 100 Petabytes of secondary
memories. Using the main memory is not enough to store all the data of an experiment.

Using parallelism can reduce the computation time and increase the available memory size, but for chal-
lenging applications, the memory is always insufficient in size. For instance, in a mesh decomposition of a
mechanical problem, a scientist might want to increase the mesh size. To increase the available memory size, a
trivial solution is to use the wirtual memory mechanism present in modern operating systems. This has been
established as a standard method for managing external memory. Its main advantage is that it allows the
application to access to a large virtual memory without having to deal with the intricacies of blocked secondary
memory accesses. Unfortunately, this solution is inefficient if standard paging policy is employed [7]. To get the
best performances, the algorithms must be restructured with explicit I/O calls on this secondary memory.

Such algorithms are generally called external memory (EM) algorithms and are designed for large compu-
tational problems in which the size of the internal memory of the computer is only a small fraction of the size
of the problem ([55, 53] for a survey). Parallel processing is an important issue for EM algorithms for the same
reasons that parallel processing is of practical interest in non-EM algorithm design. Existing algorithm and
data structures were often unsuitable for out-of-core applications. This is largely due to the need of locality on
data references, which is not generally present when algorithms are designed for internal memory due to the
permissive nature of the PRAM model: parallel EM algorithms [54] are “new” and do not work optimally and
correctly in “classical” parallel environments.

Declarative parallel languages are needed to simplify the programming of massively parallel architectures.
Functional languages are often considered. The design of parallel programming languages is a tradeoff between
the possibility to express the parallel features that are necessary for predictable efficiency (but with programs
that are more difficult to write, prove and port) and the abstraction of such features that are necessary to
make parallel programming easier (but which should not hinder efficiency and performance prediction). On
the one hand the programs should be efficient but without the price of non portability and unpredictability
of performances. The portability of code is needed to allow code reuse on a wide variety of architectures.
The predictability of performances is needed to guarantee that the efficiency will always be achieved, whatever
architecture is used.

*This work is supported by the ACI Grid program from the French Ministry of Research,under the project CArRAML
(http://www.caraml.org)

fLaboratory of Algorithms, Complexity and Logic (LACL), University of Paris XII, Val-de-Marne, 61 avenue du Général de
Gaulle, 94010 Créteil cedex — France, gavaQuniv-parisi12.fr

43

44 F. Gava

nononon L,
o |
i
f‘% L- Wy
5 4
= e }o'l?
w | &
Bl?L 1Y L
= f
+
= - W
2
)
2 1 &t
Y2 U | } L

Fia. 2.1. The BSP model of computation

Another important characteristic of parallel programs is the complexity of their semantics. Deadlocks
and non-determinism often hinder the practical use of parallelism by a large number of users. To avoid these
undesirable properties, there is a trade-off between the expressiveness of the language and its structure which
could decrease the expressiveness.

We are currently exploring the intermediate position of the paradigm of algorithmic skeletons [6, 42] in
order to obtain universal parallel languages where the execution cost can easily be determined from the source
code. In this context, cost means the estimate of parallel execution time. This last requirement forces the use
of explicit processes corresponding to the processors of the parallel machine. Bulk-Synchronous Parallel ML or
BSML is an extension of ML for programming Bulk-Synchronous Parallel algorithms as functional programs
with a compositional cost model. Bulk-Synchronous Parallel (BSP) computing is a parallel programming model
introduced by Valiant [46, 50] to offer a high degree of abstraction like PRAM models and yet to allow portable
and predictable performance on a wide variety of architectures with a realistic cost model based on a structured
parallelism. Deadlocks and indeterminism are avoided. BSP programs are portable across many parallel archi-
tectures. Such algorithms offer predictable and scalable performances ([38] for a survey) and BSML expresses
them with a small set of primitives taken from the confluent BSA calculus [37]. Such operations are implemented
as a library for the functional, with a strict evaluation strategy, programming language Objective Caml [33].
We refer to [27] for more details about the choice of this strategy for massively parallel computing.

Parallel disk I/O has been identified as a critical component of a suitable high performance computer.
Research in EM algorithms has recently received considerable attention. Over the last few years, comprehensive
computing and cost models that incorporate disks and multiple processors have been proposed [35, 55, 54], but
not with all the above elements. [14, 16] showed how an EM machine can take full advantage of parallel disk I/O
and multiple processors. This model is based on an extension of the BSP model for I/O accesses. Our research
aims at combining the BSP model with functional programming. We naturally need to also extend BSML with
I/0 accesses for programming EM algorithms. This paper is the follow-up to our work on imperative features
of our functional data-parallel language [22].

This paper describes a further step after [21] towards this direction. The remainder of this paper is organized
as follows. First we review the BSP model in Section 2 and, then, briefly present the BSML language. In
section 3 we introduce the EM-BSP model and the problems that appear in BSML. In section 4, we then give
new primitives for our language. In section 5, we describe the formal semantics of our language with persistent
features. Section 6 is devoted to the formal cost model associated to our language and Section 7 to some
benchmarks of a parallel program. We discuss related work in section 8 and we end with conclusions and future
research (section 9).

2. Functional Bulk-Synchronous Parallel ML.

2.1. Bulk-Synchronous Parallelism. A BSP computer contains a set of processor-memory pairs, a
communication network allowing inter-processor delivery of messages and a global synchronization unit which

External Memory in Bulk-synchronous Parallel ML 45

executes collective requests of a synchronization barrier. For the sake of conciseness, we refer to [5, 46] for more
details. In this model, a parallel computation is subdivided into supersteps (Figure 2.1) at the end of which a
barrier synchronization and a routing are performed. After that, all requests for data posted during a preceding
superstep are fulfilled. The performance of the machine is characterized by 3 parameters expressed as multiples
of the local processing speed 7:

(i) p is the number of processor-memory pairs;

(ii) [is the time required for a global synchronization and

(iii) g is the time for collectively delivering a 1-relation, a communication phase where every processor
receives/sends at most one word. The network can deliver an h-relation in time g x h for any arity h.

These parameters can easily be obtained using benchmarks [28]. The execution time of a superstep s is thus
the sum of the maximal local processing time, the maximal data delivery time and the global synchronization
time, i.e, Time(s) = MaX;.processor WS + MaX;processor N * g + | where wf= local processing time on processor
i during superstep s and hj =max{hj,,h;_} where hj_ (resp. hj_) is the number of words transmitted (resp.
received) by processor i during superstep s. The execution time) Time(s) of a BSP program composed of S
supersteps is therefore the sum of 3 terms:

teomp = . ,Max; ws
teomp + teomm + L where teomm = H x g where H=>"_max;h}
L = SxlI.

In general tcomp, H and S are functions of p and of the size of data n, or of more complex parameters like data
skew and histogram sizes. To minimize execution time, the BSP algorithm design must jointly minimize the
number S of supersteps and the total volume h (resp. tcomp) and imbalance h® (resp. tcomm) of communication
(resp. local computation). Bulk Synchronous Parallelism and the Coarse-Grained Multicomputer (CGM),
which can be seen as a special case of the BSP model are used for a large variety of applications. As stated
in [13] “A comparison of the proceedings of the eminent conference in the field, the ACM Symposium on
Parallel Algorithms and Architectures between the late eighties and the time from the mid-nineties to today
reveals a startling change in research focus. Today, the majority of research in parallel algorithms is within the
coarse-grained, BSP style, domain”.

bsp p: unit—int bsp I: unit—float bsp g: unit—float
mkpar: (int—a)—a par
apply: (o« —f)par—a par—(par
type aoption — None | Some of «
put: (int—a option)par— (int—a option)par
at: a par—int—a«
FiGg. 2.2. The Core Bsmllib Library

2.2. Bulk-Synchronous Parallel ML. BSML does not rely on SPMD programming. Programs are
usual “sequential” Objective Caml (OCaml) programs [33] but work on a parallel data structure. Some of the
advantages are simpler semantics and better readability. The execution order follows the reading order in the
source code (or, at least, the results are such as seems to follow the execution order). There is currently no
implementation of a full BSML language but rather a partial implementation as a library for OCaml (web page
at http://bsmllib.free.fr/).

The so-called BSMLIib library is based on the elements given in Figure 2.2. They give access to the BSP
parameters of the underling architecture: bsp p() is p the static number of processes (this value does not
change during execution), bsp g() is g the time for collectively delivering a 1-relation and bsp 1() is [the
time required for a global synchronization barrier.

There is an abstract polymorphic type «a par which represents the type of p-wide parallel vectors of objects
of type aone per processor. BSML parallel constructs operate on parallel vectors. Those parallel vectors are
created by mkpar so that (mkpar f) stores (f i) on process ¢ for ¢ between 0 and p — 1:

mkpar f=| (f0) | (f1)| --- [(f))| --- [(F(p—1)) |

We usually write f as fun pid—e to show that the expression e may be different on each processor. This
expression e is said to be local, i.e, a usual ML expression. The expression (mkpar f) is a parallel object and

46 F. Gava

it is said to be global. A usual ML expression which is not within a parallel vector is called replicate, i.e,
identical to each processor. A BSP algorithm is expressed as a combination of asynchronous local computations
(first phase of a superstep) and phases of global communication (second phase of a superstep) with global
synchronization (third phase of a superstep). Asynchronous phases are programmed with mkpar and apply
such that (apply (mkpar f) (mkpar e)) stores ((f i) (e i)) on process i:

apply [fo[fi] - [fi] - [foa[wo o] - Jui] - [op1]
:|(fovo)|(f1 U1)| |(fi'Ui)| |(fp—1 Up—1)|

Let us consider the following expression:

let vf—mkpar(fun pid x—x+pid)
and vv—mkpar(fun pid—2xpid+1)
in apply vf vv

The two parallel vectors are respectively equivalent to:

|funx—>x+0|funx—>x—|—1| |funx—>x—|—i| |funx—>x—|—(p—1)|

and

[0]3] -~~~ [2xi+1] --- [2x(p—-1)+1]

The expression apply vf vv is then evaluated to:

[0]4] - [2xi+2] --- [2x(p—-1)+2]

Readers familiar with BSPlib [28] will observe that we ignore the distinction between a communication request
and its realization at the barrier. The communication and synchronization phases are expressed by put.
Consider the expression: put(mkpar(fun i—fs;)) (¥). To send a value v from process j to process 4, the
function fs; at process j must be such that (fs; 7) evaluates to Some v. To send no value from process j to
process i, (fs; 1) must evaluate to None. The expression () evaluates to a parallel vector containing a function
fd; of delivered messages on every process i. At process 7, (fd, j) evaluates to None if process j sent no message
to process ¢ or evaluates to Some v if process j sent the value v to the process i.

