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A FEEDBACK CONTROL MECHANISM FOR BALANCING I/0- AND
MEMORY-INTENSIVE APPLICATIONS ON CLUSTERS

XTAO QIN* , HONG JIANG' |, YIFENG ZHU' , AND DAVID R. SWANSONT

Abstract. One common assumption of existing models of load balancing is that the weights of resources and 1/O buffer size
are statically configured and cannot be adjusted based on a dynamic workload. Though the static configuration of these parameters
performs well in a cluster where the workload can be modeled and predicted, its performance is poor in dynamic systems in which
the workload is unknown. In this paper, a new feedback control mechanism is proposed to improve overall performance of a cluster
with a general and practical workload including I/O-intensive and memory-intensive load. This mechanism is also shown to be
effective in complementing and enhancing the performance of a number of existing dynamic load-balancing schemes. To capture
the current and past workload characteristics, the primary objectives of the feedback mechanism are: (1) dynamically adjusting
the resource weights, which indicate the significance of the resources, and (2) minimizing the number of page faults for memory-
intensive jobs while increasing the utilization of the I/O buffers for I/O-intensive jobs by manipulating the 1/O buffer size. Results
from extensive trace-driven simulation experiments show that compared with a number of schemes with fixed resource weights and
buffer sizes, the feedback control mechanism delivers a performance improvement in terms of the mean slowdown by up to 282%
(with an average of 125%).
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1. Introduction. Scheduling [16, 19] and load balancing [1, 10] techniques in parallel and distributed
systems have been investigated to improve system performance with respect to throughput and/or individual
response time. Scheduling schemes assign work to machines to achieve better resource utilization, whereas
load-balancing policies can migrate a newly arrived job or a running job preemptively to another machines if
needed.

Since clusters-a type of loosely coupled parallel system-have become widely used for scientific and commer-
cial applications, several distributed load-balancing schemes in clusters have been presented in the literature,
primarily considering CPU [9, 10], memory [1, 23], or a combination of CPU and memory [26, 27]. Although
these load-balancing policies have been very effective in increasing the utilization of resources in distributed
systems (and thus improving system performance), they have ignored one type of resource, namely disk (and
disk I/0). The impact of disk I/O on overall system performance is becoming significant as more and more
jobs with high I/O demand are running on clusters. This makes storage devices a likely performance bottle-
neck. Therefore, we believe that for any dynamic load balancing scheme to be effective in this new application
environment, it must be made I/O-aware.

Typical examples of I/O-intensive applications include long running simulations of time-dependent phe-
nomena that periodically generate snapshots of their state [22], archiving of raw and processed remote sensing
data [4], multimedia and web-based applications. These applications share a common feature in that their
storage and computational requirements are extremely high. Therefore, the high performance of I/O-intensive
applications heavily depends on the effective usage of storage, in addition to that of CPU and memory. Com-
pounding the performance impact of I/O in general, and disk I/O in particular, the steady widening gap between
CPU and I/0 speed makes load imbalance in I/O increasingly more crucial to overall system performance. To
bridge this gap, I/O buffers allocated in the main memory have been successfully used to reduce disk I/O costs,
thus improving the throughput of I/O systems.

This paper proposes a feedback control mechanism to dynamically configure resource weights and I/0
buffers in such a way that the weights are capable of reflecting the significance of system resources, and the
memory utilization is improved for I/O- and memory-intensive workload.

The rest of the paper is organized as follows. Related work in the literature is reviewed in Section 2. Section 3
describes system model, and Section 4 proposes the feedback control mechanism. Section 5 evaluates the
performance of the mechanism. Finally, Section 6 concludes the paper by summarizing the main contributions
and commenting on future directions of this work.
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2. Related Work. There exists a large base of excellent research related to distributed load balancing
models, and to name just a few: sender or receiver-initiated diffusion [5, 24], the gradient model [6, 13, 14],
and the hierarchical balancing model Pollak [24]. Eager et al. studied both receiver and sender initiated
diffusion, and the results of their study showed that receiver-initiated policies are preferable at high system
loads if the overheads of task transfer under the two policies are comparable [5]. The gradient model makes
use of a gradient proximity map of underloaded processors to guide the migration of tasks from overloaded to
underloaded processors [6, 13, 14]. Underloaded nodes dynamically update the gradient proximity map, whereas
overloaded nodes initiate task migrations. Pollark proposed a scalable approach for dynamic load balancing in
large parallel and distributed systems on a multi-level control hierarchy [15]. The hierarchical scheme achieve
significant performance gain due to the parallelism in the low level of the hierarchy and the possibility to
aggregate information in the higher level of the control tree [15].

