
S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 4, pp. 71�81. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSPETRI NETS AS EXECUTABLE SPECIFICATIONS OF HIGH-LEVEL TIMED PARALLELSYSTEMSFRANCK POMMEREAU∗Abstra
t. We propose to use high-level Petri nets as a model for the semanti
s of high-level parallel systems. This modelis known to be useful for the purpose of veri�
ation and we show that it is also exe
utable in a parallel way. Exe
uting a Petrinet is not di�
ult in general but more 
ompli
ated in a timed 
ontext, whi
h makes ne
essary to syn
hronise the internal time ofthe Petri net with the real time of its environment. Another problem is to relate the exe
ution of a Petri net, whi
h has its ownsemanti
s, to that of its environment; i. e., to properly handle input/output.This paper presents a parallel algorithm to exe
ute Petri nets with time, enfor
ing the even progression of internal time withrespe
t to that of the real time and allowing the ex
hange of information with the environment. We de�ne a 
lass of Petri netssuitable for a parallel exe
ution ma
hine whi
h preserves the step sequen
e semanti
s of the nets and ensures time 
onsistentexe
utions while taking into a

ount the soli
itation of its environment. The question of the e�
ient veri�
ation of su
h nets hasbeen addressed in a separate paper [14℄, the present one is more fo
used on the pra
ti
al aspe
ts involved in the exe
ution of somodelled systems.Key words. Petri nets, parallelism, real-time, exe
ution ma
hines.1. Introdu
tion. Petri nets are widely used as a model of 
on
urren
y, whi
h allows to represent theo

urren
e of independent events. They 
an be as well a model of parallelism, where the simultaneity of theevents is more important. Indeed, when we 
onsider their step sequen
e semanti
s, an exe
ution is representedby a sequen
e of steps, ea
h of them being the simultaneous o

urren
es of some transitions. Within thissemanti
s, the exe
ution of a step may be repla
ed by that of any of its linearisation (total or partial). This 
anbe viewed as possible exe
utions of the same program on parallel ma
hines with di�erent numbers of pro
essors.In this 
ontext, the 
hoi
e of exe
uting one step or another be
omes a question of s
heduling (this is usuallysolved non-deterministi
ally by the Petri net semanti
s). Petri nets are thus suitable for spe
ifying and verifyingsystems in models for whi
h the portability is an important 
on
ern.Our main goal in this paper is to show that Petri nets are also suitable for the exe
ution of the modelledsystems. We thus 
onsider high-level Petri nets for modelling high-level parallel systems, with the aim to allowboth veri�
ation and exe
ution of the spe
i�
ation. The question of the e�
ient veri�
ation of su
h nets hasbeen addressed in a separate paper [14℄, the present one is more fo
used on the pra
ti
al aspe
ts involved inthe exe
ution of so modelled systems.There are at least two reasons for having exe
utable spe
i�
ations. First, it allows for prototyping andtesting at early stage of the design: there may be no need to have an implementation in order to see howthe program behaves when its model 
an already be exe
uted. Se
ond, if the exe
ution of the spe
i�
a-tion 
an be made (or happens to be) e�
ient enough, there is no need to 
onsider any further implemen-tation. This 
ompletely saves from the risk of introdu
ing errors on the way from spe
i�
ation to imple-mentation: the veri�ed model and the exe
uted program are exa
tly the same obje
t. It may be obje
tedthat Petri nets are suitable for modelling but really not for programming. This is true. However, Petrinets like those used in this paper are widely used has a semanti
al domain for parallel programming lan-guages or pro
ess algebra with 
on
urrent semanti
s. For instan
e, the semanti
s of the parallel languageB(PN)2 [3℄ is de�ned in terms of Petri nets similar to those used in this paper. It features most usuallyexpe
ted high-level 
onstru
ts for programming languages, in parti
ular: nested de
laration of typed vari-ables and FIFO 
ommuni
ation 
hannels; 
ommuni
ation through shared variables or 
hannels; atomi
 a
-tions; 
ontrol �ow 
onstru
ts in
luding parallelism; pro
edures with parameters passed by value or by referen
eand allowing re
ursive and parallel 
alls [10℄; ex
eptions whose propagation 
an 
arry arbitrary value [11℄;or Ada-like tasking with suspend/resume or abort 
apability [12℄. Moreover, it 
an be easily extended withreal-time 
onstru
ts using the same approa
h to timed system as presented in the following, see [13, � 7.3℄.Another example is the Causal Time Cal
ulus de�ned in [14℄ whi
h is a pro
ess algebra with timing fea-tures having a step based semanti
s. Both these formalisms 
ould be applied to massively parallel problems,allowing to leave Petri nets in the ba
kground while working with mu
h more pleasant and 
onvenient nota-tions.
∗LACL, université Paris 12 � 61, avenue du général de Gaulle � 94010 Créteil, Fran
e �pommereau�univ-paris12.fr71



72 F. PommereauExe
uting a Petri net is not di�
ult when we 
onsider it alone, i. e., in a 
losed world. But as soon as thenet is embedded in an environment, the question be
omes more 
ompli
ated. The �rst problem 
omes when thenet is timed: we have to ensure that its time referen
e mat
hes that of the environment. The se
ond problem isto allow an ex
hange of information between the net and its environment. Both these questions are addressedin this paper.The 
ausal time approa
h is a way to introdu
e timing features in an otherwise untimed model [7℄, inparti
ular Petri nets. The idea behind 
ausal time is to use the expressive power of the model in order to givean expli
it representation of 
lo
ks in the modelled systems. In the 
ase of high-level Petri nets, it is possible tointrodu
e 
ounters and a distinguished ti
k transition whose role is to simultaneously in
rement them. These
ounters thus be
ome the timing referen
e and 
an be used as 
lo
k-wat
hes by the pro
esses as in [15, 6, 13, 14℄.It was shown in [6, 14℄ that the 
ausal time approa
h is highly relevant sin
e it is simple to put into pra
ti
e andallows for e�
ient veri�
ation through model 
he
king. This paper shows that this approa
h is also relevantwhen 
on
rete exe
ution are 
onsidered. For the purpose of veri�
ation, the hypothesis of the 
losed world isassumed: the Petri net whi
h models a system is 
onsidered alone, without any referen
e to something externalto it. The situation di�ers if we 
onsider the exe
ution of su
h a Petri net in an environment whi
h has itsown time referen
e. Indeed, the ti
k transition of a Petri net may 
ausally depend on the progression of othertransitions in the net, whi
h results in the so 
alled deadline paradox [7℄: �ti
k is disabled until the systemprogresses�. In a 
losed world, this statement is logi
ally equivalent to �the system is for
ed to progress beforethe next ti
k�, whi
h solves the deadline paradox. But, in the 
ase of an open world, one may wonder how evenis the progression of the 
ausal time with respe
t to that of the real time, whi
h is the time imposed by theenvironment.Moreover, if the Petri net has to 
ommuni
ate with its environment, one may ask how the net 
an re
eiveinformation from the environment and send ba
k appropriate responses. Produ
ing output is rather simplesin
e the net is not disturbed; but reading input (i. e., 
hanging the behaviour of the net in rea
tion to the
hanges in the environment) is more di�
ult and may not be always possible.In this paper, we de�ne a parallel exe
ution ma
hine whose role is to run a Petri net with a ti
k transitionin su
h a way that the ti
ks o