The full language would also contain a synchronous projection operation at. (at vec n) returns the nth
value of the parallel vector vec:

at |vo| |vn| |vp,1|n:vn

at expresses communication and synchronization phases. Without it, the global control cannot take into account
data computed locally. Global conditional is necessary for expressing algorithms like: Repeat Parallel Iteration
Until Max of local errors < €. The nesting of par types is prohibited and the projection should not be evaluated
inside the scope of a mkpar. Our type system enforces these restrictions [23].

2.3. Examples.

2.3.1. Often Used Functions. Some useful functions can be defined by using only the primitives. For
example the function replicate creates a parallel vector which contains the same value everywhere. The primitive
apply can be used only for a parallel vector of functions which take only one argument. To deal with functions
which take two arguments we need to define the apply2 function.

let replicate x — mkpar(fun pid—x)
let apply2 vf vl v2 — apply (apply vf v1) v2

It is also common to apply the same sequential function at each process. This can be done using the parfun
functions. They only differ in the number of arguments to apply:

let parfun f v = apply(replicate f) v
let parfun2 f vl v2 = apply(parfun f v1) v2
let parfun3 f vl v2 v3 = apply(parfun2 f vl v2) v2

External Memory in Bulk-synchronous Parallel ML 47

It is also common to apply a different function on a process. applyat n fi; fo v applies function f; at process n
and function fy at other processes:

let applyat n f1 2 v —
apply (mkpar(fun i—if i—n then f1 else {2)) v

2.3.2. Communication Function. Our example is the classical computation of the prefiz of a list. Here
we make the hypothesis that the elements of the list are distributed to all the processes as lists. Each processor
performs a local reduction, then sends its partial result to the following processors and finally locally reduces
its partial result with the sent values. Take for example the following expression:

scan_list_direct e (+) [[1;2] | [3;4] | [5]]

It will be evaluated to:

[le+lie+1+2][le+1+2+3e+1+2+3+4][[e+1+2+3+4+5]]

for a prefix of three processors and where e is the neutral element (here 0). To do this, we need first the
computation of the prefix of a parallel vector:

(x scan_ direct:(c —a —a)—a —a par—a par *)
let scan direct op e vv =
let mkmsg pid v dst=if dst<pid then None else Some v in
let procs_ lists=mkpar(fun pid—from _to 0 pid) in
let receivedmsgs=put(apply (mkpar mkmsg) vv) in
let values lists— parfun2 List.map
(parfun (compose noSome) receivedmsgs) procs_lists in
applyat 0 (fun —e) (List.fold left op e) values lists

List.map f [vo;...;vn] = [(f vo);-. 5 (f vn)]
List.fold left f e [vo;...;un] = f (- (f (fewvy)vi)) vp
where from tonm = [mn+1;n+2;...;m]
noSome (Some v) = v
compose f gz = (f (g @)

Then, we can directly have the prefix of lists using some generic scan:

let scan wide scan seq scan last map op e vv =
let local scan=parfun (seq_scan last op e) vv in
let last _elements—parfun fst local _scan in
let values to add=(scan op e last _elements) in
let pop=applyat 0 (fun x y—y) op in
parfun2 map (pop values_to_add) (parfun snd local scan)

let scan wide direct seq scan last map op e vv =
scan__wide scan_direct seq_scan_last map op e vv

let scan list scan op e vl =

scan__wide scan seq_scan_last List.map op e vl

(x scan_list_direct:(a0 o —a)—a —a list par—a list par)
let scan list direct op e vl = scan_list scan direct op e vl

where seq _scan_last f e [vg;v1;...;v,] = (last, [(f e vo); f(f e vg) v1;...;last]) where

last = f (- (f (f evg) v1)--+) vp. The BSP cost formula of the above function (assuming op has a constant
cost Cop) I8 thus 2 X N X ¢op X7 +(p—1) X s X g + [where s denotes the size in words of a value compute by
the scan and N the length of the biggest list held at a process. We have thus the time to compute the partial
prefix, the time to send the partial results, time to perform the global synchronization and the time to finish
the prefix.

48 F. Gava

Internal Bus

Network
Router

Fia. 3.1. A BSP computer with external memories

2.4. Advantages of Functional BSP Programming. One important benefit of the BSP model is the
ability to accurately predict the execution time requirements of parallel algorithms. Communications are clearly
separated from synchronization, i. e., this avoids deadlocks and it can be performed in any order, provided
that the information is delivered at the beginning of the next superstep. This is achieved by constructing
analytical formulas that are parameterized by a few values which captured the computation, communication
and synchronization performance of the parallel system.

The clarity, abstraction and formal semantics of functional language make them desirable vehicles for
complex software. The functional approach of this parallel model allows the re-use of suitable techniques from
functional languages because a few number of parallel primitives is needed. Primitives of the BSML language
with a strict strategy are derived from a confluent calculus [37] so parallel algorithms are also confluent and
keep the advantages of the BSP models: no deadlock, efficient implementation using optimized communication
algorithms, static cost formulas and cost previsions. The lazy evaluation strategy of pure functional language
is not suited for the need of the massively parallel programmer. Lazy evaluation has the unwanted property of
hiding complexity from the programmer [27]. The strict strategy of OCaml makes the BSMLIib a better tool
for high performance applications because programs are transparent in the sense of making complexity explicit
in the syntax.

Also, as in functional languages, we could easily prove and certify functional implementation of such algo-
rithms with a proof assistant [1, 4] as in [20]. Using the eztraction possibility of the proof assistant, we could
generate a certified implementation to be used independently of the sequential or parallel implementation of
the BSML primitives.

3. External Memory.

3.1. The EM-BSP model. Modern computers typically have several layers of memories which include
the main memory and caches as well as disks. We restrict ourselves to the two-level model [54] because the
speed difference between disks and the main memory is much more significant than between other layers of
memories. [16] extended the BSP model to include secondary local memories. The basic idea is simple and it
is illustrated in Figure 3.1. Each processor has, in addition to its local memory, an external memory (EM) in
the form of a set of disks. This idea is applied to extend the BSP model to its EM version called EM-BSP by
adding the following parameters to the standard BSP parameters:

(i) M is the local memory size of each processor;
(ii) D is the number of disk drives of each processor;
(iii) B is the transfer block size of a disk drive, and
(iv) G is the ratio of local computational capacity (number of local computation operations) divided by
local I/O capacity (number of blocks of size B that can be transferred between the local disks and memory)
per unit time.

In many practical cases, all processors have the same number of disks and, thus, the model is restricted to
that case (although the model forbids different memory sizes). The disk drives of each processor are denoted by
Dy, D1,...,Dp_1. Each drive consists of a sequence of tracks which can be accessed by direct random access. A
track stores exactly one block of B words. Each processor can use all its D disk drives concurrently and transfer
D x B words from/to the local disks to/from its local memory in a single I/O operation being at cost G. In
such an operation, only one track per disk is permitted to be accessed without any restriction and each track
is set on each disk. Note that an operation involving fewer disk drives incurs the same cost. Each processor is

External Memory in Bulk-synchronous Parallel ML 49

assumed to be able to store in its local main memory at least some blocks from each disk at the same time,
i.e, M >> DB.

Like computation on the BSP model, the computation of the EM-BSP model proceeds in a succession of
supersteps. The communication costs are the same as for the BSP model. The EM-BSP model allows multiple
I/0 operations during the computation phase of the superstep. The total cost of each superstep is thus defined as
teomp,io + teomm + L where teomp io s the computational cost and additional I/O cost charged for the supersteps,
i.e, teomp,io = ZS max; (w; +m?) where m? is the I/O cost incurred by processor ¢ during superstep s. We refer
to [16] to have the EM-BSP complexity of some classical BSP algorithms.

3.2. Examples of EM algorithms. Our first example is the matrix inversion which is used by many
applications as a direct method to solve linear systems. The computation of the inverse of a matrix A can
be derived from its LU factorization. [8] presents the LU factorization by blocks. For this parallel out-of-core
factorization, the matrix is divided in blocks of columns called superblocks. The width of the superblock is
determined by the amount of physical available memory: only blocks of the current superblock are in the main
memory, the others are on disks. The algorithm factorize the matrix from left to right, superblock by superblock.
Each time a new superblock of the matrix is fetched in the main memory (called the active superblock), all
previous pivoting and update of a history of the right-looking algorithm are applied to the active superblocks.
Once the last superblock is factorized, the matrix is re-read to apply the remaining row pivoting of the recursive
phases. Note that the computation is done data in place, the matrix has been first distributed on processors
and thus, for load balancing, a cyclic distribution of the data is used.

[9] presents PRAM algorithms using external-memory for graph problems as biconnected components of a
graph or minimum spanning forest. One of them is the 3-coloring of a cycle applied to finding large independents
sets for the problem of list ranking (determine, for each node v of a list, the rank of v define as the number of
links from v to the end of the list). The methods for solving it is to update scattered successor and predecessor
colors as needed after re-coloring a group of nodes of the list without sorting or scanning the entire list. As
before, the algorithms works group by groups with only one group in the main memory.

The last example is the multi-string search problem which consists of determining which of k& pattern strings
occur in another string. Important applications on biological databases make use of very large text collections
requiring specialized nontrivial search operations. [19] describes an algorithm for this problem with a constant
number of supersteps and based on the distribution of a proper data structure among the processors and the
disks to reduce and balance the communication cost. This data structure is based on a bind tree built on the
suffixes of the strings and the algorithm works on longest common prefix on such trees and by lexicographic
order. The algorithm takes advantage of disks by only keeping a part of a bind tree in the main memory and
by collecting subpart of trees during the supersteps.

4. External Memory in BSML.

4.1. Problems by Adding I/O in BSML. The main problem by adding external memory and so I/O
operators to BSML is to keep safe the fact that in the global context, the replicate values, i.e, usual OCaml
values replicate on each processor, are the same. Such values are dedicated to the global control of the parallel
algorithms. Take for example the following expression:

let chan=open_in "file.dat" in

if (at (mkpar(fun pid—(pid mod 2)-0)) (input_ value chan))
then scan direct (+) O (replicate 1)

else (replicate 1)

It is not true that the file on each processor contains the same value. In this case, each processor reads on its
secondary memory a different value. We would have obtained an incoherent result because each processor reads a
different integer on the channel chan and some of them would execute scan _direct which need a synchronization.
Others would execute replicate which does not need a synchronization. This breaks the confluent result of the
BSML language and the BSP model of computation with its global synchronizations. If this expression had
been evaluated with the BSMLIib library, we would have a breakdown of the BSP computer because at is a
global synchronous primitive. Note that we also have this kind of problems in the BSPlib [28] where the authors
note that only the I/O operations of the first processor are “safe”. Another problem comes from side-effects
that can occur on each processor. Take for example the following expression:

50

Network
Router

Fia. 4.1. A BSP computer with shared disks

let a—mkpar(fun i—if i—0 then(open in "file.dat");()else ())
in (open_out "file.dat")

where () is an empty value. If this expression had been evaluated with the BSMLIib library, only the first
processor would have opened the file in a read mode. After, each processor opened the file with the same name
in a write mode except the first one. This file has already been opened in read mode. We would also have an
incoherent result because the first processor raised an exception which is not caught at all by other processes
in the global context. This problem of side-effects could also be combined with the first problem if there is no
file at the beginning of the computation. Take for example the following expression:

let chan=open out "file.dat" in
let x=mkpar(fun i—if i=0 then (ouput_value 0) else ()) in
ouput_ value 1; close cha;
let chan—open in "file.dat" in
if (at (mkpar(fun pid—(pid mod 2)-0)) (input_ value chan))
then scan direct (+) 0 (replicate 1)
else (replicate 1)

The first processor adds the integers 1 and 2 on its file and other processors add the integer 2 on their files. As
in the first example, we would have a breakdown of the BSP computer because the integer read would not be
the same and at is a global synchronous primitive.