The issue of distributed load balancing for CPU and memory resources has been extensively studied and
reported in the literature. For example, Harchol-Balter et al. [9] proposed a CPU-based preemptive migration
policy that was more effective than non-preemptive migration policies. Zhang et al. [27] focused on load sharing
policies that consider both CPU and memory services among the nodes of a cluster. Throughout this paper, the
CPU-memory-based load balancing policy presented in [27] will be referred to as CM. The simulation results
show that the CM policy not only improves performance of memory-intensive jobs, but also maintains the same
load sharing quality of the CPU-based policies for CPU-intensive jobs [27].

A large body of work can be found in the literature that addresses the issue of balancing the load of disk
systems [11, 18]. Scheuermann et al. [18] studied two issues in parallel disk systems, namely striping and load
balancing, and showed their relationship to response time and throughput. Lee et al. [11] proposed two file
assignment algorithms that minimize the variance of the service time at each disk, in addition to balancing
the load across all disks. Since the problem of balancing the utilizations across all disks is isomorphic to the
multiprocessor scheduling problem [7], a greedy multiprocessor-scheduling algorithm, called LPT [8], can be
applied to disk load balancing [11]. Thus, LPT greedily assigns a process to the processor with the lightest I/0
load [11]. Throughout this paper, we refer to the approaches that directly apply LPT to I/O load balancing as
the 10 policy. The I/0 load balancing policies in these studies have been shown to be effective in improving
overall system performance by fully utilizing the available hard drives.

Very recently, three load balancing models, which consider I/O, CPU and memory resources simultaneously,
were presented [21, 26]. In [21], a dynamic load-balancing scheme, tailored for the specific requirements of the
Question/Answer application, was proposed along with a performance analysis of the approach. Xiao et al.
proposed effective load sharing strategies by minimizing both CPU idle time and the number of page faults in
clusters [26].

However, the load-balancing models presented in [21, 26] are similar in the sense that the weights of
system resources and buffer size are statically configured with a dynamical workload. In contrast, the new
feedback control mechanism proposed in this study judiciously configures these parameters in accordance with
the workload of the cluster. Trace-driven simulations show that, compared with the CM and IO policies, the
proposed scheme with a feedback control mechanism significantly enhances the overall performance of a cluster
system under both memory-intensive and I/O-intensive workload.

Some work has been done to make use of feedback control mechanisms in operating systems and distributed
environments [12, 20]. For example, Steere et al. proposed a scheduling scheme that dynamically adjusts CPU
allocation and period of threads using the feedback of an application’s rates of progress with respect to its
inputs and/or outputs [20]. Li and Nahrstedt studied a feedback control algorithm to support end-to-end QoS
in a distributed environment [12]. However, the feedback controls of resource weights and buffer sizes have
not been addressed in these works. In contrast, this paper has presented the experimental results that verify
the benefits of the proposed feedback control mechanism for both resource weights and buffer sizes in a highly
dynamic environment.

3. System Model. We consider the issue of feedback control method to improve the performance of load
balancing schemes in a cluster connected by a high-speed network, where each node not only maintains its
individual job queue that holds jobs until they finish execution, but also perceives reasonably up-to-date global
load information by periodically exchanging load status with other nodes. Jobs arrive at each node dynamically
and independently, and share three main resources, namely, CPU, main memory, and disk I/O. It is assumed
that a round-robin scheduling (time-sharing) is employed as the CPU scheduling policy [9, 27], and the disk of
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each node is modeled as a single M/G/1 queue [11]. Since jobs may be delayed because of waiting in queues
(to share resources with other jobs) or being migrated to remote nodes, the slowdown imposed on a job u is
defined as below,

slowdouwn(u) = ty(u) — ta(u) (3.1)
topu(u) +tro(u)

where t¢(u) and ¢,(u) are the finish and arrival times of the job, and tcpy(u) and timero(u) are the times

spent by job u on CPU and I/0, respectively, without any resource sharing.

In expression 3.1, the numerator corresponds to the total time the job spends running, accessing I/0,
waiting, or migrating, and the denominator corresponds to the execution time for job u in a dedicated setting.
The definition of slowdown is an extension of the one used in [9, 26, 27], where I/O access time is not considered.

For simplicity, we assume that all nodes are homogeneous, having identical computing power, memory ca-
pacity, and disk I/O performance characteristics. This simplifying assumption should not restrict the generality
of the proposed model, because if a cluster is heterogeneous, the relative load of a given job imposed on a node
with high processing capability is less than that imposed on a node with low performance. The proposed scheme
may be extended to handle heterogeneous system by incorporating a simple conversion mechanism for relative
load [16].

We also assume the network in our model is fully connected and homogenous in the sense that communication
delay between any pair of nodes is the same. This simplification of the network is commonly used in many
load-balancing models [9, 26, 27]. Additionally, we assume that the input data of each job has been stored on
the local disk of the node to which the job is submitted. This assumption is conservative in nature, since we
conducted an experiment to show that, under I/O-intensive workload, the performance of the proposed schemes
with such assumption is approximately 10% less effective than that of the schemes without it.

