
S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 4, pp. 95�107. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSA FEEDBACK CONTROL MECHANISM FOR BALANCING I/O- ANDMEMORY-INTENSIVE APPLICATIONS ON CLUSTERSXIAO QIN∗ , HONG JIANG† , YIFENG ZHU† , AND DAVID R. SWANSON†Abstra
t. One 
ommon assumption of existing models of load balan
ing is that the weights of resour
es and I/O bu�er sizeare stati
ally 
on�gured and 
annot be adjusted based on a dynami
 workload. Though the stati
 
on�guration of these parametersperforms well in a 
luster where the workload 
an be modeled and predi
ted, its performan
e is poor in dynami
 systems in whi
hthe workload is unknown. In this paper, a new feedba
k 
ontrol me
hanism is proposed to improve overall performan
e of a 
lusterwith a general and pra
ti
al workload in
luding I/O-intensive and memory-intensive load. This me
hanism is also shown to bee�e
tive in 
omplementing and enhan
ing the performan
e of a number of existing dynami
 load-balan
ing s
hemes. To 
apturethe 
urrent and past workload 
hara
teristi
s, the primary obje
tives of the feedba
k me
hanism are: (1) dynami
ally adjustingthe resour
e weights, whi
h indi
ate the signi�
an
e of the resour
es, and (2) minimizing the number of page faults for memory-intensive jobs while in
reasing the utilization of the I/O bu�ers for I/O-intensive jobs by manipulating the I/O bu�er size. Resultsfrom extensive tra
e-driven simulation experiments show that 
ompared with a number of s
hemes with �xed resour
e weights andbu�er sizes, the feedba
k 
ontrol me
hanism delivers a performan
e improvement in terms of the mean slowdown by up to 282%(with an average of 125%).Key words. Feedba
k 
ontrol, I/O-intensive appli
ations, 
luster, load balan
ing1. Introdu
tion. S
heduling [16, 19℄ and load balan
ing [1, 10℄ te
hniques in parallel and distributedsystems have been investigated to improve system performan
e with respe
t to throughput and/or individualresponse time. S
heduling s
hemes assign work to ma
hines to a
hieve better resour
e utilization, whereasload-balan
ing poli
ies 
an migrate a newly arrived job or a running job preemptively to another ma
hines ifneeded.Sin
e 
lusters-a type of loosely 
oupled parallel system-have be
ome widely used for s
ienti�
 and 
ommer-
ial appli
ations, several distributed load-balan
ing s
hemes in 
lusters have been presented in the literature,primarily 
onsidering CPU [9, 10℄, memory [1, 23℄, or a 
ombination of CPU and memory [26, 27℄. Althoughthese load-balan
ing poli
ies have been very e�e
tive in in
reasing the utilization of resour
es in distributedsystems (and thus improving system performan
e), they have ignored one type of resour
e, namely disk (anddisk I/O). The impa
t of disk I/O on overall system performan
e is be
oming signi�
ant as more and morejobs with high I/O demand are running on 
lusters. This makes storage devi
es a likely performan
e bottle-ne
k. Therefore, we believe that for any dynami
 load balan
ing s
heme to be e�e
tive in this new appli
ationenvironment, it must be made I/O-aware.Typi
al examples of I/O-intensive appli
ations in
lude long running simulations of time-dependent phe-nomena that periodi
ally generate snapshots of their state [22℄, ar
hiving of raw and pro
essed remote sensingdata [4℄, multimedia and web-based appli
ations. These appli
ations share a 
ommon feature in that theirstorage and 
omputational requirements are extremely high. Therefore, the high performan
e of I/O-intensiveappli
ations heavily depends on the e�e
tive usage of storage, in addition to that of CPU and memory. Com-pounding the performan
e impa
t of I/O in general, and disk I/O in parti
ular, the steady widening gap betweenCPU and I/O speed makes load imbalan
e in I/O in
reasingly more 
ru
ial to overall system performan
e. Tobridge this gap, I/O bu�ers allo
ated in the main memory have been su

essfully used to redu
e disk I/O 
osts,thus improving the throughput of I/O systems.This paper proposes a feedba
k 
ontrol me
hanism to dynami
ally 
on�gure resour
e weights and I/Obu�ers in su
h a way that the weights are 
apable of re�e
ting the signi�
an
e of system resour
es, and thememory utilization is improved for I/O- and memory-intensive workload.The rest of the paper is organized as follows. Related work in the literature is reviewed in Se
tion 2. Se
tion 3des
ribes system model, and Se
tion 4 proposes the feedba
k 
ontrol me
hanism. Se
tion 5 evaluates theperforman
e of the me
hanism. Finally, Se
tion 6 
on
ludes the paper by summarizing the main 
ontributionsand 
ommenting on future dire
tions of this work.
∗Department of Computer S
ien
e, New Mexi
o Institute of Mining and Te
hnology, So
orro, New Mexi
o 87801.http://www.
s.nmt.edu/∼xqin (xqin�
s.nmt.edu). Questions, 
omments, or 
orre
tions to this do
ument may be dire
ted tothat email address.
†Department of Computer S
ien
e and Engineering, University of Nebraska-Lin
oln, Lin
oln, NE 68588-0115.95