4.2. The proposed solution. Our solution is to have two kinds of files: global and local ones. In this
way, we have two kinds of I/O operators. Local I/O operators do not have to occur in the global context and
global I/O ones do not have to occur locally. Local files are in local file systems which are presents in each
processor as in the EM-BSP model. Global files are in a global file system. These files need to be the same from
the point of view of each node. The global file system is thus in shared disks (as in Figure 4.1) or as a copy in
each processor. They thus always give the same values for the global context. Note that if they are only shared
disks and not local ones, the local file systems could be in different directories, one per processor in the global
file system.

An advantage of having shared disks is the case of some algorithms which do not have distributed data at
the beginning of the computation. As those which sort, the list of data to sort is in a global file at the beginning
of the program and in another global file at the end. On the other hand, in the case of a distributed global file
system, the global data are also distributed and programs are less sensitive to the problem of faults. Thus, we
have two important cases for the global file system which could be seen as a new parameter of the EM-BSP
machine: have we shared disks or not?

In the first case, the condition that the global files are the same for each processor point of view requires
some synchronizations for some global I/O operators as created, opened or deleted a file. For example, it is
impossible or un-deterministic for a processor to create a file in the global file system if at the same time another
processor deleted it. On the other hand, reading (resp. writing) values from (resp. to) files do not need any
synchronization. All the processors read the same values in the global file and only one of the processors needs
to really write the value on the shared disks. In the case of a global output operator only one of the processors
writes the value and in the case of a global input operator the value is first read from the disks by a processor
and then is read by other processors from the operating system buffers. In this way, for all global operators,
there is not a bottleneck of the shared disks.

In the second case, all the files, local and global ones, are distributed and no synchronization is needed at
all. Each processor reads/writes/deletes etc. in its own file system. But at the beginning, the global file system
needs to be empty or replicated to each processor and the global and local file systems in different directories.

External Memory in Bulk-synchronous Parallel ML 51

Note that many modern parallel machines have concurrent shared disks. Such disks are always considered
as user disks, i.e, disks where the users put the data needed for the computations whereas local disks are only
generally used for the parallel computations of programs. For example, the earth simulator has 1,5 Petabytes
for users as mass storage disks and a special network to access them. If there are no shared disks, NFS or
scalable low level libraries as in [36] are able to simulate concurrent shared disks. Note also that if they are only
shared disks, local disks could be simulated by using different directories for the local disks of the processors
(one directory for one processor).

Write or read values
6e-05 T T T T T T

5e-05 -

4e-05 -

3e-05 -

2e-05 -

1le-05 b

0 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000

Size in words of the values on each disk

Write or read values
1.85e-05 T T T T T T T

¥
Wﬂy WJH |

1.8e-05 |
1.75e-05 |
1.7e-05 -

1.65e-05

1

Lsswos ‘W 1 | |
o

1.4e-05
Size in words of the values on each disk

|

1.5e-05 f d

Fic. 4.2. Benchmarks of EM parameters

4.3. Our new model. After some experiments to determine the EM-BSP parameters of our parallel
machine, we have found that operating systems do not read/write data in a constant time but in a linear time
depending on the size of the data. We also notice that there is an overhead depending on the size of the blocks,
i.e., if we haven x (DB) < s < (n+ 1) x DB, where s is the size in words of the data, there is n + 1 overheads

52 F. Gava

to read/write this value from/to the D concurrent disks. Figure 4.2 gives the results of this experiment on a
PC with 3 disks, each disk with blocks of 4096 words (seconds are plotted on the vertical axis). This program
was run 10000 times and the average was taken. Such results are not altered if we decrease the number of disks.
Our proposed solution gives the processors access to two kinds of files: global and local ones. By this way,
our model called EM%BSP extends the BSP model to its EM? version with two kinds of external memories,
local and global ones. Each local file system will be on local concurrent disks as in the EM-BSP model. The
global one will be on concurrent shared disks (as in Figure 4.1) if they exist or replicate on the local disks. The
EMZBSP model is thus able to take into account the time to read the data and to distributed them into the
processors. The following parameters are thus adding to the standard BSP parameters:
(i) M is the local memory size of each processor;
ii) D! is the number of independent disks of each processor;
) B'is the transfer block size of a local disk;
iv) G'is the time to read or write in parallel one word on each local disk;
(v) O'!is the overhead of the concurrent local disks;
) D9 is the number of independent shared disks (or global disks);
) BY is the transfer block size of a global disk;
) GY is the time to read or write in parallel one word on each global disk and
(ix) O9Y is the overhead of the concurrent global disks.
Of course, if there are no shared disks or no local disks: D! = D9, B! = B9, G = G9 and O' = O9. A processor
is able to read/write n words to its local disks in time [%] x G' + [Z2;] x O' and n words to the global disks
in time [F5| x GI + [5;;}91 x O9.
As in the EM-BSP model, the computation of the EMZBSP model proceeds in a succession of supersteps.
The communication costs are the same as for the EM-BSP model and multiple I/O operations are also allowed
during the computation phase of a superstep.

Note that GY is not g even if processors access to the shared disks by the network (in case of some parallel
machines): ¢ is the time to perform a l-relation and GY is the time to read/write D words on the shared
concurrent disks. It could depend on g in some parallel machine as clusters but it could depend on many other
hardware parameters if, for example, there is a special network to access to the shared concurrent disks.

4.4. New Primitives. In this section we describe the core of our I/0 library, i. e., the minimal set of
primitives for programming EM%BSP algorithms. This library will be incorporated in the next release of the
BSMLIib. This I/0O library is based on the elements given in Figure 4.3. As in the BSMLIib library, we have
functions to access to the EM2-BSP parameters of the underlining architecture. For example, embsp loc_ D)
is D' the number of local disks and glo shared() gives if the global file system is shared or not. Since we
have two file systems, we need two kinds of names and two kinds of abstract types of output channels (resp.
input channels): glo_out_channel (resp. glo_in_channel) and loc_out channel (resp. loc_in_channel) to
read /write values from/to global or local files.

We can open a named file for writing. The primitive returns a new output channel on that file. The file is
truncated to zero length if it already exists. Either it is created or the primitive will raise an exception if the file
could not be opened. For this, we have two kinds of functions for global and local files: (glo open out F)
which opens the global file F in write mode and returns a global channel positioned at the beginning of that
file and (loc_open out f) which opens the local file f in write mode and returns a local channel positioned
at the beginning of that file. In the same manner, we have two functions, glo open in and loc_open in
for opening a named file in read mode. Such functions return new local or global input channels positioned at
the beginning of the files. In the case of global shared disks, a synchronization occurs for each global “open”.
With this global synchronization, each processor could signal to the other ones if it managed to open the file
without errors or not and each processor would raise an exception if one of them has failed to open the file.

Now, with our channels, we can read/write values from/to the files. This feature is generally called per-
sistence. To write the representation of a structured value of any type to a channel (global or local), we used
the following functions: (glo output value Cha v) which writes the replicate value v to the opened global
file and (loc_output value cha v) which locally writes the local value v to the opened local file. The object
can be then read back, by the reading functions: (glo input value Cha) (resp. (loc_input value cha))
which returns from the global channel Cha (resp. local channel cha) the replicate value Some v (resp. local
value) or None if there is no more value in the opened global file (resp. local file). This is the end of the file.

External Memory in Bulk-synchronous Parallel ML 53

EM?2-BSP parameters
embsp loc_ D:unit—int embsp loc_B:unit—int embsp loc_ G:unit—float
embsp glo D:unit—int embsp glo B:unit—int embsp glo G:unit—float

embsp_loc:O:unit—>ﬂoat embsp glo O:unit—float glo_shared:mit—>bool

Global I/O primitives Local I/O primitives

glo open out:glo name—glo out_channel loc open out:loc_name—loc_out_channel
glo_open_in:glo_name—>glo_in_channel loc_open_in:loc_name—>loc_0ut_Channel
glo output value:glo out channel—a —unit loc output value:loc_out channel—a —unit
glo_input ;alue:glo_in_channel—mc option loc_input ;alue:loc_in_channel—nx option
glo:close__out:gloioutichannel—mnit loc:close__out:locioutichannel—mnit

glo close in:glo in channel—unit loc close in:loc_in channel—unit
glo_delet;glo_name—mnit loc_delet;loc_nameﬂunit
glo:seek:gloiinichannel—ﬂnt—mnit loc:seek:lociinichannel—>int—>unit

From local to global
glo copy:int—loc_name—glo_name—unit

Fig. 4.3. The Core 1/O Bsmllib Library

Such functions read the representation of a structured value and we refer to [34] about having type safety in
channels and reading them in a safe way. We also have (glo seek Cha n) (resp. loc_seek) which allows to
positioned the channel at the nth value of a global file (resp. local file). The behavior is unspecified if any of
the above functions is called with a closed channel.

Note that only local or replicate values could be written on local or global files. Nesting of parallel vectors
is prohibited and thus loc _output value could only write local values. It is also impossible to write on a
shared global file a parallel vector of values (global values) because these values are different on each processor
and glo output value is an asynchronous primitive. Such values could be written in any order and could
be mixed with other values. This is why only local and replicate values should be read/write from/to disks (see
section 6 for more details).

After, read/write values from/to channels, we need to close them. As previously, we need four kinds of
functions: two for the input channels (local and global ones) and two for the output channels. For example,
(glo close out Cha), closes the global output channel Cha which had been created by glo open out. The
g]o__delete_and loc_ delete primitives delete a global or a local file if it is first closed. B B

The last primitive copies a local file from a processor to the global file system. It is thus a global primitive.
(glo _copy n f F) copies the file f from the processor n to the global file system with the name F. This primitive
could be used at the end of a BSML program to copy the local results from local files to the global (user) file
system. It is not a communication primitive because used as a communication primitive, glo copy has a more
expensive cost than any communication primitive (see section 6). In the case of a distributed global file system,
the file is duplicated on all the global file systems of each processor and thus all the data of the file are all
put into the network. On the contrary, in the case of global shared disks, it is just a copy of the file because,
access to the global shared disks is generally slower than putting values into the network and read them back
by another processor.