For a newly arrived job u at a node 7, load balancing schemes attempt to ship it to a remote node with the
lightest load if node ¢ is heavily loaded, otherwise job u is admitted into node i and executed locally. To avoid
useless migration that may potentially degrade the system performance, the load balancing schemes consider
transferring a job only if the load discrepancy between the source node and the destination node is greater than
the load of the newly arrived job plus the migration cost, therefore guaranteeing that each migration improves
the expected slowdown of the job. If an appropriate candidate remote node is not available or the migration is
evaluated to be useless, the load balancing schemes will not initiate the job migration.

4. Adaptive Load Balancing Scheme.

4.1. Weighted Average Load-balancing Scheme. In this section, we present WAL, a weighted average
load-balancing scheme. Each job is described by its requirements for CPU, memory, and I/O, which are measured
by the number of jobs running in the nodes, Mbytes, and number of disk accesses per ms, respectively. For a
newly arrived job u at a node i, the WAL-FC scheme balances the system load in the following five steps.

1. First, the load of node i is updated by adding job w’s load, assigning the newborn job to the local node.

2. Second, a migration is to be initiated if node i’s load is overloaded. Node i is overloaded, if: (1) its load
is the highest; and (2) the ratio between its load and the average load across the system is greater than
a threshold, which is set to 1.25 in our experiments. This optimal value, which is consistent with the
result reported in [25], is obtained from an experiment where the threshold is varied from 1.0 to 2.0.

3. Third, a candidate node j with the lowest load is chosen. In the case where there are more than two
nodes with the lowest load, we randomly select one node to break the tie. If a candidate node is not
available, WAL-FC will be terminated and no migration will be carried out.

4. Fourth, WAL-FC determines if job w is eligible for migration. A job is eligible for migration if its
migration is able to potentially reduce the job’s slowdown.

5. Finally, job u is migrated to the remote node j, and the load of nodes i and j is updated in accordance
with job u’s load.

WAL-FC calculates the weighted average load index in the first step. The load index of each node i is
defined as the weighted average of CPU and I/0 load, thus:

load(i) = Wepu X loade py (2) + Wio % load]o(i), (4.1)

where loadcpy (i) is CPU load defined as the number of running jobs and load;o(i) is the I/O load de-
fined as the summation of the individual implicit and explicit I/O load contributed by jobs assigned to
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node ¢. Wegpy and Wio are resource weights used to indicate the significance of the corresponding re-
source.

It is noted that the memory load is expressed by the implicit I/O load imposed by page faults. Let lpq4(%, u)
and l;0(i,u) denote the implicit and explicit I/O load of job w assigned to node ¢, respectively. load;o(i) can
be defined by equation 4.2, where M; is a set of jobs running on node i:

loadio (i) = Y lpage(iu) + > Lio(i,u). (4.2)

ueM; ueM;

Let rprea (u) denote the memory space requested by job w, and nasgar(i) represent the memory space in
bytes that is available to all jobs running on node 4. It is to be noted that the memory space, nyrga (i), can
be configured in accordance with the buffer size that is adaptively tuned by the feedback control mechanism
proposed in Section 4.2. When the node’s available memory space is larger than or equal to the memory demand,
there is no implicit I/O load imposed on the disk. Conversely, when the memory space of a node is unable to
meet the memory requirements of the jobs, the node encounters a large number of page faults, leading to a high
implicit I/O load. Implicit I/0 load depends on three factors, namely, the available user memory space, the
page fault rate, and the memory space requested by the jobs assigned to node i. More precisely, {page (%, u) can
be defined as follows, where u; denotes the page fault rate of the node, and loadprgas (i) is the memory load
denoted as the sum of the memory requirements of the jobs running on node i.

(4.3)

wiX3 e, TMEM (V)
ny e (i)

. 0 if loadarpar(i) < narpar(i),
Ipage(i,u) =

otherwise.

lr0(i,u) in Equation 4.2 is a function of I/O access rate, denoted A, ), and I/O buffer hit rate h(é,u) that
will be discussed in Section 4.1. Thus, {;o(i, u) is approximated by the following expression:

lro(i,u) = Ay X (1 — h(i,u)). (4.4)

In what follows, we quantitatively determine whether a job is eligible for migration. When a job u is
assigned to node i, its expected response time r(i,u) can be computed in Equation 4.5.