ur evenly with respe
t to the real time. We show that this 
an be ensuredunder reasonable assumptions about the Petri net. The other role of the ma
hine is to allow the 
ommuni
ationbetween the Petri net and the environment and we will identify favourable situations, very easy to obtain inpra
ti
e, in whi
h the rea
tion to a message is ensured within a short delay. An important property of ourexe
ution ma
hine will be that it will preserve the step sequen
e semanti
s of the Petri net: this ma
hine 
anbe seen as an implementation of the Petri net exe
ution rule in
luding additional 
onstraints related to theenvironment (real time and 
ommuni
ation).In the perspe
tive of dire
t exe
ution of the modelled systems, it be
omes natural to provide parallelexe
utions of the model of a parallel system. So, our goal in proposing a parallel exe
ution ma
hine is morerelated to a question of 
onsisten
y than to that of speedup. The question of the speed of our exe
ution ma
hinewill thus be intentionally left out of the topi
s of this paper. However, our de�nitions will leave enough freespa
e to investigate in this dire
tion and we will 
ome ba
k to this dis
ussion at the end of the paper.1.1. Exe
ution ma
hines. De�ning an exe
ution ma
hine is the usual way to show that an abstra
tmodel, de�ned under assumptions whi
h may be 
onsidered as unrealisti
, 
an be used for 
on
rete exe
utions.For instan
e, the family of syn
hronous languages (e. g., Esterel [2℄), relies on the syn
hronous hypothesis whi
hstates that the rea
tion to a signal is instantaneous. This leads to 
onsider an in�nitely fast 
omputer in theabstra
t model. Several exe
ution ma
hines for these languages have been de�ned (see, e. g., [1, 5℄); in all
ases, the solution to remove the syn
hronous hypothesis makes use of a 
ompilation stage whi
h produ
es�nite automata in whi
h a whole 
hain of a
tion/rea
tion is 
ollapsed on a single transition. This allows a
orre
t implementation of the instantaneous rea
tion assuming a 
omputer fast enough with respe
t to thedelays that the environment 
an observe. However, this breaks the 
ausality relation between events andleads to reje
t some systems whi
h may be 
onsidered on the abstra
t level but are 
on
retely impossible toimplement.Similar 
on
erns arise in the 
ase of Petri nets with 
ausal time; in parti
ular, we have to reje
t systemswhi
h allow runs of unbounded length between two 
onse
utive ti
ks. (Su
h behaviours are often 
alled Zenoruns.) Con
erning the question of rea
ting to the soli
itation of the environment, it is easy to introdu
e spe
i�

onstru
ts in a Petri net in order to ensure that a signal will be always taken into a

ount very e�
iently,



Petri Nets As Exe
utable Spe
i�
ations 73provided that the environment is not �too demanding�. This is to say that we will need a 
omputer fast enoughwith respe
t to its environment, exa
tly like for syn
hronous languages.1.2. Organisation of the paper. The sequel is organised as follows. The se
tion 2 introdu
es the basi
notions related to Petri nets and their semanti
s. The se
tion 3 then de�nes the 
lass of Petri nets we areinterested in and gives the assumptions whi
h must be 
onsidered in order to allow their real-time exe
ution.The se
tion 4 shows how su
h nets 
an be 
ompiled into a form suitable for their exe
ution. Then, the se
tion 5de�nes the exe
ution ma
hine itself. We �nally 
on
lude in the se
tion 6, introdu
ing dis
ussions about thee�
ien
y of an implementation.2. Basi
 de�nitions about Petri nets. This se
tion brie�y introdu
es the 
lass of Petri nets and therelated notions that will be used in the following.2.1. Multisets. A multiset over a set X is a fun
tion µ : X → N. We denote by mult(X) the set of all�nite multisets µ over X , i. e., su
h that ∑
x∈X µ(x) <∞. We write µ ≤ µ′ if the domain X of µ is in
luded inthat of µ′, and if µ(x) ≤ µ′(x), for all x ∈ X . An element x ∈ X belongs to µ, denoted x ∈ µ, if µ(x) > 0. Thesum and di�eren
e of multisets, and the multipli
ation by a non-negative integer are respe
tively denoted by +,

− and ∗ (the di�eren
e is de�ned only when the se
ond argument is smaller or equal to the �rst one). A subsetof X may be treated as a multiset over X , by identifying it with its 
hara
teristi
 fun
tion, and a singletonset 
an be identi�ed with its sole element. A �nite multiset µ over X may be written as ∑
x∈X µ(x) ∗ x or∑

x∈X µ(x)∗{x}, as well as in extended set notation, e. g., {a1, a1, a2} denotes a multiset µ su
h that µ(a1) = 2,
µ(a2) = 1 and µ(x) = 0 for all x ∈ X \ {a1, a2}.2.2. Labelled Petri nets. Let S be a set of a
tions symbols, D a �nite set of data values (or just values)and V a set of variables. For A ⊆ S and X ⊆ D ∪ V, we denote by A⊗X the set {a(x) | a ∈ A, x ∈ X}. Then,we de�ne A