Using these primitives, the final result of any program would be the same (but naturally without the same
total time, i. e., without the same costs) with shared disk or not. Now, to better understand how these new
primitives work, we describe a formal semantics of our language with such persistent features.

5. High Order Formal Semantics.

5.1. Mini-BSML. Reasoning on the complete definition of a functional and parallel language such as
BSML, would have been complex and tedious. In order to simplify the presentation and to ease the formal
reasoning, this section introduces a core language as a mini programming language. It is an attempt to trade
between integrating the principal features of persistence, functional, BSP language and being simple. The

54 F. Gava

expressions of mini-BSML, written e possibly with a prime or subscript, have the following abstract syntax:

e u= variables | ¢ constants
| op operators | funz —e abstraction
| (ee) application | letz=cine binding
| (e,e) pairs | if e then e else e conditional
| (mkpar e) parallel vector | (apply ee) parallel application
| (put e) communication | (atee) projection
| f file names or channels

In this grammar, x ranges over a countable set of identifiers. The form (e €’) stands for the application of a
function or an operator e, to an argument ¢’. The form fun z — e is the so-called and well-known lambda-
abstraction that defines the first-class function of which the parameter is 2 and the result is the value of e.
Constants ¢ are the integers, the booleans, the number of processes p and we assume having a unique value
for the type unit: (). The set of primitive operations op contains arithmetic operations, pair operators, test
function isnc of the nc constructor which plays the role of the None constructor in OCaml, fixpoint to defined
natural iteration functions and our I/O operators: open”® (resp. open¥) to open a file as a channel in read
mode (resp. write mode), close” (resp. close™) to close a channel in read mode (resp. write mode), read,
write to read or write in a channel, delete to delete a file and seek to change the reading position. All those
operators are distinguished with a subscript which is [for a local operator and g for a global one. We also have
our parallel operators: mkpar, apply, put and at. We also have two kinds of file systems, the local and the
global ones, defined with (possibly with a prime):

e f for a file name;

o fw for a write channel, f, for a read channel and g,ﬁ for a channel pointed on the kth value of a file

where ¢ is the name of the channel,;

e
. f\v—ol is a file where 7 is ¢, r or w for a close file or an open file in read or write mode and where

9, - - - , U, the values hold in the file.
When a file is opened in read mode, it contains the name [g2, ..., gZ,] of the channels that pointed to it and the
position of these channels. Before presenting the dynamic semantics of the language, i. e., how the expressions
of mini-BSML are computed to values, we present the values themselves and the simple ML types [39] of the
values. There is one semantics per value of p, the number of processes of the parallel machine. In the following,
the expressions are extended with the parallel vectors: {e,...,e) (nesting of parallel vectors is prohibited; our
static analysis enforces this restriction [23]). The values of mini-BSML are defined by the following grammar:

vi= funz — e functional value | ¢ constant
| op primitive | (v,v) pair value
| (v,...,v) p-wide parallel vector value | f file names or channels

and the simple ML types of values are defined by the following grammar:

Tu= K base type (bool, int, unit, file names or channels) | « type variables
| 71 — 72 type of functional values from 71 to 2 | 71 %72 type for pair values

We note - v : 7 to say that the value v has the type 7 and we refer to [39] for an introduction to the types of
the ML language and to [23] for those of BSML.

5.2. High Order Semantics. The dynamic semantics is defined by an evaluation mechanism that relates
expressions to values. To express this relation, we used a small-step semantics. It consists of a predicate
between an expression and another expression defined by a set of axioms and rules called steps. The small-
step semantics describes all the steps of the language from an expression to a value. We suppose that we
evaluate only expressions that have been type-checked [23] (nesting of parallel vectors has been prohibited).
Unlike in a sequential computer with a sequential programming language, a unique file system (a set of files)
for persistent operators is not sufficient. We need to express the file system of all our processors and our
global file system. We assume a finite set N' = {0,...,p — 1} which represents the set of processor names
and we write ¢ for these names and x for the whole parallel computer. Now, we can formalize the files for
each processor and for the network. We write {f;} for the file system of processor 7 with i € A/. We assume
that each processor has a file system as an infinite mapping of files which are different at each processor. We
write {f} = {{fo}, ..., {fpa}} for all the local file systems of our parallel machine and {F} for our global file

External Memory in Bulk-synchronous Parallel ML 59

(bsp_p () - P (+ (n1,n2)) - on with n =n1 + ne
(fst (v1,v2)) > ou (snd (v1,v2)) 5 v

if true then e; else eo ? el if false then e; else es ? €2

(isnc nc) e true (isnc v) s false if v # nc

(fix op) - op (fix (fun z — e)) " e[z — (fix (fun = — e€))]

Fic. 5.1. Functional §-rules

system. The persistent version of the small-steps semantics has the following form: {F}/e/{f} — {F'}/¢'/{f'}.
We note =, for the transitive and reflexive closure of —, e. g., we note {F°}/eo/{f°} = {F}/v/{f} for
{F% Jeo/{f°} = {F '} er/{f'} = {F?}/ex/{f?} — ... = {F}/v/{f}. To define the relation —, we begin
with some rules for two kinds of reductions:

(i) e/{fi} = ¢'/{f!} which could be read as “with the initial local file system {f;}, at processor i, the
expression e is reduced to ¢’ with the file system {f/}";

(ii) {F}/e/{f} 2 {F'}/e'/{f} which could be read as “with the initial global file system {F} and with
the initial set of local file systems, the expression e is reduced to ¢’ with the global file system F’ and with the
same set of local file systems".

To define these relations, we begin with some axioms for the functional head reduction =:

(funz —e)v > e[z —] and letz=vine = e[z —

We write e[x < o] for the expression obtained by substituting all the free occurrences of x in e by v. Free
occurrences of a variable are defined as a classical and trivial inductive function on our expressions. This

£

functional head reduction has two versions. First, a local reduction, =, of just the processor i and second, a
global reduction, 5\, of the whole parallel machine:
e e e e

= @ = 2)
e/ {fiy e/ {fi} (FYy fe /Ay 2 AFY /e /AT}

For primitive operators we also have some axioms, the d-rules. The functional §-rules — are given in Figure 5.1.

First, we have functional §-rules which could be used by one processor 1, —or by the parallel machine, = As
7 X

in the functional head reduction, we have two different cases for using functional d-rules:

’ /

e—e
§

e/ {fi}éf_e’ / Afi}

e—e
5

®) Y e

(4)

Such reductions, which are not persistent reductions, do not change and do not need the files. Only persistent
operators change and need them.

{7y /(v 0),.... (v (p=1))) / {f}
{7}/ (apply (vo, ..., vp-1) (vh,- - v, 1)) / {f} {7}/ ((vo vg)s - -+, (vpa vy N)/AS}
{7/ (@at (.oyon,.) m) /{f} {F} /on [{f} if Ac(vn) # True

{F} / (put (vo,...,vp—1)) / {f} : {F} / (mkfun ({send (init vg p),...,send (init v, p)))) / {f}

{#} / (mkpar v) / {f}

—\
be
—\
'
—\
5o

{F} / (send [v, ., 05" '],...,send [v)_y,..,v5"7]) / {f}
S A7/ ([0 s vp_1ls s BT v 1)) / {f}if VR,m €0, ,p— 1 Ac(vf) # True

where mkfun = apply (mkpar (fun j ¢t ¢ — if (and (<(0,),<(4,p))) then (access t i) else nc))

FiG. 5.2. Parallel §-rules

56 F. Gava

Second, for the parallel primitives, we naturally have d-rules but we do not have those d-rules on a single
processor but only for the parallel machine (Figure 5.2). For simple reasons it is impossible for a processor to
send a channel to another processor. This second processor does not have to read in this channel because it
could be seen as a hidden communication. In this way, we have to test if the sent values contain channels or
not. To do this, we used a trivial inductive function 4. which tells whether an expression contains a channel
or not. Note that this work is done when OCaml serializes values. This raises an exception when an abstract
datum like a channel has been found. The evaluation of a put primitive proceeds in two steps. In a first step,
each processor creates a pure functional array of values. Thus, we need a new kind of expression, arrays written
[e,...,€e]. init and access operators are used to manipulate these functional arrays:

access [V0,...,Vn,...,Um| N - Un and init f m " [(f0),....(f (m—-1))]

In the second step, the send operations exchange these arrays. For example, the value at the index j of the
array held at process i is sent to process j and is stored at index ¢ of the result. The function mkfun constructs
a parallel vector of functions from the resulting vector of arrays.

(opent N/AF A0 E RN
(open” AL oo S| Lot o) £ 22 1S {f’,...,ff@[ga,...,gz,gS],...,f”}
(Openw f)/{fl7"'7cf\z;:17"'7f//} 7:_60\ fé’ / {f”"'7wf|2|7"'7f,,}

(openy” f)/{f o Sy 22 S /AT e Y PR

(closerf$>/{fz...,ff@[ga,...,gi,...,gﬂ,...,f”} RV CLNE RO
(close® f)/(f" o "f L") 1) (AT) CLNVE RSN
(close® [)/f"..."f| Dfofl.-... 1"} WA B
(close®)/f o | 1] o0y WAV SR

n

(close™ f&/(7,. 7 1Ly ()/{f’,...ff@,...,f"}where?:wor?:c

.

vo

(read” ff)/{f’,---,er[g“wgiv---,gz]v---,f”} 2,/ {f’,...ffH[ga,..,gém...,gZL...,f”}
if Fv, : 7and m =k + 1. vy is the kth value of f

(readT ff)/{f”"'7rf\£‘[ga7"7g£7'"7gz}7"'7f//} Z_;\ nc / {fl7'"7rf\i:‘[ga7"7gi7'"792}7"'7.}“”}
ifk>n

(seek f§ k)/{fﬁ---ff@[g“,--ygfm---,gz]v---,f”} e /{f..., ng P N 1
(write (v, &)/ (- " F o 7Y 2 OMF] 57 i Ac(vn) # True

(delete)/{f....f[} .../} 2O

Fia. 5.3. d-rules of the persistent operators

iQ

Third, we complete our semantics by giving the §-rules = of the I/O operators given in Figure 5.3. The

open operation opens a file (in read or write mode) and returns a new channel, pointing to this file, to access
to the values of the file or write values in this file. Opening a file in write mode, gives an empty file. If possible,
read” gives the value of type 7 contained in the file from the channel. If no more value could be read then
read” returns an empty value. The write operation writes a new value into the file using the channel. delete