96 X. Qin et al.2. Related Work. There exists a large base of ex
ellent resear
h related to distributed load balan
ingmodels, and to name just a few: sender or re
eiver-initiated di�usion [5, 24℄, the gradient model [6, 13, 14℄,and the hierar
hi
al balan
ing model Pollak [24℄. Eager et al. studied both re
eiver and sender initiateddi�usion, and the results of their study showed that re
eiver-initiated poli
ies are preferable at high systemloads if the overheads of task transfer under the two poli
ies are 
omparable [5℄. The gradient model makesuse of a gradient proximity map of underloaded pro
essors to guide the migration of tasks from overloaded tounderloaded pro
essors [6, 13, 14℄. Underloaded nodes dynami
ally update the gradient proximity map, whereasoverloaded nodes initiate task migrations. Pollark proposed a s
alable approa
h for dynami
 load balan
ing inlarge parallel and distributed systems on a multi-level 
ontrol hierar
hy [15℄. The hierar
hi
al s
heme a
hievesigni�
ant performan
e gain due to the parallelism in the low level of the hierar
hy and the possibility toaggregate information in the higher level of the 
ontrol tree [15℄.The issue of distributed load balan
ing for CPU and memory resour
es has been extensively studied andreported in the literature. For example, Har
hol-Balter et al. [9℄ proposed a CPU-based preemptive migrationpoli
y that was more e�e
tive than non-preemptive migration poli
ies. Zhang et al. [27℄ fo
used on load sharingpoli
ies that 
onsider both CPU and memory servi
es among the nodes of a 
luster. Throughout this paper, theCPU-memory-based load balan
ing poli
y presented in [27℄ will be referred to as CM. The simulation resultsshow that the CM poli
y not only improves performan
e of memory-intensive jobs, but also maintains the sameload sharing quality of the CPU-based poli
ies for CPU-intensive jobs [27℄.A large body of work 
an be found in the literature that addresses the issue of balan
ing the load of disksystems [11, 18℄. S
heuermann et al. [18℄ studied two issues in parallel disk systems, namely striping and loadbalan
ing, and showed their relationship to response time and throughput. Lee et al. [11℄ proposed two �leassignment algorithms that minimize the varian
e of the servi
e time at ea
h disk, in addition to balan
ingthe load a
ross all disks. Sin
e the problem of balan
ing the utilizations a
ross all disks is isomorphi
 to themultipro
essor s
heduling problem [7℄, a greedy multipro
essor-s
heduling algorithm, 
alled LPT [8℄, 
an beapplied to disk load balan
ing [11℄. Thus, LPT greedily assigns a pro
ess to the pro
essor with the lightest I/Oload [11℄. Throughout this paper, we refer to the approa
hes that dire
tly apply LPT to I/O load balan
ing asthe IO poli
y. The I/O load balan
ing poli
ies in these studies have been shown to be e�e
tive in improvingoverall system performan
e by fully utilizing the available hard drives.Very re
ently, three load balan
ing models, whi
h 
onsider I/O, CPU and memory resour
es simultaneously,were presented [21, 26℄. In [21℄, a dynami
 load-balan
ing s
heme, tailored for the spe
i�
 requirements of theQuestion/Answer appli
ation, was proposed along with a performan
e analysis of the approa
h. Xiao et al.proposed e�e
tive load sharing strategies by minimizing both CPU idle time and the number of page faults in
lusters [26℄.However, the load-balan
ing models presented in [21, 26℄ are similar in the sense that the weights ofsystem resour
es and bu�er size are stati
ally 
on�gured with a dynami
al workload. In 
ontrast, the newfeedba
k 
ontrol me
hanism proposed in this study judi
iously 
on�gures these parameters in a

ordan
e withthe workload of the 
luster. Tra
e-driven simulations show that, 
ompared with the CM and IO poli
ies, theproposed s
heme with a feedba
k 
ontrol me
hanism signi�
antly enhan
es the overall performan
e of a 
lustersystem under both memory-intensive and I/O-intensive workload.Some work has been done to make use of feedba
k 
ontrol me
hanisms in operating systems and distributedenvironments [12, 20℄. For example, Steere et al. proposed a s
heduling s
heme that dynami
ally adjusts CPUallo
ation and period of threads using the feedba
k of an appli
ation's rates of progress with respe
t to itsinputs and/or outputs [20℄. Li and Nahrstedt studied a feedba
k 
ontrol algorithm to support end-to-end QoSin a distributed environment [12℄. However, the feedba
k 
ontrols of resour
e weights and bu�er sizes havenot been addressed in these works. In 
ontrast, this paper has presented the experimental results that verifythe bene�ts of the proposed feedba
k 
ontrol me
hanism for both resour
e weights and bu�er sizes in a highlydynami
 environment.3. System Model. We 
onsider the issue of feedba
k 
ontrol method to improve the performan
e of loadbalan
ing s
hemes in a 
luster 
onne
ted by a high-speed network, where ea
h node not only maintains itsindividual job queue that holds jobs until they �nish exe
ution, but also per
eives reasonably up-to-date globalload information by periodi
ally ex
hanging load status with other nodes. Jobs arrive at ea
h node dynami
allyand independently, and share three main resour
es, namely, CPU, main memory, and disk I/O. It is assumedthat a round-robin s
heduling (time-sharing) is employed as the CPU s
heduling poli
y [9, 27℄, and the disk of