Aéisk X E((Szdlsk)2)
2(1 = pyisk)

(i, u) =ty X E(L;) +ty X Ay X E(s%; + ), (4.5)

where ¢, and A\, are the computation time and I/O access rate of job u, respectively. E(s’,..,) and E((s%;.;.)%)
are the mean and mean-square 1/O service time in node i, and p’,,, is the utilization of the disk in node i.
E(L;) represents the mean CPU queue length L;, and Afiisk denotes the aggregate I/O access rate in node i.
Since the expected response time of an eligible migrant on the source node has to be greater than the sum of
its expected response time on the destination node and the migration cost, job u is eligible for migration if:

r(iu) > r(j,u) + cu, (4.6)
where j represents a destination node, and ¢, is the migration cost (time) modeled as follows,

1 1 1
Ccy =e+dy X (T+ 7 +—j )s (4.7)
brer  Vaisk bgisk

where e is the fixed cost of migrating the job and loading it into the memory on another node, bifet denotes the

available bandwidth of the network link between node i and j, b, is the available disk bandwidth in node i.
ij

In practice, b,).;

and béisk can be measured by a performance monitor [3]. Accordingly, the simulator discussed
--et and béisk by storing the most recent values of the disk and network bandwidth. d,,
represents the amount of data initially stored on disk to be processed by job u. Thus, the second term on the
right hand side of Equation 4.7 represents the migration time spent on transmitting data over the network and

on accessing source and destination disks.

in Section 5 estimates b,”
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4.2. Problem Description and Examples. The feedback control mechanism that aims at minimizing
the mean slowdown focuses on adjusting the resource weights and the buffer sizes. To help describe the problem
of fixed resource weights and I/O buffer sizes, we first present the following examples that motivate the proposed
solution to improve the system performance.

Assume a cluster with six identical nodes [9, 17, 26, 27], to which the IO load-balancing policy is applied.
The average page-fault rate and I/O access rate are chosen to be 2.0 No./ms (Number/Millisecond) and 2.8
No./ms, respectively. The total memory size for each node is 640 Mbyte, and other parameters of the cluster
are given in Section 5.1. We modified the traces used in [9, 27|, adding a randomly generated I/O access rate to
each job. The traces used in [9] have been collected from one workstation on six different time intervals. In the
traces used in our experiments, the CPU and memory demands remain unchanged, and the memory demand
of each job is chosen based on a Pareto distribution with the mean size of 4 Mbytes [27].

To evaluate the impact of resource weights (see Equation 4.1) on the system performance, we conducted a
simulation experiment where the resource weights were statically set. Figure 4.1 plots the relationship between
the resource weight of I/O and the mean slowdown experienced by all the jobs in the trace. The result indicates
that the mean slowdown consistently decreases as the I/O resource weight increases from 0 to 1 with increments
of 0.2. We attributed this observation to the fact that, under I/O-intensive workload conditions, the I/O
resource weight with a high value is able to accurately reflect the significance of the disk I/O resources in the
system.

70 7 Mean Slowdown 60 7 Mean Slowdown
60 50
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30 T
20 1
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10 4 10 1
0 T 0 T T T
0 0.2 0.4 0.6 0.8 1 110 160 210 260 310 360
W, o, resource weight of disk 1/0 Buffer Size (MByte)
Fia. 4.1. Mean slowdowns as a function of the 1/0 re- Fia. 4.2. Mean slowdowns as a function of the buffer size.
source weight. Average page-fault rate = 2.0No./ms, average Average page-fault rate is 5.0 No./ms, average 1/0 access rate
1/0 access rate = 2.8 No./ms. is 2.3No./ms

The memory of each node is divided into two portions, with one serving as I/O buffer and the other being
used to store working sets of running jobs. Without loss of generality, we assume that the buffer sizes of six
nodes are identical. We conducted a second experiment, in which the buffer sizes were statically configured.
Figure 4.2 shows the buffer size chosen in the experiment and the corresponding mean slowdowns obtained from
the simulator.

The curve in Figure 4.2 reveals that the buffer size has a large effect on the mean slowdowns of the I0-aware
policy. When buffer size is smaller than 210 MByte, the slowdown decreases with the increasing value of the
buffer size. In contrast, the slowdown increases as the buffer size increases if the buffer size is greater than 210
MByte. Optimally, the mean slowdown of this given workload reaches the minimum value when buffer size is
210 MByte. A large buffer size results in a high buffer hit rate and reduces I/O processing time, thereby causing
a positive effect on the performance. On the other hand, given a fixed value of the total available main memory
size, a larger buffer size implies a smaller the amount of memory used to store the working sets of running
jobs, which in turn leads to a larger number of page faults. In general, a large buffer size may introduce both
positive and negative effect on the mean slowdown at the same time, and the overall performance depends on
the resultant effect.

Although the static configuration of resource weights and buffer sizes is an approach to tuning the per-
formance of clusters where workload conditions can be modeled and predicted, this approach performs poorly
and inefficiently for highly dynamic environments where workloads are unknown at compile time. Therefore, a
feedback control algorithm is developed in this study to adaptively configure resource weights and buffer sizes.
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4.3. A Feedback Control Mechanism. The high level view of the architecture for the feedback control
mechanism is presented in Figure 4.3, where the architecture comprises a load-balancing scheme, a resources-
sharing controller, and a feedback controller. The resource-sharing controller consists of a CPU scheduler, a
memory allocator and an I/O controller. The slowdown of a newly completed job and the history slowdowns
are fed back to the feedback controller, which then determines the required control action AW;o and Abufsize.
AWro > 0 means the I0-weight needs to be increased, and otherwise the I0-weight should be decreased. Since
the sum of Wepy and Wy is 1, the control action AWe py can be obtained accordingly. Similarly, Abufsize > 0
means the buffer size needs to be increased, and otherwise the buffer size is to be decreased.