df

= S⊗(D∪V) as the set of a
tions (with parameters). These four sets are assumed pairwise disjoint.Definition 2.1. A labelled marked Petri net is a tuple N = (S, T, ℓ, M) where:
• S is a nonempty �nite set of pla
es;
• T is a nonempty �nite set of transitions, disjoint from S;
• ℓ de�nes the labelling of pla
es, transitions and ar
s, i. e., elements of (S × T ) ∪ (T × S), as follows:� for s ∈ S, the labelling is ℓ(s) ⊆ D whi
h de�nes the tokens that the pla
e is allowed to 
arry (often
alled the type of s),� for t ∈ T , the labelling is ℓ(t)

df

= α(t)γ(t) where α(t) ∈ A and γ(t) is a boolean expression 
alledthe guard of t,� for (x, y) ∈ (S × T ) ∪ (T × S), the labelling is ℓ(x, y) ∈ mult(D ∪ V) whi
h denotes the tokens�owing on the ar
 during the exe
ution of the atta
hed transition. The empty multiset ∅ denotesthe absen
e of ar
;
• M is a marking fun
tion whi
h asso
iates to ea
h pla
e s ∈ S a multiset in mult(ℓ(s)) representing thetokens held by s.Noti
e that α(t) 
ould be a �nite multiset of a
tions. This would be a trivial extension but would leadto more 
ompli
ated de�nitions; we 
hoose to restri
t ourselves to single a
tions in order to streamline thepresentation.We adopt the standard rules about representing Petri nets as dire
ted graphs with the following simpli�
a-tions: the names of some nodes (espe
ially pla
es) may not be given; the two 
omponents of transition labels aredepi
ted separately; true guards are omitted as well as bra
kets around sets; ar
s may be labelled by expressionsas a shorthand (see the example given in the �gure 2.1).

0 0,...,η

t τ(x)

x + 1 x

0 0,...,η

t τ(x)
y = x + 1

y xFig. 2.1. On the left, a Petri net whi
h a
tually denotes that given on the right, with η ≥ 0, {0, . . . , η} ⊆ D, {x, y} ⊆ V and
τ ∈ S.



74 F. Pommereau2.3. Step sequen
e semanti
s. A binding is a fun
tion σ : V → D whi
h asso
iates 
on
rete values tothe variables appearing in a transition and its ar
s. We denote by σ(E) the evaluation of the expression Ebound by σ.Let (S, T, ℓ, M) be a Petri net, and t ∈ T one of its transitions. A binding σ is enabling for t at M if theguard evaluates to true, i. e., σ(γ(t)) = ⊤, and if the evaluation of the annotations on the adja
ent ar
s respe
tsthe types of the pla
es, i. e., for all s ∈ S, σ(ℓ(s, t)) ∈ mult(ℓ(s)) and σ(ℓ(t, s)) ∈ mult(ℓ(s)).A step 
orresponds to the simultaneous exe
ution of some transitions, it is a multiset
U = {(t1, σ1), . . . , (tk, σk)}su
h that ti ∈ T and σi is an enabling binding of ti, for 1 ≤ i ≤ k. U is enabled if the marking is su�
ient toallow the �ow of tokens required by the exe
ution of the step, i. e., for all s ∈ S

M(s) ≥
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(s, t)).It is worth noting that if a step U is enabled at a marking, then so is any sub-step U ′ ≤ U . A step U enabledby M may be exe
uted, leading to the new marking M ′ de�ned for all s ∈ S by
M ′(s)

df

= M(s) −
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(s, t)) +
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(t, s)).This is denoted by M [U〉M ′ and this notation naturally extends to sequen
es of steps. The empty step, denotedby ∅, is always enabled and we have M [∅〉M . A marking M ′ is rea
hable from a marking M if their exists asequen
e of steps ω su
h that M [ω〉M ′; we will say in this 
ase that M enables ω. Noti
e that M is rea
hablefrom itself through a sequen
e of empty steps.The step sequen
e semanti
s is de�ned as the set 
ontaining all the sequen
es of steps enabled by a net. Thissemanti
s is based on transitions identities but the relevant information is generally the labels of the exe
utedtransitions. The labelled step asso
iated to a step U is de�ned as ∑
(t,σ)∈U U((t, σ)) ∗ σ(α(t)), whi
h allows tonaturally de�ne the labelled step sequen
e semanti
s of a Petri net. In the sequel we will 
onsider only thissemanti
s and omit the word �labelled�.2.4. Safety. A Petri net (S, T, ℓ, M) is safe if any marking M ′ rea
hable from M is su
h that, for all s ∈ Sand all d ∈ ℓ(s), M ′(s)(d) ≤ 1, i. e., any pla
e holds at most one token of ea
h value. The 
lass of safe Petrinets (in
luding models abbreviating them) is very interesting:

• from a theoreti
al point of view, safe Petri nets never have auto-
on
urren
y of transitions, whi
h allowsfor e�
ient veri�
ation te
hniques [8℄;
• from a pragmati
al point of view, safe Petri nets 
orresponds to the 
lass of �nite state Petri nets (asshown in [4℄, bounded Petri nets 
an be redu
ed to safe Petri nets while preserving their 
on
urrentsemanti
s), whi
h 
orrespond to realisti
 systems, i. e., those that 
an be implemented on a 
on
rete
omputer;
• from a pra
ti
al point of view, this 
lass was shown expressive enough to model most interestingproblems from the real world. For instan
e, the semanti
s pro
edures, ex
eptions or tasks preemptionin the language B(PN)2 do not require more than safe Petri net.Another ni
e property of safe Petri nets, dire
tly related to our purpose, is that they have �nitely manyrea
hable markings, ea
h of whi
h enabling �nitely many steps whose sizes are bounded by the number oftransitions in the net. For all these reasons, as in the previous works about 
ausal time [15, 6, 13, 14℄, werestri
t ourselves to safe Petri nets.3. Petri nets with 
ausal time: CT-nets. We are now in position to de�ne the 
lass of Petri nets weare a
tually interested in; it 
onsists in safe Petri nets, with several restri
tions, for whi
h we will de�ne somespe
i�
 vo
abulary related to the o

urren
e of ti
ks. We assume that there exists τ ∈ S, used in the labellingof the ti
k transition.Definition 3.1. A Petri net with 
ausal time (CT-net) is a safe labelled Petri net N

df

= (S, T, ℓ, M) inwhi
h there exists a unique tτ ∈ T , 
alled the ti
k transition of N , su
h that:
• α(tτ ) ∈ {τ} ⊗ (D ∪ V);