External Memory in Bulk-synchronous Parallel ML 57

Ff n= Ff e
T == | | v T T, == |
| Te | letz=Tiine | Tie
Ly (e e
| let z=Tine | (v,T) | let z =T ine)
| (F’;) | if I'! then e else e | l;t recgz=1I;ine
I f;'}yl" 1):hen e else e | (mkpar E‘;) } Evli"c;))
| (mkpar I | (apply T} e) | T th |
mkpar | (apply v I'}) if I'; then e else e
| (apply T ¢) | et | (send T))
| (apply v I) | (at T e) | i, e1,...,€n]
I Eptl:l;‘_‘r‘)) | (at v F;) } [’l)(), Fl? AR en}
atT'e f
at v I’ ~~ V0, V1, ...,1
I () | <6, ’ 1—‘l €y ,6> ‘ []

Fia. 5.4. Contezt of evaluation

deletes a file from the file system if it has been fully closed. close closes a channel or do nothing if the channel
has been first closed. All those rules could be distinguished with a subscript (I or g) for the local or the global
operators. Thus, we need two kinds of reductions, one for the local reduction 5 and another one for the global

7

reduction X:

O
e/ {fi}2e /{1 ¢/ {F} R [{F)
0 (5) 0 (6)
e/ Uik e /D FY e /A0 2 7Y e A

First, for a single processor i such persistent operations work on the local file system of the processor i where
they are executed. Second, for the whole parallel machine, we have the same operations except for the global
file system. The special operator copy,, copies one file of one processor into the global file system:
{F, .., F"}/(copy i f F)/{fo,-- fir- - fp—1} ;40 {F’,--7F”7°F@}/()/{fo,---7f¢7 ooy fp—1}
X
if F¢{F',.,F"} and f; = {f’,..-ff@w--,f”}

Now, the complete definitions of our two kinds of reductions are:

and o Ay y-—uyu?R
X 6y bs | b

k2

L3

Ao~ A yUu_~uU
% 8,

>

i i

5.3. Contexts of evaluation. It is easy to see that we cannot always make a head reduction. We have
to reduce “in depth” in the sub-expressions. To define this deep reduction, we define two kinds of contexts,
i.e, expressions with a hole noted [] that have the abstract syntax given in Figure 5.4. The hole gives where
expressions could be reduced. In this way, the contexts give the order of evaluation of the arguments of the
construction of the language, i.e, the strategy of the language.

The T" context is used to define a global reduction of the parallel machine. For example:

I' = let = [| in mkpar (fun pid — ¢)

The reduction will occur at the hole to first compute the value of x. The I‘} context is used to define in
which component ¢ of a parallel vector the reduction is done, i.e., which processor ¢ reduces its local expression.
This context uses the I'; context which defines a local reduction on a processor i. Note that, in this way, the
hole is always inside a parallel vector. For example, the following context: I'! = apply v (vg,e1,...,I) and
I'; = open] [] is used to define that the last processor first computes the argument of the open] primitive.

Now we can reduce “in depth” in the sub-expressions. To define this deep reduction, we use the inference
rules of the local context rule:

o/ iy e/ {f]) where { {f}

] J {{f0}7"'7{fi}7"'7{fp*1}}
{7/ 1(e) / {fy = AF}/ Tie) [{f'} {

(b Afh Aty

58 F. Gava

So, we can reduce the parallel vectors and the context gives the name of the processor where the expression is
reduced. The global context rule is:

(FY /e /Uy 2A{FY /e /{f}

A @ [=y e iy

We can remark that the context gives an order to evaluate an expression but not for the parallel vectors and this
rule is not deterministic. It is not a problem because the BSA-calculus is confluent [37]. We can also notice that
our two kinds of contexts used in the rules exclude each other by construction because the hole in a I‘f context
is always in a component of a parallel vector and never for a I' one. Thus, we have a rule to reduce global
expressions and another one to reduce usual expressions within the parallel vectors and we have the following
result of confluence:

TueoreMm 5.1. if {F}/e/{f} = {F Y v /{f*} and {FY)e/{f} = {F2}/va/{f?} then v; = vy, F' = F?
and f1 = f2.

Proof. (Sketch of) The BSML language is known to be confluent [37]. With our two kinds of file systems,
it is easy to see that a global rule never modifies a local file system and never a local rule modifies the global
one. To be more formal, the global (resp. local) files are always the same before and after a local (resp. global)
reduction. Thus, the global values are the same on all the processors as proof of confluent of the BSML language
needed. All the §-rules working on files are deterministic (local and global ones). So, the BSML language with
parallel I/O features is confluent.

We refer to appendix 9 for a full proof. Note that the semantics is not deterministic. Several rules can be
applied at the same time, parallelism comes from context rules.

6. Formal Cost Model. A formal cost model can be associated to reductions in the BSML language.
“cost terms” are defined and each rule of the semantics is associated to a cost rule on cost terms. Given the weak
call-by-value strategy, i.e., arguments to functions and operators need to be values (see section 5), a program is
always reduced in the “same way”. As stated in [41], “Each evaluation order has its advantages and disanvatages,
but strict evaluation is clearly superior in at least one area: ease of reasoning about asymptotic complexity”.
In this case, costs can be associated with terms rather than reductions. It is the way we choose to ease the
discussion about the compositional nature of the cost model of our language and the cost of our I/O primitives.

6.1. Costs of the Parallel Operators. No order of reduction is given between the different components
of a parallel vector and their evaluations are done in parallel. The cost in this case is independent from the order
of reduction. We will not describe the costs of the evaluation of local terms, i. e., functional terms. They are
the same as those of a strict functional language (OCaml for example) but we give the costs of the evaluation
of global and I/O operations.

The cost model associated to our programs follows the EM%BSP cost model. We noted C(e) the cost term
associated to an expression, S(v) the size in words of a serialized value v and @ for the sum of cost with the
following rules:

c®dco, ..., cp_1d = dc+co,...,CF Cpo1d
ct@c? = 2@t
1 1 2 2 _ 1, .2 1 2
QChs -+ -5 Cp1PDACE, -, CE 1P = §CpF+CyeesCpg T Co gD
where ¢, ¢! ¢? are cost terms and dco, ..., c,—1) is the cost term associated to a parallel vector. Such rules say

that the cost of replicate terms could be inside or outside a parallel vector cost term and when we have the cost
term of a full-evaluated superstep, this cost could also be inside or outside a parallel vector cost term. This is not
a problem because, using the BSP model of computation, at the end of a superstep, we take the maximal of the
costs. + and x are classical cost addition and multiplication using the EMZBSP parameters (g, I, r, G etc.).
We also noted |4 for the maximal cost of parallel vector cost terms with this rules: Hdco, ..., cpn,...,cp_10=1cp
if ¢, is the maximal cost of the component of the parallel vector cost term. We also noted EBf;Ol h; for the
maximal of sent /received words. The EM%BSP costs of the parallel primitives are given in Figure 6.1. The cost
of a program e is thus |§(C(e)) the maximal time for a processor to perform all the supersteps of the program.
Let us explain such formal rules with more details and more “readable notations”.

If the computational and I/O time for the evalution of the functional parameter e of mkpar is wqy; (it
is a replicate function and thus computed by all the processors) and if the sequential evaluation time of each

External Memory in Bulk-synchronous Parallel ML 59

C(mkpar ¢) ~ C(e) ®4C((f0)).....C((f (p—1)p ife—f

C(apply e1 e2) ~ C(e1) ®C(e2) ®LC((fo v0)),-- -, C((fp—1 vp—1))p
£ %(fo,...,fp 1)
ey — <’L)0,...,’Up,1>

C(put ¢) ~ (C(e) @ép;l)c((fo)y 7P§C((fp—1 7))p) & (1%_'%1 hi) x g @1
if e = (fo, .y foo1) _
if Vi, j € {0,. ..,p—l}(fz j) =l
and hi:GB(Z S(vp), Z_IOS(vf))

C(at e; e3) ~ H(Cler) ®Cle2)) @ (p—1) x S(vp) x g@l
€9 in

*

€1 = (V0. s Unyevny Up_1)

where

if

Fia. 6.1. Costs of our parallel operators

component of the parallel vector is w; + m; (computational time and I/O time) then, the parallel evaluation

time of the parallel vector is dwqy + wo + Mo, - - ., Wau + Wp—1 + Mp_19, i.€, it is a local computation.
Provided the two arguments of the parallel application are parallel vectors of values, and if w; (resp.

m;) is the computational time (vesp. 1/O time) of (f; v;) at processor i, the parallel evaluation time of

(apply (fo,..., fp—1) (Vo,. .., Vp—1)) i8 qway +wo+mo, . . ., Wai +wWp—1+myp_1p where wgy is the computational
and I/0 time to create the two parallel vectors.
The evaluation of put (fo, e fpm1) requ1res a full superstep. Each processor evaluates the p local terms

(fi 9), 0 < j < p leading to p? sending values v} (first phase of the superstep). If the value v] of processor i
is different from None, it is sent to processor j (communlcatlon phase of the superstep). Once all values have
been exchanged, a synchronization barrier occurs. So, the parallel evaluation time is:

(?}czwp(wz + mi + wai) B nlaic (hi X g)®1
where w; (resp. m;) is the computation time (resp. I/O time) of (f; j), h; is the number of words transmitted
(or received) by processor i and wgy is the computation time to create the parallel vector (fo,..., fp—1)-

The evaluation of a global projection (at (vo,...,v,—1) n) where n is an integer value also requires a full
superstep. First the processor n sends the value v, to all other processors and then a synchronization barrier
occurs. The parallel evaluation time is thus the time to send this data, the time for compute n and the maximal
local computation and I/0 time to create the parallel vector (vo, ..., vp—1).

6.2. Cost of I/O operators. Our I/O operators have naturally some computational and I/O costs.
We also made sure that arguments of the I/O operators be evaluated first (weak call-by-value strategy). As
explained in the EM%BSP model, each transfer from (resp. to) the local external memory to (resp. from) the
main memory has the cost [£] x G' + [&5] x O' (resp. [75] x G 4 [Zai55] x 09 for the global external
memory) for n words. Note that, in the case of an empty file, the value to be read would be an empty value
with an empty size. Thus the cost would just be the overhead. In this way, we have the cost of the “operating
system I/O calls”. Depending on whether the global file system is shared or not, the global I/O operators have
different costs and some barrier synchronizations are needed (Figure 6.2).

Local operators are asynchronous operators. They belong to the first phase of a superstep. In the case
of a distributed global file system, a global operator has the same cost as a local operator. But, in the case
of global shared disks, global operators are synchronous operators because they modify the global behaviour
of the EM2BSP computer. The two exceptions are glo output value and glo input value which are
asynchronous global operators because only one process really has to write this replicate value (which is thus the
same on each processor) or each processor read this value. The reading of this value could be done in any order.
Different channels are positioned at different places in the file but read the same value for the same position. For
example, opening a global file needs a synchronization because glo output value and glo input value

60 F. Gava

Operator Cost

loc_open_in (resp. out) | constant time ¢\ (resp. t!)