A Feedba
k Control Me
hanism for Balan
ing I/O- and Memory-Intensive Appli
ations 97ea
h node is modeled as a single M/G/1 queue [11℄. Sin
e jobs may be delayed be
ause of waiting in queues(to share resour
es with other jobs) or being migrated to remote nodes, the slowdown imposed on a job u isde�ned as below, slowdown(u) =
tf (u) − ta(u)

tCPU (u) + tIO(u)
(3.1)where tf (u) and ta(u) are the �nish and arrival times of the job, and tCPU (u) and timeIO(u) are the timesspent by job u on CPU and I/O, respe
tively, without any resour
e sharing.In expression 3.1, the numerator 
orresponds to the total time the job spends running, a

essing I/O,waiting, or migrating, and the denominator 
orresponds to the exe
ution time for job u in a dedi
ated setting.The de�nition of slowdown is an extension of the one used in [9, 26, 27℄, where I/O a

ess time is not 
onsidered.For simpli
ity, we assume that all nodes are homogeneous, having identi
al 
omputing power, memory 
a-pa
ity, and disk I/O performan
e 
hara
teristi
s. This simplifying assumption should not restri
t the generalityof the proposed model, be
ause if a 
luster is heterogeneous, the relative load of a given job imposed on a nodewith high pro
essing 
apability is less than that imposed on a node with low performan
e. The proposed s
hememay be extended to handle heterogeneous system by in
orporating a simple 
onversion me
hanism for relativeload [16℄.We also assume the network in our model is fully 
onne
ted and homogenous in the sense that 
ommuni
ationdelay between any pair of nodes is the same. This simpli�
ation of the network is 
ommonly used in manyload-balan
ing models [9, 26, 27℄. Additionally, we assume that the input data of ea
h job has been stored onthe lo
al disk of the node to whi
h the job is submitted. This assumption is 
onservative in nature, sin
e we
ondu
ted an experiment to show that, under I/O-intensive workload, the performan
e of the proposed s
hemeswith su
h assumption is approximately 10% less e�e
tive than that of the s
hemes without it.For a newly arrived job u at a node i, load balan
ing s
hemes attempt to ship it to a remote node with thelightest load if node i is heavily loaded, otherwise job u is admitted into node i and exe
uted lo
ally. To avoiduseless migration that may potentially degrade the system performan
e, the load balan
ing s
hemes 
onsidertransferring a job only if the load dis
repan
y between the sour
e node and the destination node is greater thanthe load of the newly arrived job plus the migration 
ost, therefore guaranteeing that ea
h migration improvesthe expe
ted slowdown of the job. If an appropriate 
andidate remote node is not available or the migration isevaluated to be useless, the load balan
ing s
hemes will not initiate the job migration.4. Adaptive Load Balan
ing S
heme.4.1. Weighted Average Load-balan
ing S
heme. In this se
tion, we present WAL, a weighted averageload-balan
ing s
heme. Ea
h job is des
ribed by its requirements for CPU, memory, and I/O, whi
h are measuredby the number of jobs running in the nodes, Mbytes, and number of disk a

esses per ms, respe
tively. For anewly arrived job u at a node i, the WAL-FC s
heme balan
es the system load in the following �ve steps.1. First, the load of node i is updated by adding job u's load, assigning the newborn job to the lo
al node.2. Se
ond, a migration is to be initiated if node i's load is overloaded. Node i is overloaded, if: (1) its loadis the highest; and (2) the ratio between its load and the average load a
ross the system is greater thana threshold, whi
h is set to 1.25 in our experiments. This optimal value, whi
h is 
onsistent with theresult reported in [25℄, is obtained from an experiment where the threshold is varied from 1.0 to 2.0.3. Third, a 
andidate node j with the lowest load is 
hosen. In the 
ase where there are more than twonodes with the lowest load, we randomly sele
t one node to break the tie. If a 
andidate node is notavailable, WAL-FC will be terminated and no migration will be 
arried out.4. Fourth, WAL-FC determines if job u is eligible for migration. A job is eligible for migration if itsmigration is able to potentially redu
e the job's slowdown.5. Finally, job u is migrated to the remote node j, and the load of nodes i and j is updated in a

ordan
ewith job u's load.WAL-FC 
al
ulates the weighted average load index in the �rst step. The load index of ea
h node i isde�ned as the weighted average of CPU and I/O load, thus:load(i) = WCPU × loadCPU (i) + WIO × loadIO(i), (4.1)where loadCPU (i) is CPU load de�ned as the number of running jobs and loadIO(i) is the I/O load de-�ned as the summation of the individual impli
it and expli
it I/O load 
ontributed by jobs assigned to