Slowdown history <

Sowdown(u) ‘ Completedjob u
L T
f ocru MEM 110 3
Feedback : ‘ ‘ ‘ ‘ ‘ ‘ :
Controller : t A T
Wio Wepy L bufsize 777777777777777777777 A
Resource N
Sharing [ Running
controller jobs
Load- )f
balancing Newly
arrived jobs

Fia. 4.3. Architecture of the feedback control mechanism

The first goal of the feedback controller is to manipulate the resource weights in a way that makes it possible
to minimize the mean slowdown of jobs. The system model for an open loop balancer is approximately given
by the following equation,

slowdown(z) = —wg(L)Wio(z) + wd(L), (4.8)

where wg(L) and wd(L) are the gain factor and disturbance factor of the I/O resource weight under workload L,
respectively. The values of wg and wd largely depend on workload conditions and the applied load-balancing
policy. Thus, wg and wd can be obtained based on simulation models for open-loop load balancers. The control
rule for the resource weight is formally modeled below,

Su y AWi0.u-1
AWio uw = Gp(1l — == : , 4.9
’u ol Su_1 ) [AWT0,u-1] (4.9)
Wiou = Wrou-1 + AWio, (4.10)
where AW;o ,, is the control action, S, denotes the average slowdown, m%:‘ indicates whether the previous

control action has increased or decreased the resource weight, and G,, denotes the controller gain for the I/0
resource weight. In the experiments presented shortly in the next section, G, is tuned to be 0.5 for better
performance. Let Wro ., be the resource weight upon the arrival of job at the system, the resource weight will
be updated to Wip -1 + AWro. Without loss of generality, we make use of a linear model to capture the
characteristics of varying workload conditions. The model is given by the following equation,

slowdown(z) = —wgo(L)Wio(z) + wdy + Awd, (4.11)

The feedback controller attempts to manipulate the resource weights in the following three steps. First,
when a job u is accomplished, the controller calculates the slowdown s, of this newly completed job, Second,
sy is stored in the slowdown history table, and the average slowdown S, is computed accordingly. Note that
S, reflects a specific pattern of the recent slowdowns in the dynamic workload. The table size is a tunable
parameter, and the oldest slowdown will be replaced by the latest one if the history table overflows. In our

simulation model presented in Section 5.1, the history table size is fixed to 50. Finally, the controller generates
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control actions AW;o ,, and AWepy ., which are based on the previous control action along with the comparison
between S, and S,_;. More precisely, the performance is regarded to be improved by the previous control action
if S,_1 > S,, therefore the controller continues increasing Wi if it has been increased by the previous control
action, otherwise Wyo is decreased. Similarly, S,,_; < S, means that the performance has been worsened since
the latest control action, suggesting that Wjo has to be increased if the previous control action has reduced
Wro, and vice versa.

Besides configuring the weights, the second goal of the feedback control mechanism is to dynamically set
the buffer size of each node based on the unpredictable workload. The mechanism is aiming at improving buffer
utilizations and reducing the number of page faults by maintaining an effective usage of memory space for
running jobs and their data.

We can derive the slowdown based on a model that captures the correlation between the buffer size and the
slowdown. For simplicity, the model can be constructed as follows,

slowdown(z) = —bg(L)bufsize(z) + bd(L), (4.12)

where bg(L) and bd(L) are the buffer size gain factor and disturbance factor under workload L, respectively.
The control rule for buffer sizes is formulated as,

— Abufsize,

Abufsizeu = Gb(Su—l — SU)W, (413)
“tu—1

Abufsize,
[Abufsize, ]|
or decreased the resource weight, and Cj denotes the controller gain. G, is tuned to be 0.5 in order to
deliver better performance. Let bufsize,_; be the current buffer size, the buffer size is calculated as bufsize, =
bufsize,_, + Abufsize,.

As can be seen from 4.3, the feedback control generates control action Abufsize in addition to AWepy and
AWjo. The adaptive buffer size makes noticeable impacts on both the memory allocator and I/O controller,
which in turn affect the overall performance (See Figure 4.2). The feedback controller generates a control action
Abufsize based on the previous control action along with the comparison between S, and S,_;. Specifically,
Su_1 > S, means the performance is improved by the previous control action, thereby increasing the buffer size
if it has been increased by the previous control action, otherwise the buffer size is reduced. Likewise, S,_1 < S,
indicates that the latest buffer control action leads to a worse performance, implying that the buffer size has
to be increased if the previous control action has reduced the buffer size, otherwise the controller decreases the
buffer size.