Petri Nets As Exe
utable Spe
i�
ations 75
• α(t) /∈ {τ} ⊗ (D ∪V) for all t ∈ T \ {tτ};
• tτ has at least one in
oming ar
 labelled by a singleton.A ti
k-step is a step U of N whi
h involves the ti
k transition, i. e., su
h that τ(d) ∈ U for a d ∈ D.Thanks to the safety and the last restri
tion on tτ , any ti
k-step 
ontains exa
tly one o

urren
e of theti
k transition. On the other hand, one may noti
e that this de�nition is very liberal and allows to de�ne netsin whi
h the ti
k transition is not tight to in
rement 
ounters but may produ
e any other e�e
t not relatedto time. Fortunately, we do not need a more restri
tive de�nition, whi
h lets us free to experiment di�erentapproa
hes in the future.The �gure 3.1 shows a toy CT-net that will be used as a running example. In this net, the role of theti
k transition tτ is to in
rement a 
ounter lo
ated in the top-right pla
e. When the transition t1 is exe
uted,it resets this 
ounter and pi
ks in the top-left pla
e a value whi
h is bound to the variable m. This value istransmitted to the transition t2 whi
h will be allowed to exe
ute when at least m ti
ks will have o

urred. Thus,

m spe
i�es the minimum number of ti
ks between the exe
ution of t1 and that of t2. At any time, the transition
t3 may randomly 
hange the value of this minimum while emitting a visible a
tion u(x) where x is the newvalue. Noti
e that the maximum number of ti
ks between the exe
ution of t1 and that of t2 is enfor
ed by thetype of the pla
e 
onne
ted to tτ whi
h spe
i�es that only tokens in {0, . . . , η} are allowed (given η > 0).

00,...,η

t1
a1(m)

t2 c ≥ m
a2(c)

0 0,...,η

t3u(x) tτ τ(n)

0,...,η

••
•

m

m

0
y c

c

xy n + 1n

m mFig. 3.1. An example of a CT-net, where η > 0, {a1, a2, u, τ} ⊆ S, {c, n, m, x, y} ⊆ V and {0, . . . , η} ∪ {•} ⊆ D.Assuming η ≥ 5, a possible exe
ution of this CT-net is:
{τ(0)} {u(2)} {a1(2)} {τ(0), u(1)} {τ(1)} {u(5)} {τ(2)} {τ(3)} {a2(4), u(0)} {τ(4)} .3.1. Tra
tability. A CT-net (S, T, ℓ, M) is tra
table if there exists an integer δ ≥ 2 su
h that, for allmarking M ′ rea
hable from M , any sequen
e of at least δ nonempty steps enabled by M ′ 
ontains at least twoti
k-steps. In other words, the length of an exe
ution between two 
onse
utive ti
ks is bounded by δ whosesmallest possible value is 
alled the maximal distan
e between ti
ks.This notion of tra
table nets is important be
ause it allows to distinguish those nets whi
h 
an be exe
utedon a realisti
 ma
hine: indeed, an intra
table net may have potentially in�nite runs between two ti
ks (so
alled Zeno runs), whi
h 
annot be exe
uted on a �nitely fast 
omputer without breaking the evenness of ti
kso

urren
es.For example, the CT-net of our running example is intra
table be
ause the transition t3 
an be exe
utedin�nitely often between two ti
ks: in the exe
ution given above, the step {u(5)} 
ould be repeated an arbitrarynumber of times. In the rest of this paper, we restri
t ourselves to tra
table CT-nets.3.2. Input and output. The 
ommuni
ation between a CT-net and its environment is modelled usingsome of the a
tions in transitions labels. We distinguish for this purpose two �nite disjoint subsets of S: Siis the set of input a
tion symbols and So is that of output a
tions symbols. We assume that τ /∈ Si ∪ So. Wealso distinguish a nonempty set Dio ⊆ D representing the values allowed for input and output. Intuitively, thedistinguished symbols 
orrespond to 
ommuni
ation ports on whi
h values from Dio may be ex
hanged betweenthe exe
ution ma
hine and its environment. Thus the exe
ution of a transition labelled by ao(do) ∈ So ⊗Dio isseen as the sending of the value do on the output port ao. Conversely, if the environment sends a value di ∈ Dioon the input port ai ∈ Si, the net is expe
ted to exe
ute a step 
ontaining the a
tion ai(di). In general, we
annot ensure that su
h a step is enabled, in the worst 
ase, it may happen that no transition has ai in its label.Fortunately, we show now that a net 
an easily be designed in order to ensure that su
h an input message isalways 
orre
tly handled.



76 F. PommereauA naive way to a
hieve this result is to use self-loops, like the transition t3 in the �gure 3.1. In this example,if we assume u ∈ Si and {0, . . . , η} ⊇ Dio , any requested 
ommuni
ation on u 
an always be handled. Unfor-tunately, self-loops lead to intra
table nets sin
e su
h transitions 
an always be arbitrarily repeated (rememberthe step {u(5)} above). A
tually, a self-loop indi
ates that the CT-net is expe
ted to be able to respond in-stantaneously to all the messages that the environment would send on the 
orresponding port, whi
h is not arealisti
 assumption. Indeed, if the number of su
h messages sent in a given amount of real time is not bounded,then a �nitely fast 
omputer 
annot avoid to miss some of them. So, in the following, we assume that theenvironment may not produ
e more than one message on ea
h input port between two ti
ks, whi
h will lead tothe notion of ti
k-rea
tiveness. This assumption is equivalent to say that we require the CT-net to be exe
utedon a 
omputer fast enough with respe
t to its environment; so, this is a
tually one of the 
lassi
al 
onditionsthat must be assumed while de�ning an exe
ution ma
hine.Let A ⊆ Si be a nonempty set of input a
tion symbols, we denote by req(A) the set of potential requests on
A, whi
h 
ontains all the sets of the form {a1(d1), . . . , ak(dk)} where {a1, . . . , ak} ⊆ A and (d1, . . . , dk) ∈ Dio