98 X. Qin et al.node i. WCPU and WIO are resour
e weights used to indi
ate the signi�
an
e of the 
orresponding re-sour
e.It is noted that the memory load is expressed by the impli
it I/O load imposed by page faults. Let lpage(i, u)and lIO(i, u) denote the impli
it and expli
it I/O load of job u assigned to node i, respe
tively. loadIO(i) 
anbe de�ned by equation 4.2, where Mi is a set of jobs running on node i:loadIO(i) =
∑

u∈Mi

lpage(i, u) +
∑

u∈Mi

lIO(i, u). (4.2)Let rMEM (u) denote the memory spa
e requested by job u, and nMEM (i) represent the memory spa
e inbytes that is available to all jobs running on node i. It is to be noted that the memory spa
e, nMEM (i), 
anbe 
on�gured in a

ordan
e with the bu�er size that is adaptively tuned by the feedba
k 
ontrol me
hanismproposed in Se
tion 4.2. When the node's available memory spa
e is larger than or equal to the memory demand,there is no impli
it I/O load imposed on the disk. Conversely, when the memory spa
e of a node is unable tomeet the memory requirements of the jobs, the node en
ounters a large number of page faults, leading to a highimpli
it I/O load. Impli
it I/O load depends on three fa
tors, namely, the available user memory spa
e, thepage fault rate, and the memory spa
e requested by the jobs assigned to node i. More pre
isely, lpage(i, u) 
anbe de�ned as follows, where µi denotes the page fault rate of the node, and loadMEM (i) is the memory loaddenoted as the sum of the memory requirements of the jobs running on node i.
lpage(i, u) =

{

0 if loadMEM (i) ≤ nMEM (i),
µi×

P

v∈Mi
rMEM (v)

nMEM (i) otherwise. (4.3)
lIO(i, u) in Equation 4.2 is a fun
tion of I/O a

ess rate, denoted λu), and I/O bu�er hit rate h(i, u) thatwill be dis
ussed in Se
tion 4.1. Thus, lIO(i, u) is approximated by the following expression:

lIO(i, u) = λu × (1 − h(i, u)). (4.4)In what follows, we quantitatively determine whether a job is eligible for migration. When a job u isassigned to node i, its expe
ted response time r(i, u) 
an be 
omputed in Equation 4.5.
r(i, u) = tu × E(Li) + tu × λu × E(si

disk +
Λi

disk × E((si
disk)2)

2(1 − ρi
disk)

), (4.5)where tu and λu are the 
omputation time and I/O a

ess rate of job u, respe
tively. E(si
disk) and E((si

disk)2)are the mean and mean-square I/O servi
e time in node i, and ρi
disk is the utilization of the disk in node i.

E(Li) represents the mean CPU queue length Li, and Λi
disk denotes the aggregate I/O a

ess rate in node i.Sin
e the expe
ted response time of an eligible migrant on the sour
e node has to be greater than the sum ofits expe
ted response time on the destination node and the migration 
ost, job u is eligible for migration if:

r(i, u) > r(j, u) + cu, (4.6)where j represents a destination node, and cu is the migration 
ost (time) modeled as follows,
cu = e + du × (

1

b
ij
net

+
1

bi
disk

+
1

b
j
disk

), (4.7)where e is the �xed 
ost of migrating the job and loading it into the memory on another node, b
ij
net denotes theavailable bandwidth of the network link between node i and j, bi

disk is the available disk bandwidth in node i.In pra
ti
e, b
ij
net and b

j
disk 
an be measured by a performan
e monitor [3℄. A

ordingly, the simulator dis
ussedin Se
tion 5 estimates b

ij
net and b

j
disk by storing the most re
ent values of the disk and network bandwidth. durepresents the amount of data initially stored on disk to be pro
essed by job u. Thus, the se
ond term on theright hand side of Equation 4.7 represents the migration time spent on transmitting data over the network andon a

essing sour
e and destination disks.



A Feedba
k Control Me
hanism for Balan
ing I/O- and Memory-Intensive Appli
ations 994.2. Problem Des
ription and Examples. The feedba
k 
ontrol me
hanism that aims at minimizingthe mean slowdown fo
uses on adjusting the resour
e weights and the bu�er sizes. To help des
ribe the problemof �xed resour
e weights and I/O bu�er sizes, we �rst present the following examples that motivate the proposedsolution to improve the system performan
e.Assume a 
luster with six identi
al nodes [9, 17, 26, 27℄, to whi
h the IO load-balan
ing poli
y is applied.The average page-fault rate and I/O a

ess rate are 
hosen to be 2.0 No./ms (Number/Millise
ond) and 2.8No./ms, respe
tively. The total memory size for ea
h node is 640 Mbyte, and other parameters of the 
lusterare given in Se
tion 5.1. We modi�ed the tra
es used in [9, 27℄, adding a randomly generated I/O a

ess rate toea
h job. The tra
es used in [9℄ have been 
olle
ted from one workstation on six di�erent time intervals. In thetra
es used in our experiments, the CPU and memory demands remain un
hanged, and the memory demandof ea
h job is 
hosen based on a Pareto distribution with the mean size of 4 Mbytes [27℄.To evaluate the impa
t of resour
e weights (see Equation 4.1) on the system performan
e, we 
ondu
ted asimulation experiment where the resour
e weights were stati
ally set. Figure 4.1 plots the relationship betweenthe resour
e weight of I/O and the mean slowdown experien
ed by all the jobs in the tra
e. The result indi
atesthat the mean slowdown 
onsistently de
reases as the I/O resour
e weight in
reases from 0 to 1 with in
rementsof 0.2. We attributed this observation to the fa
t that, under I/O-intensive workload 
onditions, the I/Oresour
e weight with a high value is able to a

urately re�e
t the signi�
an
e of the disk I/O resour
es in thesystem.
0


10


20


30


40


50


60


70


0
 0.2
 0.4
 0.6
 0.8
 1

W
IO
, resource weight of disk I/O


Mean Slowdown


Fig. 4.1. Mean slowdowns as a fun
tion of the I/O re-sour
e weight. Average page-fault rate = 2.0No./ms, averageI/O a

ess rate = 2.8 No./ms.
0


10


20


30


40


50


60


110
 160
 210
 260
 310
 360

Buffer Size (MByte)