(loc_output value v) [%el(”)} x Gl + [“ZE%L“} ><Ol

loc_input_value [%el(v)] x Gl + [%] x O! where v is the readed value
loc close in (resp. out) | constant time ¢! (resp. t.)

loc delete constant time tld

(p—1)xg + t9. + | 1If global file system shared

) . .
glo open in n Otherwise

(p—1)xg + t9. + [1If global file system shared
t

glo _open_out Otherwise

’—szze *| X GY + |—s1ze(v +1-| x 09 If shared

[W %Gl + SZZSLBZH]1xO! Otherwise

(o
Lo
{ [2elol] s Go 4 22 5 09 If shared
{7
{7
{

(glo _output value v)

g
I—szze(v ~I « Gl I'S“[e)lj?rl"l x O Otherwise

and where v is the readed value

glo input value

(p—1)xg + t4. + [If global file system shared

glo close in 4 Otherwise

(p—1)xg + t9, + 1 1If global file system shared
t

glo close out Otherwise

(p—1)xg + t§ + | If global file system shared

glo delete th Otherwise

’—szze F)~|>< Gg+"5128 F)~|>< 09+ I—sue(F -| Gl_’_’—szngI;’)-' Ol+l
If global file system shared
(glo_copy F f) g Y

((siz[e)(lF)} < G+ [ngg S22 x O x 24size(F) x g+

Fia. 6.2. Formal costs of our 1/O operators

are asynchronous operators and a processor could never write in a global file when another reads in this file or
opens it in read mode. With this barrier of synchronization, all the processors open (resp. close) the file and
they could communicate to each other whether they managed to open (resp. close) that file without errors or
not. In this way, p — 1 booleans are sent on the network and a global exception will be raised if there are any
problems.

6.3. Formal Cost Composition. The costs (parallel evaluation time) above are context independents.
This is why our cost model is compositional. The compositional nature of this cost model relies on the absence
of nesting of parallel vectors (our static analysis enforces this condition [23]) and the fact of having two kinds
of file systems. A global I/O operator which accesses a global file and which could make some communications
and synchronizations never occurs locally. If the nesting was not forbidden, for a parallel vector v and a scan
function, the following expression (mkpar (fun ¢ — if i=0 then (scan e (+) v) else v)) would be a correct
one. The main problem is the meaning of this expression.

We said that (mkpar f) evaluates to a parallel vector such that processor ¢ holds value (f). In the case
of our example, this means that processor 0 should hold the value of (scan e (4) v). Since the semantics
of the language is confluent, it is possible to evaluate (scan e (+) v) locally. But in this case, processor 0
would not have all the needed values. We could choose that another processors broadcast there own values to
processor 0 and then processor 0 evaluates (scan e (4) v) locally. The execution time will not follow the formula

External Memory in Bulk-synchronous Parallel ML 61

given by the above cost model because the broadcasting of these values need additional communications and
a synchronization. Thus, we have additional costs which are context dependent. The cost of this expression
will then depend on its context. The cost model will no be compositional. This preliminary broadcast is not
needed if (scan e (4) v) could be not under a mkpar. Furthermore, the above solution would imply the use
of a scheduler for each processor to know, at every time, if the processor need the values of other processors or
not. Such constraints make the cost formulas very difficult to write.

As explained above, if the global file system is shared, only one process has to actually write a value to
a global file. In this way, if this value is different on each processor (case of a parallel vector of values) then
processors would asynchronously write different values on a shared file and we will not be able to reconstruct
this value. The confluence of the language would be lost. In the case of a distributed global file system, this
problem does not occur because each processor writes the value on a different file system. Programs would not
be portables because they would be architecture dependent. The compositional nature of the cost model is also
lost because the final results would depend on the EM%BSP architecture and not on the program. This is why
it is forbidden to write global values to keep safe the compositional nature of the cost model. Note that the
semantics forbids a parallel operator or a parallel persistent operator to be used inside a parallel vector and also
forbid a local persistent operator to be used outside a parallel vector.

7. Experiments.

7.1. Implementation. The glo channel and loc channel are abstract types and are implemented as
arrays of channels, one channel per disk. The current implementation used the thread facilities of OCaml to
write (or read) on the D-disks of the computers: we create D-threads which write (or read) on the D channels.
Each thread has a part of the data represented as a sequence of bytes and write it in parallel with other threads.
To do this, we need to serialize our values, i.e., transform our values into a sequence of bytes to be written on
a file and decoded back into a data structure. The module Marshal of OCaml provides this feature.

In the case of global shared disks, one of the processors is selected to really write the value, in our first
implementation, each of them in turn. To communicate booleans, we used the primitives of communication of
BSML. A total exchange of the booleans indicates if the processors has well opened/closed the file or not. The
global and the local file systems are in different directories that are parameters of the language. The global
directory is supposed to be mounted to access to the shared disks or is in different directories in the case of a
distributed global file system. Therefore, global operators accessed to the global directory and local operators
accessed to the local directories. In the case of shared disks without local disks, for example, using the library
in a sequential machine as a PC, local operators use the “pid” of the processor to distinguish the local files of
the different processors.

7.2. Example of functions using our library. Our example is the classical computation of the prefix
of a list. Here we make the hypothesis that the elements of the list are distributed on all the processes as files
which contain sub-parts of the initial list. Each file is cut out on sub-lists with % elements where s is
the size of an element. We now describe the algorithm. We first recal the sequential OCaml code part of our
algorithm:

let isnc—function None—true | —false

(x seq_scan_last:(a —a —a)—a —a list—o xa listx)
let seq_scan lastop el =
let rec seq scan’ last 1 accu = match | with
[|—(last,(List.rev accu))
| hd::tl—(let new last — (op last hd)
in seq scan’ new last tl (new last::accu))
in seq_scan’ el [|

where List.rev [vg;v1;...;0,] = [Upn;...;v1;00]. To compute the prefix of a list, we first locally compute the
prefix of the local lists located on the local files. For this, we used the following code:

(* seq_scan_list_io:(a¢ —a —a)—a —loc_name—loc_name—a *)
let seq_scan list io op e name_in name tmp=
let cha in =loc open in name in in

62 F. Gava

let cha tmp—loc open out name tmp in
let rec seq_scan’ last =
let block=(loc input value cha_in) in
if (isnc block) then last
else let block2—(seq scan last op last (noSome block)) in
loc_output value cha_tmp (snd block2);
seq_scan’ (fst block2) in
let res=seq_scan’ e in
loc close in cha_in;loc close out cha_tmp;res

The local file is opened as well as another temporary file. For all the sub-lists of the file, we compute the prefix
and the last elements of these prefixes. Then, we write these prefixes to the temporary file and we close the two
files. Second, we compute the parallel prefix of the last elements of each prefix of that file. Third, we add those
values to the temporary prefixes.

(* add_last:(a0 —a —a)—a —loc_name—loc_name—unit)

let add_last op e name tmp name out =

let cha tmp—loc open in name_ tmp in

let cha out—loc open out name out in

let rec seq add () —

let block = (loc_input value cha_tmp) in

if (isnc block) then () else
loc_output value cha_out(List.map (op e)(noSome block));
seq_add () in

seq_add ();loc close in cha tmp;

loc_close_ou? cha_aw; loc delete name_tmp

The operating of this function is similar to seq scan list io and the full function is thus the composition of
the above functions.

(xscan: (o —a —a)—a —loc_name—loc_name—loc_name—unit pars)
let scan list direct io op e name in name tmp name out —
let lasts—parfun (seq scan list io op e name in)
(replicate name tmp) in
let tmp_values=scan _direct op lasts in
parfun3 (add last op) tmp _values
(replicate name tmp) (replicate name out)

For example of the use of global files, we give the code of the distribution of the sub-lists to the processors: for
each block of the initial list, one processor writes it to its local file.

(x distribut:glo_name—loc_name—unit *)
let distribut name in name out =
let cha_in=glo open in name_in in
let cha_outs=parfun loc_open_in (replicate name_out) in
let rec distri m =
let block—glo input wvalue cha in in

if (isnc block) then () else
(apply2 (mkpar (fun pid—if pid=m then loc_output value
else (fun a b—())))
cha outs (replicate (noSome block)));
distri ((m+1) mod (bsp_p())) in
distri O;parfun loc_ close out cha outs;glo close in cha_in

We have the following cost formula for the I/O scan-list version using a direct scan algorithm:
(p—1)xsxg+dxNx (B xG +0")+2xrxNx(D'xB)Y+T"+1

if we read sub-lists of the files by block of size D! B! where s denotes the size in words of a element, N is the

63

External Memory in Bulk-synchronous Parallel ML

Computation of the prefix
0.25 T T T T T T T
BSML —+—
predicted BSML < ¥
BSML-I0 -~ i
predicted BSML-IO -8 I)Zf
02 « b ¥
g KK WAV
- AT
HHK [V
HoK cz +
e
0.15 - A i
* |
o gl
M 7\/f 3!
! 7
0.1 X
X f\
* /
E@:@ﬁpmjj | ﬂ/\]j
0.05 | R 4
gl
ﬁgx W
S
0 1 1 1 1 1 1 1
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Number of floats
Computation of the prefix
700 T T T T T
BSML —+—
predicted BSML -~
+ BSML-IO ------
600 | predicted BSML-IO -5 |
|
500 - i
T
400 |- I E
”! \\ ““\
| ‘\"‘
300 /+ \ i
/
//
L \ kA i
200 \ /\/
100 4
| . 4
) * KRR A EREREEEERHE BB EEREEESED
0 et KRR A AR AU I P ﬁﬁ@fﬁlﬁ@?@ﬁﬁﬁﬁﬁ; ,,,,,, pSiSivivioiviv, o XX H AN L
le+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06
Number of floats

Fia. 7.1. Benchmarks of prefix computations

maximal length of a file on a process and where T the time to open and close the files. We have the time to
read the local files, write the temporary results of the temporary files, compute the local scan, read the local

tempory files and write the final result in the final files. The cost formula of the distribution is:

1x09)+Nx (B! xG +0") +2x1+T?

D!'B!
If shared global file system

D9B9

D'B!
prx([Dq]xG9+(

px Nx (B'xG'+09)+ N x (B xG' + 0"+ T? Otherwise
where T? the time to open and close the files. We have the time to read the data on the global file (read by

block of size D'B!) and to write them on the local files. We also have two barriers of synchronization due to
glo open in and glo close in. The cost formula for a global distributed file system is simpler than this

64 F. Gava

with shared disks but having a distributed file system makes the hypothesis that the global files are replicated
on all the processors.