kfor all k ≥ 1. Ea
h element of req(A) is potentially a step of a CT-net.A CT-net (S, T, ℓ, M) is on
e-rea
tive to A ⊆ Si i�: either, it enables only the empty step; or, there existsa step U ′ /∈ req(A) su
h that M [U ′〉M ′′ and, for all U ∈ req(A), we have M [U〉M ′ and the CT-net (S, T, ℓ, M ′)is on
e-rea
tive to A \ {a ∈ A | ∃d ∈ Dio , a(d) ∈ U}. Intuitively, this indu
tive de�nition states that, for allinput port ai ∈ Si, the CT-net 
an rea
t to any request on a as soon as it 
omes, after what it may miss them.On the other hand, the CT-net is never for
ed to exe
ute an a
tion involving an input port in A (thanks to thestep U ′). At any time, the CT-net may terminate its exe
ution with a deadlo
k.A CT-net (S, T, ℓ, M) is ti
k-rea
tive to A ⊆ Si i� it is on
e-rea
tive to A and, for all sequen
e of steps
U1 · · ·Uk su
h that Uk is a ti
k-step and M [U1 · · ·Uk〉M ′, then the CT-net (S, T, ℓ, M ′) is ti
k-rea
tive to A.This de�nition is also indu
tive and states that a ti
k-rea
tive CT-net is almost like a on
e-rea
tive net ex
eptthat its 
apability to rea
t is fully restored after ea
h ti
k. This guarantees that one message on a may alwaysbe handled between two ti
ks, whi
h exa
tly mat
hes our assumption. It turns out that it is easy to transform area
tive CT-net with self-loops into a ti
k-rea
tive one. It is enough to add one pla
e for ea
h self-loop with thetype {◦, •} and marked with •, and ar
s su
h that ea
h o

urren
e of the self-loop 
onsumes the • and repla
eit with a ◦, so it 
annot o

ur twi
e; on the other hand, ea
h o

urren
e of the ti
k-transition must reset to •the token in the added pla
es. This way, self-loops 
annot be repeated with at least one ti
k in between. Aswe 
an see, it is easy to 
onstru
t a ti
k-rea
tive net; for instan
e, the �gure 3.2 shows a modi�ed version ofour running example whi
h is ti
k-rea
tive to {u} and tra
table (now, the step {u(5)} 
ould not be repeated atwill).

00,...,η

t1
a1(m)

t2 c ≥ m
a2(c)

0 0,...,η

t3u(x) tτ τ(n)

0,...,η

•
◦,•

••
•

m

m

0
y c

c

z

•◦

•
xy n + 1n

m mFig. 3.2. The ti
k-rea
tive version of the running example, where z ∈ V and {◦, •} ⊂ D.3.3. Consisten
y. We denote by U [a] the number of o

urren
es of the a
tion symbol a in a step U , i. e.,
U [a]

df

=
∑

a(x)∈U U(a(x)). A step U is 
onsistent if U [a] ≤ 1 for all a ∈ Si ∪ So. A CT-net is 
onsistent ifits step sequen
e semanti
s only involve 
onsistent steps. In
onsistent steps are those during the exe
ution ofwhi
h several 
ommuni
ations take pla
e on the same port. Sin
e the transitions exe
uted by a single step o

ursimultaneously, this means that several values may be sent or re
eived on the same port at the same time. Thisis 
ertainly something whi
h is not realisti
 and so, we restri
t ourselves to 
onsistent CT-nets in the following.The nets given in the �gures 3.1 and 3.2 are both 
onsistent. But, assuming a2 ∈ Si ∪ So, it would not bethe 
ase if we would repla
e u(x) by a2(x) in the label of the transition t3 sin
e we 
ould have and exe
utionwith the step {a2(4), a2(0)} whi
h is not 
onsistent.



Petri Nets As Exe
utable Spe
i�
ations 774. Compilation of CT-nets: CT-automata. The aim of this se
tion is to show how to transform atra
table and 
onsistent CT-net into a form more suitable for the exe
ution ma
hine. This 
orresponds to a
ompilation produ
ing an automaton (non-deterministi
 in general), 
alled a CT-automaton, whose states arethe rea
hable markings of the net and whose transitions 
orrespond to the steps allowing to rea
h one markingfrom another. It should be remarked that this 
ompilation is not stri
tly required but allows to simplify thingsa lot, in parti
ular in an implementation of the ma
hine: with respe
t to its 
orresponding CT-net, a CT-automaton has no notion of markings, bindings, enabling, et
., whi
h results in a mu
h simpler model. Anotherreason to introdu
e this 
ompilation stage is that it 
an be used to 
he
k if the net of interest is really a safe,tra
table and 
onsistent CT-net; moreover, it is an almost ne
essary step to 
ompute the value of δ (the maximaldistan
e between ti
ks) whi
h will be used during the exe
ution. So, as we 
annot avoid a 
omputation at leastequivalent to this 
ompilation stage, we turn it into an advantage for the exe
ution whi
h 
an be made mu
hsimpler and more e�
ient.In order to re
ord only the input and output a
tions in a step U of a CT-net, we de�ne the set of the visiblea
tions in U by ⌊U⌋ df

= U ∩ (((Si ∪ So) ⊗ Dio) ∪ ({τ} ⊗ D)). Be
ause of the 
onsisten
y, ⌊U⌋ 
ould not be amultiset.Definition 4.1. Let N = (S, T, ℓ, M) be a tra
table and 
onsistent CT-net, the CT-automaton of N is the�nite automaton A(N)
df

= (SA, TA, sA) where:
• SA is the set of states de�ned as the set of all the rea
hable markings of N ;
• the set of transitions is TA ⊆ SA × LA × SA, where LA

df

= {A ⊆ ((Si ∪ So) ⊗ Dio) ∪ ({τ} ⊗ D)}, andis de�ned as the set of all the triples (M ′, A, M ′′) su
h that M ′, M ′′ ∈ SA and there exists a nonemptystep U of N su
h that M [U〉M ′ and A = ⌊U⌋;
• sA

df

= M ∈ SA is the initial state of A(N), i. e., the initial marking of N .The following holds by de�nition but should be stressed sin
e it states that a CT-net and the 
orrespondingCT-automaton have exa
tly the same exe
utions.Proposition 4.2. Let N
df