Mean Slowdown


Fig. 4.2. Mean slowdowns as a fun
tion of the bu�er size.Average page-fault rate is 5.0 No./ms, average I/O a

ess rateis 2.3No./msThe memory of ea
h node is divided into two portions, with one serving as I/O bu�er and the other beingused to store working sets of running jobs. Without loss of generality, we assume that the bu�er sizes of sixnodes are identi
al. We 
ondu
ted a se
ond experiment, in whi
h the bu�er sizes were stati
ally 
on�gured.Figure 4.2 shows the bu�er size 
hosen in the experiment and the 
orresponding mean slowdowns obtained fromthe simulator.The 
urve in Figure 4.2 reveals that the bu�er size has a large e�e
t on the mean slowdowns of the IO-awarepoli
y. When bu�er size is smaller than 210 MByte, the slowdown de
reases with the in
reasing value of thebu�er size. In 
ontrast, the slowdown in
reases as the bu�er size in
reases if the bu�er size is greater than 210MByte. Optimally, the mean slowdown of this given workload rea
hes the minimum value when bu�er size is210 MByte. A large bu�er size results in a high bu�er hit rate and redu
es I/O pro
essing time, thereby 
ausinga positive e�e
t on the performan
e. On the other hand, given a �xed value of the total available main memorysize, a larger bu�er size implies a smaller the amount of memory used to store the working sets of runningjobs, whi
h in turn leads to a larger number of page faults. In general, a large bu�er size may introdu
e bothpositive and negative e�e
t on the mean slowdown at the same time, and the overall performan
e depends onthe resultant e�e
t.Although the stati
 
on�guration of resour
e weights and bu�er sizes is an approa
h to tuning the per-forman
e of 
lusters where workload 
onditions 
an be modeled and predi
ted, this approa
h performs poorlyand ine�
iently for highly dynami
 environments where workloads are unknown at 
ompile time. Therefore, afeedba
k 
ontrol algorithm is developed in this study to adaptively 
on�gure resour
e weights and bu�er sizes.



100 X. Qin et al.4.3. A Feedba
k Control Me
hanism. The high level view of the ar
hite
ture for the feedba
k 
ontrolme
hanism is presented in Figure 4.3, where the ar
hite
ture 
omprises a load-balan
ing s
heme, a resour
es-sharing 
ontroller, and a feedba
k 
ontroller. The resour
e-sharing 
ontroller 
onsists of a CPU s
heduler, amemory allo
ator and an I/O 
ontroller. The slowdown of a newly 
ompleted job and the history slowdownsare fed ba
k to the feedba
k 
ontroller, whi
h then determines the required 
ontrol a
tion ∆WIO and ∆bufsize.
∆WIO > 0 means the IO-weight needs to be in
reased, and otherwise the IO-weight should be de
reased. Sin
ethe sum of WCPU and WIO is 1, the 
ontrol a
tion ∆WCPU 
an be obtained a

ordingly. Similarly, ∆bufsize > 0means the bu�er size needs to be in
reased, and otherwise the bu�er size is to be de
reased.

 


Newly 

arrived jobs
  


Running
  

jobs
 


CPU
 
 MEM
 
 I/O
 


Completed job 
 u
 


Resource
 

Sharing 

controller
  


Load
-

balancing
  


 

Feedback
 

Controller
 


  
Slowdown history
  


slowdown(u)
  


 
W
IO
, 
 
 W
CPU
 
  
 bufsize
 


Fig. 4.3. Ar
hite
ture of the feedba
k 
ontrol me
hanismThe �rst goal of the feedba
k 
ontroller is to manipulate the resour
e weights in a way that makes it possibleto minimize the mean slowdown of jobs. The system model for an open loop balan
er is approximately givenby the following equation, slowdown(z) = −wg(L)WIO(z) + wd(L), (4.8)where wg(L) and wd(L) are the gain fa
tor and disturban
e fa
tor of the I/O resour
e weight under workload L,respe
tively. The values of wg and wd largely depend on workload 
onditions and the applied load-balan
ingpoli
y. Thus, wg and wd 
an be obtained based on simulation models for open-loop load balan
ers. The 
ontrolrule for the resour
e weight is formally modeled below,
∆WIO,u = Gw(1 −

Su

Su−1

)
∆WIO,u−1

|∆WIO,u−1|
, (4.9)