7.3. Benchmarks. Preliminary experiments have been done on a cluster with 6 Pentium IV nodes inter-
connected with a Gigabit Ethernet network to show a performance comparison between a BSP algorithm using
only the BSMLIib and the corresponding EMZBSP algorithm using our library. The BSP algorithm reads the
data from a global file and keeps them in the main memories. The EM%BSP algorithm distributed the data as
in the above section. Figure 7.1 summarizes the timings. These programs were run 100 times and the average
was taken. Only the local computation has been taken into account because the cluster do not have a true
shared disk but a simulated shared disk using NFS. Therefore, the distribution of the data is very slow: G9
depends on g and the distribution of the two different algorithms takes approximately the same time.

The cluster has the following EM%BSP parameters:

p = 6 nodes D! = 1 bytes Dy = 1 bytes
r = 469 Mflops/s B' = 4096 bytes B9 = 4096 bytes
g = 28 flops G = 12 flops G9 = 3333 flops
I = 22751 flops O = 100 flops 09 = 120 flops

using the MPI implementation of the BSMLIib and with 256 Mbytes of main memory per node. The BSP
parameters have been obtained by using the bsmlprobe described in [5] and the I/O parameters have been
obtained by using benchmarks as those of the Figure 4.2. The predicted performances using those parameters
are also given. We have used floats as elements with e = 0, op = + and we have approximately 140 floats in
one block and thus the lists are cut out on sub-lists with 140 elements.

For small lists and thus for a small number of data the overhead for the external memory mapping makes
the BSML program outperform the EM2-BSML one. However, once the main memory is all utilized, the
performance of the BSML program degenerates (cost of the paging mechanism to have a virtual memory). The
EMZ2-BSML program continues “smoothly” and clearly outperforms the BSML code. Note that there is a step
between the predictions of the performances and the true performances. This is due to the garbage collector of
the OCaml language. In the ML family, the abstract machine manages the resources and the memory, unlike in
C or C++ where the programmer has to allocate and de-allocate the data of the memory. Using I/O operators
and thus a less naive algorithm achieved a scalability improvement for a big number of data.

8. Related Work. With few exceptions, previous authors focused on a uniprocessor EM model. The
Parallel Disk Model (PDM) introduced by Vitter and Shriver [54] is used to model a two-level memory hierarchy
consisting of D parallel disks connected to v > 1 processors via a shared memory or a network. The PDM
cost measure is the number of I/O operations required by an algorithm where items can be transferred between
internal memory and disks in a single I/O operation. While the PDM captures computation and I/O costs,
it is designed for a specific type of communication network where a communication operation is expected to
take a single unit of time, comparable to a single CPU instruction. BSP and similar parallel models capture
communication and computational costs for a more general class of interconnection networks, but do not capture
I/0 costs. [8] presents an out-of-core parallel algorithm for inversions of big matrices. The algorithm only used
broadcasts as primitive of communication with a cost as the BSP cost of a direct broadcast. The I/O costs are
similar to ours: linear cost (and not constant cost) to read/write from/to the parallel disks.

Some other parallel functional languages like SAC [25], Eden [31] or GpH [49] offer some I/O features but
without any cost model [30]. Parallel EM algorithms need to be carefully hand-crafted to work optimally and
correctly in EM environments. I/O operators in SAC have been written for shared disks without formal seman-
tics and the programmer is responsible for underterministic results of such operations. In parallel extensions
of the Haskell language (web page http://haskell.org) like Eden and Gph, the safety and the confluence of
I/0O operators are ensured by the use of monads [56] and local external memories. Using shared disks is not
specified in the semantics of these languages. These parallel languages also authorize processor to exchanged
channels and give the possibility to read/write to/from them. It increases the expressiveness of the languages
but decreases the cost prediction of the programs. Too many communications are hidden. It also makes the
semantics difficult to write [3]. [24] presents a dynamic semantics of a mini functional language with a call-
by-value strategy but 1/O operators do not work on files. The semantics used a unique input entry (standard
input) and a unique output. [18] develops a language for reasoning about concurrent pure functional I/O. They
prove that under certain conditions the evaluation of this language is deterministic. But the files are only local
files and no formal cost model is given.

External Memory in Bulk-synchronous Parallel ML 65

In [12] the authors focused on optimization of some parallel EM sort algorithms using cache performances
and the several layers of memories of the parallel machines. But they used low level languages and the large
number of parameters in this model introduce a hardly tractable complexity. In [15] the authors have imple-
mented some I/0O operations to test their models but in a low level language and low level data. In the same
manuner, [26] describes an I/0 library of an EM extension of its cost model which is a special case of the BSP
model but also for a low level language. To our knowledge, our library is the first for an extension of the BSP
model with /0 features called EM%BSP and for a parallel functional language with a formal semantics and
a formal cost model. This cost model and our library could be used for large and parallel Data Base as in [2]
where the authors used the BSP cost model to balance the communications and the local computations.

9. Conclusions and Future Works. The Bulk-Synchronous Parallel ML allows direct mode BSP pro-
gramming and the current implementation of BSML is the BSMLIib library. But for some applications where
the size of the problem is very significant, external memories are needed. In this paper we have presented an
external memory extension of BSP model named EMZBSP and a way to extend the BSMLIib for I/O accesses in
these external memories. The cost model of these new primitives and a formal semantics as persistent features
have been investigated and some benchmarks have been done. This library is the follow-up to our work on
imperative features of our functional data-parallel language [22].

There are several possible directions for future works. The first direction is the implementation of persistent
primitives using special parallel I/O libraries as described in [29]. For example, low level libraries for shared
RAID disks could be used for a fault tolerance implementation of the global I/O primitives.

A complementary direction is the implementation of BSP algorithms [13, 38, 45] and their transformations
into EM%BSP algorithms as described in [16]. We will design a new library of classical programs as in the
BSMLIib library to be used with large computational problems. We also have extended the model to include
shared disks. To validate the cost model of these programs, we need a benchmark suite in order to automatically
determine the EM parameters. This is ongoing work. We are also working on a result of simulation of a shared
external memory as those of the main memory in the BS-PRAM of [48].

A semantic investigation of this framework is another direction of research. To ensure safety and a com-
positional cost model which allow cost analysis of the programs, two kinds of persistent primitives are needed,
global and local ones. Such operators need occur in their context (local or global) and not in another one. We
are currently working on a flow analysis [43] of BSML to avoid this problem statically and to forbid nesting of
parallel vectors. Static cost analysis as in [51] is also another direction of research.

Acknowledgments The author wishes to thanks the anonymous referees of the Practical Aspects of High-
Level Parallel Programming workshop (PAPP 2004), Frédéric Loulergue, Anne Benoifj and Myztzu Modard
for their comments.

REFERENCES

[1] The Coq Proof Assistant (version 8.0). Web pages at coq.inria.fr, 2004.

[2] M. BamuA AND M. EXBRAYAT, Pipelining a Skew-Insensitive Parallel Join Algorithm, Parallel Processing Letters, 13 (2003),
pp. 317 328.

[3] J. BeErTHOLD AND R. LOOGEN, Analysing dynamic channels for topology skeletons in eden, Tech. Rep. 0408, Institut fiir
Informatik, Liibeck, September 2004. (IFL’04 workshop), C. Grelck and F. Huch eds.

[4] Y. BERTOT AND P. CASTERAN, Interactive Theorem Proving and Program Development, Springer, 2004.

[5] R. BisseLinG, Parallel Scientific Computation. A structured approach using BSP and MPI, Oxford University Press, 2004.

[6] G.-H. Bororoa anp H. KucHen, Efficient high-level parallel programming, Theoretical Computer Science, 196 (1998),
pp. 71-107.

[7] E. Caron, O. CozertE, D. LazURE, AND G. UtrarD, Virtual memory management in data parallel applications, in HPCN
Europe, 1999, pp. 1107-1116.

[8] E. Caron anp G. Utarp, On the performance of parallel factorization of out-of-core matrices, Parallel Computing, 30
(2004), pp. 357-375.

[9] Y.-J. CuianGg, M. T. GoobricH, E. F. GrRove, D. E. VENGROFF, AND J. S. VITTER, Ezternal-memory Graphs Algorithms,
in ACM-SIAM Symp on Discrete Algorithms, 1995, pp. 139 149.

[10] J. CrinckeEMAILLIE, B. ELSNER, G. LoNsDALE, S. MELICIANI, S. VviacHouTsis, F. pE BRUYNE, AND M. HOLZNER,
Performance issues of the parallel pam-crash code, Supercomputer Applications and High Performance Computing, 11
(1997), pp. 3-11.

[11] A. Crauser, P. FErraGINA, K. MEHLHORN, U. MEYER, AND E. Ramos, Randomized External Memory Algorithms for
Geometric Problems, in ACM Annual Conf on Computational Geometry, 1998, pp. 259-268.

[12] C. CEriN anD J. Hal, eds., Parallel 1/0 for Cluster Computing (Hardback), Kojan Page Science, hermes spenton ed., 2002.

[13] F. DEHNE, Special issue on coarse-grained parallel algorithms, Algorithmica, 14 (1999), pp. 173-421.

66

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

23]
[24]
[25]
[26]
27]

28]
[29]

30]
31]

32]

[33]

[34]
[35]

[36]
[37]
[38]
39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]

[48]
[49]

[50]

F. Gava

F. DEuNeE, W. DiTTRICH, AND D. HuTCHINSON, Efficient external memory algorithms by simulating coarse-grained parallel
algorithms, Algorithmica, 36 (2003), pp. 97 122.

F. Deane, W. DirTrIicH, D. HUTCHINSON, AND A. MAHESHWARI, Parallel virtual memory, in 10th Annual ACM-STAM
Symposium on Discrete Algorithms, Baltimore, MD, 1999, pp. 889 890.

, Bulk synchronous parallel algorithms for the external memory model, Theory of Computing Systems, 35 (2003),
pp- 567 598.

W. DirrricH AND D. HutcHINsON, Blocking in Parallel Multisearch Problems, Theory of Computing Systems, 34 (2001),
pp- 145 189.

M. DowsE AND A. BUTTERFIELD, A language for reasoning about concurrent functional 1/0, Tech. Rep. 0408, Institut fiir
Informatik, Liibeck, September 2004. (IFL’04 workshop), C. Grelck and F. Huch eds.

P. FERRAGINA AND F. Luccio, String search in coarse-grained parallel computers, Algorithmica, 24 (1999), pp. 177 194.

F. Gava, Formal Proofs of Functional BSP Programs, Parallel Processing Letters, 13 (2003), pp. 365-376.

, Parallel 1/0 in Bulk Synchronous Parallel ML, in The International Conference on Computational Science (ICCS
2004), Part 11, M. Bubak, D. van Albada, P. Sloot, and J. Dongarra, eds., LNCS, Springer Verlag, 2004, pp. 339-346.

F. Gava anp F. LOULERGUE, Semantics of a Functional Bulk Synchronous Parallel Language with Imperative Features, in
Parallel Computing: Software Technology, Algorithms, Architectures and Applications, Proceeding of the 10th ParCo
Conference, G. Joubert, W. Nagel, F. Peters, and W. Walter, eds., Dresden, 2004, North Holland/Elsevier, pp. 95 102.