= (S, T, ℓ, M) be a tra
table and 
onsistent CT-net, M ′ be a rea
hable markingof N and (SA, TA, M)
df

= A(N).1. If M ′[U〉M ′′ for a nonempty step U then (M ′, ⌊U⌋, M ′′) ∈ TA.2. Conversely, if (M ′′, A, M ′′′) ∈ TA then there exists a nonempty step U su
h that M ′′[U〉M ′′′ and
⌊U⌋ = A.As an example, the �gure 4.1 shows the CT-automaton whi
h 
orresponds to the tra
table version of ourrunning example (given in the �gure 3.2). For the sake of 
ompa
tness, we assumed η

df

= 1 (the automaton for
η = 2 has 105 states and this number grows to 277 for η = 3). Moreover, we assumed {a1, a2, u} ⊆ Si ∪ So.5. The exe
ution ma
hine. We now des
ribe the exe
ution ma
hine. In order to 
ommuni
ate with theenvironment, a symbol ao ∈ So is 
onsidered as a port on whi
h a value d ∈ Dio may be written, whi
h is denotedby a← d (more generally, this is used for any assignment). Similarly, a symbol ai ∈ Si is 
onsidered as a porton whi
h su
h a value, denoted by ai?, may be read; we assume that ai? = ∅ /∈ Dio when no 
ommuni
ationis requested on ai. Moreover, in order to indi
ate to the environment if a 
ommuni
ation have been properlyhandled, we also assume that ea
h a ∈ Si may be marked �a

epted� (denoting that the 
ommuni
ation has been
orre
tly handled), �refused� (denoting that the 
ommuni
ation 
ould not been handled), �erroneous� (denotingthat a 
ommuni
ation on this port was possible but with another value, or that a 
ommuni
ation was expe
tedbut not requested) or not marked, whi
h is represented by �no mark�. We also use the notation ai ← markwhen an input port is being marked.Let (SA, TA, sA) be a CT-automaton and let ∆ be a 
onstant amount of time; we will see later on how ∆is de�ned sin
e it depends on the de�nition of the exe
ution ma
hine. We will use three variables:

• Θ is a time 
orresponding to the o

urren
es of ti
ks;
• s ∈ SA is the 
urrent state;
• I ⊆ Si is the set of ports on whi
h the environment asks a 
ommuni
ation.The behaviour of the ma
hine is des
ribed by the algorithm given on the left of the �gure 4.2 where theexe
ution of a step (line 13) is detailed on the right of the �gure. Several aspe
ts of this algorithm should be
ommented:
• the statement �now� evaluates to the 
urrent time when it is exe
uted;
• the �for all� loops are parallel loops;
• the exe
ution of the line 8 
an be parallelised also (see below);



78 F. Pommereau
0

1

2 3

4 56

7 8

9

1011 1213

14 15 16

17

1819 20 21

22

23 24

25 26

27

u(0) u(1)

a1(0) τ(0)

a1(0)

τ(0)

a1(1)

a1(0)
u(0) u(1) u(0)

u(1)
a1(1)

u(1) a2(0) u(0)
a1(0) a1(1) u(1) u(0)

a2(0)
τ(0) u(1) u(0) τ(0)

a2(0) τ(0) τ(0)

τ(0) a2(1) u(0)

u(1) u(0)

u(1)

a2(1) τ(0)

a2(1)

u(0) u(1)a2(1)
u(0)

u(1)

u(0) u(1)a2(1)
a2(1)

u(0)

u(1)

a2(1)

a2(1)

u(0),a2(1)
u(1),a2(1)

u(0),a2(1)

u(1),a2(1)

u(0),a2(1)

u(1),a2(1)

u(0),a2(1)
u(1),a2(1)

Fig. 4.1. The CT-automaton of the CT-net given in the �gure 3.2 (with η
df

= 1), the initial state is numbered 0 and �lled inbla
k.1: s← sA2: Θ← now3: while s has su

essors do4: for all a ∈ Si do5: a← �no mark�6: end for7: I ← {a ∈ Si | a? 6= ∅}8: 
hoose a transition (s, A, s′)9: if A is a ti
k-step then10: wait until now = Θ + ∆11: Θ← now12: end if13: exe
ute(A, I)14: s← s′15: end while

pro
edure exe
ute(A, I) :17: for all a(d) ∈ A (a 6= τ) do18: if a ∈ So then19: a← d20: else if a ∈ Si and a? = d then21: a← �a

epted�22: else23: a← �erroneous�24: end if25: I ← I \ {a}26: end for27: for all a ∈ I do28: a← �refused�29: end forFig. 4.2. The main loop of the exe
ution ma
hine (on the left) and the exe
ution of a step A with respe
t to requested inputsgiven by I (on the right).
• ea
h exe
ution of the �while� loop performs a bounded amount of work, in parti
ular the followingnumbers are bounded: the number of ports; the number of transitions outgoing from a state; thenumber of a
tions in ea
h step. Assuming that 
hoosing a transition requires a �xed amount of time(see below), ∆ is the maximum amount of time required to exe
ute the �while� loop δ − 1 times;
• no ti
k is expli
itly exe
uted but its o

urren
e a
tually 
orresponds to the exe
ution of the line 11.



Petri Nets As Exe
utable Spe
i�
ations 79Proposition 5.1. The algorithm presented in the �gure 4.2 ensures an even o

urren
e of the ti
ks.Proof. Let θ be the value assigned to Θ when the line 2 is exe
uted. A number of transitions (at most
δ − 2) is exe
uted until a ti
k transition is 
hosen. All together, the duration of these exe
utions requires is
D ≤ ∆ so the line 10 waits during ∆−D. Thus, the line 11, whi
h 
orresponds to the ti
k, is exe
uted at time
θ + D + (∆−D) = θ + ∆. By indu
tion, we obtain that ti
ks are exe
uted at times θ + k∆ for k ≥ 1.5.1. Choosing a transition. We still have to de�ne how a transition may be 
hosen, in a �xed amountof time, in order to mark �a