WIO,u = WIO,u−1 + ∆WIO, (4.10)where ∆WIO,u is the 
ontrol a
tion, Su denotes the average slowdown, ∆WIO,u−1

|∆WIO,u−1|
indi
ates whether the previous
ontrol a
tion has in
reased or de
reased the resour
e weight, and Gw denotes the 
ontroller gain for the I/Oresour
e weight. In the experiments presented shortly in the next se
tion, Gw is tuned to be 0.5 for betterperforman
e. Let WIO,u be the resour
e weight upon the arrival of job at the system, the resour
e weight willbe updated to WIO,u−1 + ∆WIO. Without loss of generality, we make use of a linear model to 
apture the
hara
teristi
s of varying workload 
onditions. The model is given by the following equation,slowdown(z) = −wg0(L)WIO(z) + wd0 + ∆wd, (4.11)The feedba
k 
ontroller attempts to manipulate the resour
e weights in the following three steps. First,when a job u is a

omplished, the 
ontroller 
al
ulates the slowdown su of this newly 
ompleted job, Se
ond,

su is stored in the slowdown history table, and the average slowdown Su is 
omputed a

ordingly. Note that
Su re�e
ts a spe
i�
 pattern of the re
ent slowdowns in the dynami
 workload. The table size is a tunableparameter, and the oldest slowdown will be repla
ed by the latest one if the history table over�ows. In oursimulation model presented in Se
tion 5.1, the history table size is �xed to 50. Finally, the 
ontroller generates



A Feedba
k Control Me
hanism for Balan
ing I/O- and Memory-Intensive Appli
ations 101
ontrol a
tions ∆WIO,u and ∆WCPU,u, whi
h are based on the previous 
ontrol a
tion along with the 
omparisonbetween Su and Su−1. More pre
isely, the performan
e is regarded to be improved by the previous 
ontrol a
tionif Su−1 > Su, therefore the 
ontroller 
ontinues in
reasing WIO if it has been in
reased by the previous 
ontrola
tion, otherwise WIO is de
reased. Similarly, Su−1 < Su means that the performan
e has been worsened sin
ethe latest 
ontrol a
tion, suggesting that WIO has to be in
reased if the previous 
ontrol a
tion has redu
ed
WIO, and vi
e versa.Besides 
on�guring the weights, the se
ond goal of the feedba
k 
ontrol me
hanism is to dynami
ally setthe bu�er size of ea
h node based on the unpredi
table workload. The me
hanism is aiming at improving bu�erutilizations and redu
ing the number of page faults by maintaining an e�e
tive usage of memory spa
e forrunning jobs and their data.We 
an derive the slowdown based on a model that 
aptures the 
orrelation between the bu�er size and theslowdown. For simpli
ity, the model 
an be 
onstru
ted as follows,slowdown(z) = −bg(L)bufsize(z) + bd(L), (4.12)where bg(L) and bd(L) are the bu�er size gain fa
tor and disturban
e fa
tor under workload L, respe
tively.The 
ontrol rule for bu�er sizes is formulated as,

∆bufsizeu = Gb(Su−1 − Su)
∆bufsizeu−1

|∆bufsizeu−1|
, (4.13)where ∆bufsizeu is the 
ontrol a
tion, ∆bufsizeu−1

|∆bufsizeu−1
| indi
ates whether the previous 
ontrol a
tion has in
reasedor de
reased the resour
e weight, and Cb denotes the 
ontroller gain. Gw is tuned to be 0.5 in order todeliver better performan
e. Let bufsizeu−1 be the 
urrent bu�er size, the bu�er size is 
al
ulated as bufsizeu =bufsizeu−1 + ∆bufsizeu.As 
an be seen from 4.3, the feedba
k 
ontrol generates 
ontrol a
tion ∆bufsize in addition to ∆WCPU and

∆WIO. The adaptive bu�er size makes noti
eable impa
ts on both the memory allo
ator and I/O 
ontroller,whi
h in turn a�e
t the overall performan
e (See Figure 4.2). The feedba
k 
ontroller generates a 
ontrol a
tion
∆bufsize based on the previous 
ontrol a
tion along with the 
omparison between Su and Su−1. Spe
i�
ally,
Su−1 > Su, means the performan
e is improved by the previous 
ontrol a
tion, thereby in
reasing the bu�er sizeif it has been in
reased by the previous 
ontrol a
tion, otherwise the bu�er size is redu
ed. Likewise, Su−1 < Su,indi
ates that the latest bu�er 
ontrol a
tion leads to a worse performan
e, implying that the bu�er size hasto be in
reased if the previous 
ontrol a
tion has redu
ed the bu�er size, otherwise the 
ontroller de
reases thebu�er size.The extra time spent in performing feedba
k 
ontrol is negligible and, therefore, the overhead introdu
ed bythe feedba
k 
ontrol me
hanism is ignored in our simulation experiments. The reason is be
ause the 
omplexityof the me
hanism is low, and it takes a 
onstant time to make a feedba
k 
ontrol de
ision.5. Experiments and Results. To evaluate the performan
e of the proposed load-balan
ing s
heme witha feedba
k 
ontrol me
hanism, we have 
ondu
ted a tra
e-driven simulation, in whi
h the performan
e metri
used is slowdown that is de�ned earlier in se
tion 3. We have evaluated the performan
e of the followingload-balan
ing poli
ies:1. CM: the CPU-memory-based load-balan
ing poli
y [27℄ without using bu�er feedba
k 
ontroller. If thememory is imbalan
ed, CM assigns the newly arrived job to the node that has the least a

umulatedmemory load. When CPU load is imbalan
e and memory load is well balan
ed, CM attempts to balan
eCPU load.2. IO: the IO-based poli
y [11℄ without using the feedba
k 
ontrol me
hanism. The IO poli
y uses a loadindex that represents only the I/O load. For a job arriving in node i, the IO s
heme greedily assignsthe job to the node that has the least a

umulated I/O load.3. WAL: the Weighted Average Load-balan
ing s
heme without the feedba
k 
ontroller [21℄.4. WAL-FC: the Weighted Average Load-balan
ing s
heme with the feedba
k 
ontrol me
hanism.5. NLB: The non-load-balan
ing poli
y without using the feedba
k 
ontroller.5.1. Simulation Model. Before presenting the empiri
al results, the tra
e-driven simulation model andthe workload are presented.