, A Static Analysis for Bulk Synchronous Parallel ML to Avoid Parallel Nesting, Future Generation Computer Systems,
21 (2005), pp. 665-671.

A. Gorpon AND R. L. CroOLE, A sound metalogical semantics for input/output effects, Mathematical Structures in Computer
Science, 9 (1999), pp. 125-188.

C. GRELCK AND S.-B. ScHowuz, Classes and objects as basis for 1/0 in SAC, in Proceedings of IFL’95, Gothenburg, Sweden,
1995, pp. 30-44.

J. GusTteEDT, Towards realistic implementations of external memory algorithms using a coarse grained paradigm, Tech. Rep.
4719, INRIA, 2003.

G. Hains, Parallel functional languages should be strict, in Workshop on General Purpose Parallel Computing. World Com-

puter Congress, B. Perhson and 1. Simon, eds., vol. 1, IFIP, North-Holland, September 1994, pp. 527 532.

HiLL, W. McCoLL, AND AL., BSPlib: The BSP Programming Library, Parallel Computing, 24 (1998), pp. 1947-1980.

H. Jin, T. Corres, aNnp R. Buvyva, eds., High Performance Mass Storage and Parallel 1/0, IEEE Press, wiley-
interscience ed., 2002.

P. T. K. HAMMOND AND ALL, Comparing parallel functional languages: Programming and performance, Higher-order and
Symbolic Computation, 15 (2003).

U. Krusik, Y. ORTEGA, AND R. PENA, Implementing EDEN: Dreams becomes reality, in Proceedings of IF1’98, K. Ham-
mond, T. Davie, and C. Clack, eds., vol. 1595 of LNCS, Springer-Verlag, 1999, pp. 103 119.

M. V. KreveLDp, J. NieverGeLT, T. Roos, aND P. W. (EDpITOR), Algorithms Foundations of Geographics Information
Systems, in International Symposium on High Performance Computing, no. 1340 in Lecture Notes in Computer Science,
Springer, 1997.

X. Leroy, D. Dorigez, J. GARRIGUE, D. REMY, AND J. VouiLLoN, The Objective Caml System release 3.08, 2004. web
pages at www.ocaml.org.

X. Leroy aND M. Mauny, Dynamics in ML, Journal of Functional Programming, 3 (1993), pp. 431 463.

Z. Li, P. H. MiuLs, anp J. H. Rewr, Models and resource metrics for parallel and distributed computation, Parallel
Algorithms and Applications, 9 (1995), pp. 35-59.

W. B. Licon anDp R. B. Ross, Beowulf Cluster Computing with Linuz, T. Sterling, mit press ed., November 2001, ch. PVFS:
Parallel Virtual File System, pp. 391-430.

F. LouLeErGUE, G. Hains, anp C. Foisy, A Calculus of Functional BSP Programs, Science of Computer Programming, 37
(2000), pp. 253-277.

W. F. McCoLL, Scalability, portability and predictability: The BSP approach to parallel programming, Future Generation
Computer Systems, 12 (1996), pp. 265-272.

R. MILNER, A theory of type polymorphism in programming, Journal of Computer and System Sciences, 17 (1978), pp. 348—
375.

K. MunaGaLA AND A. RANADE, I/O Complezity of Graph Algorithms, in ACM-SIAM Symposium on Discrete Algorithms,

1999, pp. 687 694.

. Okasaki, Purely Functional Data-Structures, Cambridge University Press, 1998.

PeLaGgarTi, Structured Development of Parallel Programs, Taylor & Francis, 1998.

PorTiER AND V. SiMONET, Information Flow Inference for ML, ACM Transactions on Programming Languages and

Systems, 25 (2003), pp. 117-158.
M. D. Rosario aAND A. CHOUDHARY, High performance I/O for massively parallel computers: Problems and prospects,
TIEEE Computer, 27 (1994), pp. 59-68.

J. F. SiBEYN aAND M. KAUuFMANN, BSP-Like External-Memory Computation, in Proc. 3rd Italian Conference on Algorithms
and Complexity, vol. 1203 of LNCS, Springer-Verlag, 1997, pp. 229-240.

D. B. SkirLLicorn, J. M. D. HiLL, anp W. F. McCoLL, Questions and Answers about BSP, Scientific Programming, 6
(1997), pp. 249-274.

R. THAKUR, E. Lusk, anp W. Grorpp, I/O characterization of a portable astrophysics application on the ibm sp and intel
paragon, Tech. Rep. MCS-P534-0895, Argonne National Laboratory, October 1995.

A. TiskiN, The bulk-synchronous parallel random access machine, Theoretical Computer Science, 196 (1998), pp. 109-130.

P. TRINDER AND ALL., GPH: An Architecture-independent Functional Language, IEEE transactions on Software Engineerig,
(1999).

L. G. VarianT, A bridging model for parallel computation, Communications of the ACM, 33 (1990), p. 103.

~

cizle

=

External Memory in Bulk-synchronous Parallel ML 67

[51] P. B. VasconcerLos anp K. HammoOND, Inferring cost equations for recursive, polymorphic and higher-order functional
programs, in IFL’02, LNCS, Springer Verlag, 2003, pp. 110 125.
[52] D. E. VENGROFF AND J. S. VITTER, Supporting 1/O-efficient Scientific Computation in TPIE, in IEEE Symposium on
Parallel and Distributed Computing, 1995.
[53] J. ViTtTER, Ezternal memory algorithms, in ACM Symp. Principles of Database Systems, 1998, pp. 119-128.
. ViTTER AND E. SHRIVER, Algorithms for parallel memory, two -level memories, Algorithmica, , PP .
54] J. V E. S Algorith llel level jes, Algorithmica, 12 (1994 110 147
. S. VITTER, FEzternal memory algorithms and data structures: Dealing with massive data, omputing Surveys,
55] J. S.V E ! lgorith d d Deali ith ive d ACM C ing S 33
(2001), pp. 209 271.
. ADLER, Comprehending monads, Mathematical Structures in Computer Science, , PP- — .
56] P. W. C hendi ds, Math ical S in C Sci 2 (1992 461-493

68 F. Gava

Appendix A. Proof of the confluence.

LemMMA A1 Ife/{f;} e /{f1} and e/{f;} > e2/{f2} then e'=e® and {f}}={f2}. Proof. By case of
the rules of figures 5.1, 5.3 and by construction of rules (1), (3) and (5). O

Lemma A2 If {FY/e/{f} = {F' Y/ /{S'} and {F}/e/{f} = {F2}/e*/{f?} then ¢! = &, {f} =
{1} =1{f?} and {F'} = {F*}.
Proof. By case of the rules of figures 5.2, 5.3 and by construction of rules (2), (4) and (6). O

LEMMA A.3. If e=Tj(e1) then A ez as e = I'(e2); If e=T(e1) then A ez as e = Tj(ez). Proof. By
definition, the hole [] is inside a parallel vector in the case of a I'{ context and outside a parallel vector in the
other case. By construction, contexts excluded each other. O

DEFINITION A.4. We noted = the reduction — only using the rule (8) and = the reduction — only using
X (3
the rule (7).

Lovva A5, If {F}/Ti(e)/{f} = {F HTie)/AS} and {F}/Ti(e)/{f} = {F?} /Ti(e*)/{f?} then

et =e? {f1} ={f?} and {F} = {F'} = {7}
Proof. By application of lemma A.1 and by definition of rule (7). O

Leania A.6. I {F}/T()/{F} = (FHIE)/AL} and {FYT(/{F} = (F2}/ T()/{f*} then el = 2,
(Y= = {12} and {F'} = {F*}.
Proof. By application of lemma A.2 and by definition of rule (8). O

DEFINITION A.7. We noted {F}/e/{f} = {F}/e1/{f'} the reduction {F}/e/{f} :} {F}/e1/{f'} Vi and

where A ea N Ff as e; = Fli(eg) and where ey is not a value.

Levmva A8, If Tier) = IY(e2) and {F}/Ti(er)/{f} = {F}/Tiles)/{f?} and {F}/T](e2)/{f} e
{F}/TI(ea)/{f*} then 3 T"] AT’} as Ti(es) = I'i(ea) and Ti(es) = T'j(er) where {F}/T"(e*)/{f*} =
{F}/T" (e5)/{f°} and {F}/T"}(e1)/{f*} = {7/ I"}(es)/{f%} and where T'{(e5) = T"}(eq) and {f°} = {f°}.

Proof. Tt is easy to see that a = reduction only modify an expression of the i*" component of a parallel vector
3

and the 4'" file system. Such reduction is determinist by lemma A.5 and thus we have that if two reductions
appear in two different components of a parallel vector then such reductions could be done in any order and
give the same final result. 0

Lovva A9 If {F}/e/{f} = {F} e /{S'} and {F}/e/{f} = {F}/ea/{[?} then ex = s and {f'} =
{2}
Proof. By induction on the two reduction :l> and using lemma A.8 to “re-stick” together different paths of the
derivations: parallel reductions could be done in any order. 0

DEFINITION A.10. = == U ?
X

Lemva AL If {F}/e/{f} = {F"} o /{f'} and {F}/e/{f} = {F?}/v2/{f?} then vy = v, {f'} =
{f*} and {F'} = {7?}.
Proof. By induction of the derivation and by using lemma A.3: for the two inductive cases, we have the
two following cases: if {F'}/e'/{f'} = {F"}/e"/{f'} then the reduction is deterministic by lemma A.6 else

{F'}/e'/{f'} = {F'}/e"/{f"} and then the reduction is also deterministic by lemma A.9. O

Lemma A.12. If {F}/e/{f} = {F}Yer/{f'} then {F}/ei/{f'} :} {F}/ea/{f?} and where es is a value

External Memory in Bulk-synchronous Parallel ML 69

or {F}/ea/{f*} = {F'}/ es/{f?}.

Proof. By induction and using lemma A.3 for each steps of the derivation. O

LemMA A.13. if {F}Y/e/{f} = {F'}/v/{f'} then {F}/e/{f} = {F'}/v/{f'}. Proof. By induction of
the derivation. If the rule (8) is used, we are in the case of a global reduction and then we have a = reduction.
Else if the rule (7) is used, we are in the case of a local reduction and we have by lemma A.12 that we have a
= reduction. O

THEOREM A.14. confluence of the semantics
Proof. it {F}/e/{f} = {F"}/vr/{f*} and {F}/e/{f} = {F*}/v2/{f?} then {F}/e/{f} = {F'} /v /{f'} and
{F}Y/e/{f} = {F?}/va/{f?} by lemma A.13 and then v; = va, {f'} = {f?} and {F'} = {F?} by lemma A.11.
d

Edited by: Frédéric Loulergue
Received: June 3, 2004
Accepted: June 5, 2005