epted� as mu
h as possible input ports in the set I of requested 
ommuni
ations.In order to de�ne a 
riterion of maximality, we assume that there exists a total order on Si. This 
orrespondsto a priority between the ports: when several 
ommuni
ations are requested but not all are possible, we �rst
hoose to serve those on the ports with the highest priorities. Then, given I, we de�ne a partial order ≺ onthe transitions outgoing from a state and the ma
hine 
hooses one of the smallest transitions a

ording to ≺.This 
hoi
e may be random or driven by a s
heduler. For instan
e, we may 
hoose to exe
ute steps as large aspossible, or steps no larger than the number of pro
essors, et
. The de�nition of a s
heduling strategy is out ofthe s
ope of this paper; we just need to assume that the time needed to 
hoose a transition is bounded (whi
hshould hold in the reasonable 
ases).For ea
h step A appearing on a transition outgoing from the 
urrent state, we de�ne a ve
tor VA ∈ {0, 1, 2}Siwhi
h represents the marks on the input ports after A would be exe
uted: the value 0 stands for �a

epted�or �no mark�, the value 1 for �refused� and the value 2 for �erroneous�. Thus, the value of VA(a) 
an be foundusing the following table, where d and d′ are distin
t values in Dio :

A[a] = 0 a(d) ∈ A a(d′) ∈ A

a? = d 1 0 2

a? = ∅ 0 2 2Then, A1 ≺ A2 if VA1
< VA2

a

ording to the lexi
ographi
 order on these ve
tors.Again, it is 
lear that building these ve
tors and 
hoosing the smallest one is feasible in a �xed amount oftime sin
e the number of transitions outgoing from a state is bounded. This is also feasible in parallel: all the
VA's 
an be 
omputed in parallel (as well as all their 
omponents) and the sele
tion of the smallest one is alogarithmi
 redu
tion.Noti
e that if ≺ allows to de�ne a total order on steps, it is not the 
ase for the transitions sin
e severaltransitions may be labelled by the same step. For instan
e, assuming u /∈ Si ∪ So, the running example wouldgive a CT-automaton similar to that of the �gure 4.1 but in whi
h all the a
tions u(0) or u(1) would have beendeleted. In this 
ase, the state 13 would have two outgoing transitions labelled by ∅ and three labelled by a2(1).Proposition 5.2. Let a ∈ Si be an input a
tion symbol and N be a CT-net whi
h is ti
k-rea
tive to R ∋ a.Then, the exe
ution of A(N) will never mark a as �erroneous� nor �refused�.Proof. Let s be the 
urrent state of A(N) and (s, A, s′) be the transition 
hosen by the exe
ution ma
hine.There are three 
ases.(1) If a? = ∅, then it may be marked �erroneous� or not marked. In the former 
ase, this means that
a(d) ∈ A for a d ∈ Dio . Then, if A = {a(d)}, be
ause of the ti
k-rea
tiveness, there must exist a transition
(s, U ′, s′′) whi
h does not involve a (ti
k-rea
tiveness never for
es the o

urren
e of an input a
tion), otherwise,the transition (s, A′, s′′) with A′ df

= A \ {a(d)} must exists (sin
e it 
orresponds to a sub-step). In both 
ases,we have (s, U ′, s′′) ≺ (s, A, s′) or (s, A′, s′′) ≺ (s, A, s′) hen
e a 
ontradi
tion with the fa
t that (s, A, s′) was
hosen. So, a must be not marked in this 
ase.(2) If a? = d 6= ∅ and the 
ommuni
ation on a is marked �refused�, this means that A[a] = 0. The ti
k-rea
tiveness ensures that there must exist a transition (s, A ∪ {a(d)}, s′′) (by assumption, a 
annot have beenrequested before sin
e the previous ti
k), hen
e again a 
ontradi
tion. So, a must be marked �a

epted� in this
ase.(3) If a? = d 6= ∅ and the 
ommuni
ation on a is marked �erroneous�, this means that a(d′) ∈ A for a
d′ ∈ Dio \ {d}. But there must exist a transition (s, (A ∪ {a(d)}) \ {a(d′)}, s′′) (ti
k-rea
tiveness allows theo

urren
e for any value in Dio), hen
e again a 
ontradi
tion. So, a is also marked �a

epted� here.Then, the next result shows that a 
ommuni
ation requested on a port to whi
h the CT-net is ti
k-rea
tiveis always 
orre
tly handled (i. e., a

epted) within the 
urrent �while� loop, whi
h is the best response timethat one 
an expe
t from the presented algorithm.



80 F. PommereauProposition 5.3. Let a ∈ Si be an input a
tion symbol and N be a CT-net whi
h is ti
k-rea
tive to R ∋ a.If a? = d 6= ∅ before the exe
ution of the line 7 in the �gure 4.2, then a is marked �a

epted� after the line 13has exe
uted.Proof. Dire
tly follows from how the ma
hine 
hooses a transition and from the proposition 5.2.6. Con
luding remarks. We de�ned a parallel exe
ution ma
hine whi
h shows the adequa
y of 
ausaland real time by allowing time-
onsistent exe
utions of 
ausally timed Petri nets (CT-nets) in a real-timeenvironment. We also shown that it was possible to ensure that the ma
hine e�
iently rea
ts to the soli
itationof its environment by designing CT-nets having the property of ti
k-rea
tiveness, whi
h is easy to 
onstru
t. Inorder to obtain these results, several restri
tions have been adopted:
• only safe Petri nets are 
onsidered;
• the nets must be tra
table, i. e., they are not allowed to have unbounded runs between two ti
ks;
• the nets must be 
onsistent, i. e., they 
annot perform several simultaneous 
ommuni
ations on thesame port;
• the exe
ution ma
hine must be run on a 
omputer fast enough to ensure that the environment 
annotattempt more than one 
ommuni
ation on a given port between two ti
ks.We do not 
onsider the tra
tability and 
onsisten
y requirements as true restri
tions sin
e they a
tually 
orre-spond to what 
an be performed on a realisti
 ma
hine. The last restri
tion is a
tually a pres
ription: in orderto ensure a 
orre
t 
ommuni
ation, one has to run the exe
ution ma
hine on a 
omputer fast enough to exe
uteti
ks more often than the environment 
an produ
e input. Moreover, it should be noti
ed that the frequen
yof ti
ks is arbitrary. So, if the ti
ks of a CT-net are too mu
h sparse with respe
t to the requested inputs, itis easy to multiply by a 
onstant k all its timing 
onstraints in the net so ti
ks will o