The extra time spent in performing feedback control is negligible and, therefore, the overhead introduced by
the feedback control mechanism is ignored in our simulation experiments. The reason is because the complexity
of the mechanism is low, and it takes a constant time to make a feedback control decision.

where Abufsize, is the control action, indicates whether the previous control action has increased

5. Experiments and Results. To evaluate the performance of the proposed load-balancing scheme with
a feedback control mechanism, we have conducted a trace-driven simulation, in which the performance metric
used is slowdown that is defined earlier in section 3. We have evaluated the performance of the following
load-balancing policies:

1. CM: the CPU-memory-based load-balancing policy [27] without using buffer feedback controller. If the
memory is imbalanced, CM assigns the newly arrived job to the node that has the least accumulated
memory load. When CPU load is imbalance and memory load is well balanced, CM attempts to balance
CPU load.

2. 10: the I0-based policy [11] without using the feedback control mechanism. The 10 policy uses a load
index that represents only the I/O load. For a job arriving in node i, the 10 scheme greedily assigns
the job to the node that has the least accumulated I/0 load.

3. WAL: the Weighted Average Load-balancing scheme without the feedback controller [21].

4. WAL-FC: the Weighted Average Load-balancing scheme with the feedback control mechanism.

5. NLB: The non-load-balancing policy without using the feedback controller.

5.1. Simulation Model. Before presenting the empirical results, the trace-driven simulation model and
the workload are presented.
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To study dynamic load balancing, Harchol-Balter and Downey [9] implemented a trace-driven simulator
for a distributed system with 6 nodes in which round-robin scheduling is employed. The load balancing policy
studied in that simulator is CPU-based. Zhang et. al [27] extended the simulator, incorporating memory
recourses into the simulation system. Based on the simulator presented in [27], our simulator incorporates
the following new features: (1) The above polices are implemented in the simulator. (2) The interconnect is
assumed to be a fully connected network. (3) A simple disk model is added into the simulator. (4) An I/O buffer
model, which will be presented shortly in this section, is implemented on top of the disk model. The traces used
in the simulation are modified from [9][27], and it is assumed that the I/O access rate is randomly chosen in
accordance with a uniform distribution. We assume that the I/O access rate of each job is independent of the
job’s memory space requirement and CPU service time. Although this simplification deflates any correlations
between 1/O requirement and other job characteristics, we can examine the impact of I/O requirement on
system performance by configuring the mean I/O access rate as a workload parameter.

The simulated system is configured with parameters listed in Table 5.1. The parameters for CPU, memory,
disks, and network are chosen in such a way that they resemble a typical cluster of the current day.

TABLE 5.1
Data Characteristics
Parameters Value Parameters Value
CPU Speed 800 MIPS | Page Fault Service Time 8.1 ms
RAM Size 640 MByte | Seek and Rotation time 8.0 ms
Initial Buffer Size 160 MByte Disk Transfer Rate 40MB/Sec.
Context switch time 0.1 ms Network Bandwidth 1Gbps

Disk accesses of each job are modeled as a Poisson process. Data sizes diW of the 1/O requests in job u
are randomly generated based on a Gamma distribution with the mean size of 250 KByte and the standard
deviation of 50 Kbyte. The sizes chosen in this way reflect typical data characteristics for MPEG-1 data [2],
which is retrieved by many multimedia applications.

Since buffer can be used to reduce the disk I/O access frequency (See Equation 4.4), we approximately

model the buffer hit probability of I/O access for job u running on node i by the following formula:

) TT“ if dbuf (Z, U) > ddata (u)7
h(i,u) = { . douy (4,4) i’t) otherwise >0
ru+1 ddata(u) ’

where 7, is the data re-access rate, dp,s(4,u) is the buffer size allocated to job u, and dgqie () is the amount
of data job u retrieves from or stored to the disk, given a buffer with infinite size. I/O buffer in a node is a
resource shared by multiple jobs in the node, and the buffer size a job can obtain in node ¢ at run time heavily
depends on the jobs’ access patterns, characterized by I/0O access rate and average data size of I/O accesses.
dgata(w) linearly depends on access rate, computation time and average data size of I/O accesses dffW, and
ddate(u) is inversely proportional to I/O re-access rate. dpys (%, u) and dgqee(u) are estimated using the following
two equations:

N dBEW dpy, 1 (i)
Ay r(i,0) = 2002 59
b f(l u) ZkeMi /\kdfw ( )

Ayt dEW
ddata(u) = ——"— 5.3
dat (u) Ty + 1 (5.3)
From Equations 5.1, 5.2 and 5.3, hit rate h(%,u) becomes:
. r:u 1 if db“f(ia U) > ddata (U),

h(i,u) = { ;db—u&(i)d;v otherwise (5.4)

tu jem; Ny :

Figure 5.1 shows the effects of buffer size on the buffer hit probabilities of the NLB, CM and IO policies.
When buffer size is smaller than 150 Mbyte, the buffer hit probability increases almost linearly with the buffer
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size. The increasing rate of the buffer hit probability drops when the buffer size is greater than 150 Mbyte,
suggesting that further increasing the buffer size can not significantly improve the buffer hit probability when
the buffer size approaches to a level at which a large portion of the I/O data can be accommodated in the
buffer.