102 X. Qin et al.To study dynami
 load balan
ing, Har
hol-Balter and Downey [9℄ implemented a tra
e-driven simulatorfor a distributed system with 6 nodes in whi
h round-robin s
heduling is employed. The load balan
ing poli
ystudied in that simulator is CPU-based. Zhang et. al [27℄ extended the simulator, in
orporating memoryre
ourses into the simulation system. Based on the simulator presented in [27℄, our simulator in
orporatesthe following new features: (1) The above poli
es are implemented in the simulator. (2) The inter
onne
t isassumed to be a fully 
onne
ted network. (3) A simple disk model is added into the simulator. (4) An I/O bu�ermodel, whi
h will be presented shortly in this se
tion, is implemented on top of the disk model. The tra
es usedin the simulation are modi�ed from [9℄[27℄, and it is assumed that the I/O a

ess rate is randomly 
hosen ina

ordan
e with a uniform distribution. We assume that the I/O a

ess rate of ea
h job is independent of thejob's memory spa
e requirement and CPU servi
e time. Although this simpli�
ation de�ates any 
orrelationsbetween I/O requirement and other job 
hara
teristi
s, we 
an examine the impa
t of I/O requirement onsystem performan
e by 
on�guring the mean I/O a

ess rate as a workload parameter.The simulated system is 
on�gured with parameters listed in Table 5.1. The parameters for CPU, memory,disks, and network are 
hosen in su
h a way that they resemble a typi
al 
luster of the 
urrent day.Table 5.1Data Chara
teristi
sParameters Value Parameters ValueCPU Speed 800 MIPS Page Fault Servi
e Time 8.1 msRAM Size 640 MByte Seek and Rotation time 8.0 msInitial Bu�er Size 160 MByte Disk Transfer Rate 40MB/Se
.Context swit
h time 0.1 ms Network Bandwidth 1GbpsDisk a

esses of ea
h job are modeled as a Poisson pro
ess. Data sizes dRW
u of the I/O requests in job uare randomly generated based on a Gamma distribution with the mean size of 250 KByte and the standarddeviation of 50 Kbyte. The sizes 
hosen in this way re�e
t typi
al data 
hara
teristi
s for MPEG-1 data [2℄,whi
h is retrieved by many multimedia appli
ations.Sin
e bu�er 
an be used to redu
e the disk I/O a

ess frequen
y (See Equation 4.4), we approximatelymodel the bu�er hit probability of I/O a

ess for job u running on node i by the following formula:

h(i, u) =

{

ru

ru+1 if dbuf (i, u) ≥ ddata(u),
ru

ru+1 ×
dbuf (i,u)
ddata(u) otherwise, (5.1)where ru is the data re-a

ess rate, dbuf (i, u) is the bu�er size allo
ated to job u, and ddata(u) is the amountof data job u retrieves from or stored to the disk, given a bu�er with in�nite size. I/O bu�er in a node is aresour
e shared by multiple jobs in the node, and the bu�er size a job 
an obtain in node i at run time heavilydepends on the jobs' a

ess patterns, 
hara
terized by I/O a

ess rate and average data size of I/O a

esses.

ddata(u) linearly depends on a

ess rate, 
omputation time and average data size of I/O a

esses dRW
u , and

ddata(u) is inversely proportional to I/O re-a

ess rate. dbuf (i, u) and ddata(u) are estimated using the followingtwo equations:
dbuf (i, u) =

λudRW
u dbuf (i)

∑

k∈Mi
λkdRW

u

, (5.2)
ddata(u) =

λutudRW
u

ru + 1
. (5.3)From Equations 5.1, 5.2 and 5.3, hit rate h(i, u) be
omes:

h(i, u) =

{

ru

ru+1 if dbuf (i, u) ≥ ddata(u),
rudbuf (i)

tu

P

j∈Mi
λjdRW

j

otherwise. (5.4)Figure 5.1 shows the e�e
ts of bu�er size on the bu�er hit probabilities of the NLB, CM and IO poli
ies.When bu�er size is smaller than 150 Mbyte, the bu�er hit probability in
reases almost linearly with the bu�er



A Feedba
k Control Me
hanism for Balan
ing I/O- and Memory-Intensive Appli
ations 103size. The in
reasing rate of the bu�er hit probability drops when the bu�er size is greater than 150 Mbyte,suggesting that further in
reasing the bu�er size 
an not signi�
antly improve the bu�er hit probability whenthe bu�er size approa
hes to a level at whi
h a large portion of the I/O data 
an be a

ommodated in thebu�er.
0


10


20


30


40


50


60


70


80


10
 50
 100
 150
 200
 250
 300
 350
 400
 450


NL, R=5

CM, R=5

IO, R=5

NL, R=3

CM, R=3

IO, R=3


Buffer Size (Mbyte)