ur k times more often.Using non-safe Petri nets may be 
onsidered in the future, however, this would lead to the 
lass of in�nite statesystems whi
h does not seem realisti
 for the purpose of exe
ution.6.1. Future work. Petri nets like CT-nets have been used for a long time as a semanti
al domain forhigh-level programming languages and pro
ess algebras with step based semanti
s (see, e. g., [3, 14℄) and thesete
hniques 
ould be dire
tly applied to massively parallel languages or formalisms. In this dire
tion, we envisageto 
ombine a n-ary parallel 
omposition operation with symmetry redu
tions [9℄ allowing to the veri�
ation ofvery large systems while giving modelling support for kinds of SPMD systems.6.2. Implementation issues. A preliminary version of this work proposed a sequential exe
ution ma
hineand a prototype has been su

essfully implemented in Ada; this allowed to show that the evenness of ti
ks wasnot only possible in the theory but also easy to a
hieve in an implementation. (The only �di�
ulty� was toobtains ∆ using test runs at the starting of the ma
hine.) A parallel implementation of the version presented herehad been started but had to be delayed sin
e it turned out that there were still need for a ground study. Indeed,several open questions are a
tually 
riti
al ones. Noti
e that if our goal is to perform testing or simulation,an implementation 
an be naive and may even be sequential. But in the perspe
tive of dire
t exe
ution ofthe modelled systems, the speedup be
omes 
ru
ial and a
tually depends on the intera
tion between severalparameters: the model of 
omputation, the family of parallel ma
hine targeted and the s
heduling strategy(as dis
ussed in the se
tion 5.1). All these questions were left out of the 
urrent paper; we thus envisagefurther resear
h on this subje
t with the goal to identify good 
ombinations allowing to produ
e high-qualityimplementations of our exe
ution ma
hine. In parti
ular: how to exploit the parallelism in the presentedalgorithm strongly depends on the 
omputational model envisaged (whi
h may itself depend on the targetar
hite
ture); the question of storing the CT-automaton is also important if one targets a distributed memoryar
hite
ture. Taking all these parameters into a

ount may lead to several very di�erent re�nements of thealgorithm proposed above, ea
h spe
ially dedi
ated to a parti
ular 
lass of parallel 
omputer and parallelprogramming language or model.Related to the goal of e�
ient exe
utions, another interesting problem is to 
onne
t the input/output ofthe ma
hine to the 
on
rete 
omputer in order to delegate some 
omputation. Indeed, output a
tions may be
onsidered as 
alls to 
omputational primitives, while input a
tions 
ould 
orrespond to the re
eiving of the
omputed values. This introdu
es delays, externals to the model, whi
h must be taken into a

ount. This 
anbe made by introdu
ing further timing 
onstraints in the model in order to re�e
t the exe
ution times obtainedfrom ben
hmarks or from real-time guarantees in the 
ase of 
alls to real-time primitives. In this perspe
tive,
onsidering Petri nets with time be
omes ne
essary.



Petri Nets As Exe
utable Spe
i�
ations 816.3. Con
lusion. We believe that the framework proposed in this paper 
an be used to build 
on
reteparallel appli
ations in whi
h the 
ontrol �ow 
ould be ensured by Petri nets while a large part of the 
omputationwould be delegated to dedi
ated primitives with known performan
es. Using Petri nets for both the modellingand the exe
ution allows to verify and run the same obje
t, saving from the risk to introdu
e errors on the wayfrom a model to its implementation, while allowing exe
utions even during the early stages of the design.REFERENCES[1℄ C. André F. Boulanger, A. Girault, Software Implementation of Syn
hronous Programs, ICACSD'2001, IEEE ComputerSo
iety, 2001.[2℄ G. Berry, The foundations of Esterel, Language and Intera
tion: Essays in Honour of Robin Milner. MIT Press, 1998.[3℄ E. Best and R. P. Hopkins, B(PN)2 � A basi
 Petri net programming notation. PARLE'93. LNCS 694, Springer, 1993.[4℄ E. Best and H. Wimmel, Redu
ing k-safe Petri nets to pomset-equivalent 1-safe Petri nets, ICATPN'00. LNCS 1825,Springer, 2000.[5℄ E. Boufaïd, Ma
hines d'ex'e
ution pour langages syn
hrones, PhD Thesis, University of Ni
e-Sophia Antipolis, 1998.[6℄ C. Bui Thanh, H. Klaudel and F. Pommereau, Petri nets with 
ausal time for system veri�
ation, MTCS'02. ENTCS,Elsevier, 2002.[7℄ R. Dur
hholz, Causality, time, and deadlines, Data & Knowledge Engineering, 6. North-Holland, 1991.[8℄ J. Esparza, Model 
he
king using net unfoldings, S
ien
e of Computer Programming, Elsevier, 1994.[9℄ T. Junttila, On the Symmetry Redu
tion Method for Petri Nets and Similar Formalisms, PhD Thesis, Helsinki Universityof Te
hnology, 2003[10℄ H. Klaudel, Compositional High-Level Petri nets Semanti
s of a Parallel Programming Language with Pro
edures, S
ien
esof Computer Programming 41, Elsevier, 2001.[11℄ H. Klaudel and F. Pommereau, A 
on
urrent semanti
s of stati
 ex
eptions in a parallel programming language,ICATPN'01. LNCS 2075, Springer, 2001.[12℄ H. Klaudel and F. Pommereau, A 
lass of 
omposable and preemptible high-level Petri nets with an appli
ation to multi-tasking systems, Fundamenta Informati
ae, 50(1):33�55. IOS Press, 2002.[13℄ F. Pommereau, Modèles 
omposables et 
on
urrents pour le temps-re'el, PhD. Thesis, University Paris 12, Fran
e, 2002.[14℄ F. Pommereau, Causal Time Cal
ulus, FORMATS'03. LNCS 2791, Springer, 2004.[15℄ G. Ri
hter, Counting interfa
es for dis
rete time modeling, Te
hni
al report 26, GMD. September 1998.Edited by: Frédéri
 LoulergueRe
eived: June 8, 2004A

epted: June 9, 2005