- 4 Mean Slowdown
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5.2. Memory Intensive Workload. To simulate a memory intensive workload, the I/O access rate
is fixed to a comparatively low level of 0.1 No./ms. The page-fault rate is set from 7.2 No./ms to 8.8
No./ms with increments of 0.2 No./ms. The performance of CM is omitted, since it is very close to that
of WAL.

Figure 5.2 reveals that the mean slowdowns of all the policies increase with the page-fault rate. This is
because as I/O demands are fixed, high page-fault rate leads to a high utilization of disks, causing longer waiting
time on I/O processing.

When the page-fault rate is high, WAL outperforms 10 and NLB, and the WAL-FC has better perfor-
mance than both WAL and 10. For example, the WAL policy reduces slowdowns over the 10 policy by up
to 37.2% (with an average of 31.5%), and the WAL-FC policy improves the performance in terms of mean
slowdown over IO by up to a factor of 4 (400%). The reason is that the 10 policy only attempts to bal-
ance explicit I/0O load, ignoring the implicit I/O load that resulted from page faults. When the explicit I/0
load is low, balancing explicit I/O load does not make a significant contribution to balancing the overall sys-
tem load. In addition, NLB is consistently the worst among the six policies, since NLB leaves three shared
resources extremely imbalanced and does not improve the buffer utilization by the adaptive configuration of
buffer sizes.

More interestingly, the policies that use the feedback control mechanism algorithm considerably improve
the performance over those without employing the feedback controller. For example, WAL-FC improves the
system performance over WAL by up to 274% (with an average of 220%). Consequently, the slowdowns of NLB,
WAL, and IO are more sensitive to the page-fault rate than WAL-FC.

5.3. I/O-Intensive Workload. To stress the I/O-intensive workload in this experiment, the I/O access
rate is fixed at a high value of 2.8 No./ms, and the page-fault rate is chosen from 1.6 No./ms to 2.1 No./ms
with increments of 0.1No./ms. The low page-fault rates imply that, even when the requested memory space is
larger than the allocated memory space, page faults do not occur frequently. This workload reflects a scenario
where memory-intensive jobs exhibit high temporal and spatial locality of access. Figure 5.3 plots slowdown as
a function of the page-fault rate. The results of IO are omitted from Figure 5.3, since they are nearly identical
to those of WAL.

First, the results show that the WAL scheme significantly outperforms the NLB and CM policies, suggesting
that NLB and CM are not suitable for I/O intensive workload. For example, as shown in Figure 5.3, WAL
improves the performance of CM in terms of the mean slowdown by up to a factor of 9 (with an average of
476%). This is because the CM policies only balance CPU and memory load, ignoring the imbalanced I/0 load
of clusters under the I/0 intensive workload.
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F1G. 5.3. Mean slowdown as a function of the page-fault rate, 1/0 access rate is 2.8 No./ms.

Second, Figure 5.3 shows that WAL-FC significantly outperforms WAL. For example, WAL-FC delivers a
performance improvement over WAL by up to 282% (with an average of 125%). Again, this is because the WAL-
FC scheme applies the feedback controller to meet the high I/O demands by changing the weights and the I/0O
buffer sizes to achieve a high buffer hit probability. This result suggests that improving the I/O buffer utilization
by using the feedback control mechanism can potentially alleviate the performance degradation resulted from
the imbalanced I/0 load.

Third, the results further show the slowdowns of NLB and CM are very sensitive to the page-fault rate.
In other words, the mean slowdowns of NLB and CM all increase noticeably with the increasing value of
I/0 load. One reason is, as I/O load are fixed, a high page-fault rate leads to high disk utilization, caus-
ing longer waiting time on I/O processing. A second reason is, when the I/O load is imbalanced, the ex-
plicit I/O load imposed on some node will be very high, leading to a longer paging fault processing time.
Conversely, the page-fault rate makes insignificant impact on the performance of WAL, and WAL-FC. Since
the high I/O load imposed on the disks is diminished either by balancing the I/O load or by improving
the buffer utilization. This observation suggests that the feedback control mechanism is capable of boosting
the performance of clusters under I/O-intensive workload even in the absence of any dynamic load-balancing
schemes.

5.4. Memory and I/O intensive Workload. The two previous sections presented the best cases for
the proposed scheme since the workload was either highly memory-intensive or I/O-intensive but not both. In
these extreme scenarios, the feedback control mechanism provides more benefits to clusters than load-balancing
policies do. This section attempts to show another interesting case in which the cluster has a workload with
both high memory and I/O intensive jobs. The I/O access rate is set to 1.5 No./ms. The page fault rate is
from 7.2 No./ms to 8.4 No./ms with increments of 0.2 No./ms.

Figure 5.4 shows that the performances of CM, 10, and WAL are close to one another. This is because
the trace, used in this experiment, comprises a good mixture of memory-intensive and I/O-intensive jobs.
Hence, while CM takes advantage of balancing CPU-memory load, IO can enjoy benefits of balancing I/0
load. Interestingly, under this specific memory and I/O intensive workload, the resultant effect of balancing
CPU-memory load is almost identical to that of balancing I/O load.

A second observation is that, under the memory and I/0 intensive workload, load-balancing schemes achieve
higher level of improvements over NLB. The reason is that when both memory and I/O demands are high, the
buffer sizes in a cluster are unlikely to be changed, as there is a memory contention among memory-intensive
and I/O-intensive jobs. Thus, instead of fluctuating widely to optimize the performance, the buffer sizes finally
converge to a value that minimizes the mean slowdown.

Third, incorporating the feedback control mechanism in the existing load-balancing schemes is able to
further boost the performance. For example, compared with WAL, WAL-FC further decreases the slowdown
by up to 54.5% (with an average of 30.3%). This result suggests that, to sustain a high performance in
clusters, compounding a feedback controller with an appropriate load-balancing policy is desirable and strongly
recommend.
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5.5. Average Data Size. In the previous experiments, the data sizes are chosen based on typical mul-
timedia applications. It is noted that I/O load depends on I/O access rate and the average data size of I/0
requests, which in turn rely on the I/O access patterns of applications. The purpose of this experiment is to
study the performance improvements achieved by the feedback control mechanism for other types of applica-
tions if they exhibit different characteristics. Specifically, Figure 5.5 shows the impact of average data size on
the performance of the feedback control mechanism. The page fault rate and the I/O access rate are set to
0.5 No./ms and 2.6 No./ms., respectively. The average data size is chosen from 100 KByte to 400 KByte with
increments of 50 KByte.

Figure 5.5 indicates that, for three examined load-balancing policies, the mean slowdown increases as the
average data size increases. This is because, under circumstance that both page fault rate and I/O access
rate are fixed, a large average data size yields a high utilization of disks, causing longer waiting times on I/0
processing. More importantly, Figure 5.5 shows that the performance improvement gained by the feedback
control mechanism becomes more noticeable when the average data size is large. This result suggests that the
proposed approach is not only beneficial for multimedia applications, but also turns out to be useful for a variety
of applications that are data intensive in nature.

6. Conclusions. In this paper, we have proposed a feedback control mechanism to dynamically adjust
the weights of recourses and the buffer sizes in a cluster with a general and practical workload that includes
memory and I/0 intensive workload conditions. The primary objective of the proposed approach is to minimize
the number of page faults for memory-intensive jobs while improving the buffer utilization of I/O-intensive
jobs. The feedback controller judiciously configures the weights to achieve an optimal performance. Meanwhile,
under a workload where the memory demand is high, the buffer sizes are decreased to allocate more memory
for memory-intensive jobs, thereby leading to a low page-fault rate.

To evaluate the performance of the mechanism, we compared the proposed WAL-FC scheme with WAL,
CM, and I0O. For comparison purposes, the NLB policy that does not consider load balancing is also simu-
lated. A trace-driven simulation provides extensive empirical results demonstrating that WAL-FC is effective
in enhancing performance of existing dynamic load-balancing policies under memory-intensive or I/O-intensive
workload. In particular, when the workload is memory-intensive, WAL-FC reduces the mean slowdown over
the CM and IO policies by up to a factor of 9. Further, we have made the following observations:

1. When the page-fault rate is higher and the I/0O rate is very low, WAL and CM outperform IO and
NLB, and WAL-FC has better performance than WAL;

2. When I/0O demands are high, WAL and IO are significantly superior to CM and NLB. And WAL-FC
has noticeably better performance than that of 10;

3. Under an I/0 intensive workload, the mean slowdowns of NLB and CM all increase noticeably with
I/0 load. Conversely, the page-fault rate makes insignificant impact on the performance of 10, WAL,
and WAL-FC.

4. Under the workload with a good mixture of memory and I/O intensive jobs, WAL-FC achieves high
level of improvements over NLB.
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5. The performance improvement gained by the feedback control mechanism becomes pronounced when
the average data size is relatively large. Future studies in this area may be performed in several
directions. First, the feedback control mechanism will be implemented in a cluster system. Second, we
will study the stability of the proposed feedback controller. Finally, it will be interesting to study how
quickly the feedback controller converges to the optimal value in clusters.
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