Buffer Hit Probability


Fig. 5.1. Bu�er Hit Probability as a fun
tion of theBu�er Size, page-fault rate is 4.0 No./ms, I/O a

ess rate is2.2No./ms.
0


10


20


30


40


50


60


70


80


90


7.2
 7.4
 7.6
 7.8
 8
 8.2
 8.4
 8.6
 8.8


NLB


IO


WAL


WAL-FC


Number of Page Fault Per Millisecond


Mean Slowdown


Fig. 5.2. Mean slowdowns as a fun
tion of the page-faultrate, I/O a

ess rate of 0.1 No./ms.5.2. Memory Intensive Workload. To simulate a memory intensive workload, the I/O a

ess rateis �xed to a 
omparatively low level of 0.1 No./ms. The page-fault rate is set from 7.2 No./ms to 8.8No./ms with in
rements of 0.2 No./ms. The performan
e of CM is omitted, sin
e it is very 
lose to thatof WAL.Figure 5.2 reveals that the mean slowdowns of all the poli
ies in
rease with the page-fault rate. This isbe
ause as I/O demands are �xed, high page-fault rate leads to a high utilization of disks, 
ausing longer waitingtime on I/O pro
essing.When the page-fault rate is high, WAL outperforms IO and NLB, and the WAL-FC has better perfor-man
e than both WAL and IO. For example, the WAL poli
y redu
es slowdowns over the IO poli
y by upto 37.2% (with an average of 31.5%), and the WAL-FC poli
y improves the performan
e in terms of meanslowdown over IO by up to a fa
tor of 4 (400%). The reason is that the IO poli
y only attempts to bal-an
e expli
it I/O load, ignoring the impli
it I/O load that resulted from page faults. When the expli
it I/Oload is low, balan
ing expli
it I/O load does not make a signi�
ant 
ontribution to balan
ing the overall sys-tem load. In addition, NLB is 
onsistently the worst among the six poli
ies, sin
e NLB leaves three sharedresour
es extremely imbalan
ed and does not improve the bu�er utilization by the adaptive 
on�guration ofbu�er sizes.More interestingly, the poli
ies that use the feedba
k 
ontrol me
hanism algorithm 
onsiderably improvethe performan
e over those without employing the feedba
k 
ontroller. For example, WAL-FC improves thesystem performan
e over WAL by up to 274% (with an average of 220%). Consequently, the slowdowns of NLB,WAL, and IO are more sensitive to the page-fault rate than WAL-FC.5.3. I/O-Intensive Workload. To stress the I/O-intensive workload in this experiment, the I/O a

essrate is �xed at a high value of 2.8 No./ms, and the page-fault rate is 
hosen from 1.6 No./ms to 2.1 No./mswith in
rements of 0.1No./ms. The low page-fault rates imply that, even when the requested memory spa
e islarger than the allo
ated memory spa
e, page faults do not o

ur frequently. This workload re�e
ts a s
enariowhere memory-intensive jobs exhibit high temporal and spatial lo
ality of a

ess. Figure 5.3 plots slowdown asa fun
tion of the page-fault rate. The results of IO are omitted from Figure 5.3, sin
e they are nearly identi
alto those of WAL.First, the results show that the WAL s
heme signi�
antly outperforms the NLB and CM poli
ies, suggestingthat NLB and CM are not suitable for I/O intensive workload. For example, as shown in Figure 5.3, WALimproves the performan
e of CM in terms of the mean slowdown by up to a fa
tor of 9 (with an average of476%). This is be
ause the CM poli
ies only balan
e CPU and memory load, ignoring the imbalan
ed I/O loadof 
lusters under the I/O intensive workload.



104 X. Qin et al.
0


20


40


60


80


100


1.6
 1.7
 1.8
 1.9
 2
 2.1


NLB


CM


WAL


WAL-FC


Number of Page Fault Per Millisecond


Mean Slowdown


Fig. 5.3. Mean slowdown as a fun
tion of the page-fault rate, I/O a

ess rate is 2.8 No./ms.Se
ond, Figure 5.3 shows that WAL-FC signi�
antly outperforms WAL. For example, WAL-FC delivers aperforman
e improvement over WAL by up to 282% (with an average of 125%). Again, this is be
ause the WAL-FC s
heme applies the feedba
k 
ontroller to meet the high I/O demands by 
hanging the weights and the I/Obu�er sizes to a
hieve a high bu�er hit probability. This result suggests that improving the I/O bu�er utilizationby using the feedba
k 
ontrol me
hanism 
an potentially alleviate the performan
e degradation resulted fromthe imbalan
ed I/O load.Third, the results further show the slowdowns of NLB and CM are very sensitive to the page-fault rate.In other words, the mean slowdowns of NLB and CM all in
rease noti
eably with the in
reasing value ofI/O load. One reason is, as I/O load are �xed, a high page-fault rate leads to high disk utilization, 
aus-ing longer waiting time on I/O pro
essing. A se
ond reason is, when the I/O load is imbalan
ed, the ex-pli
it I/O load imposed on some node will be very high, leading to a longer paging fault pro
essing time.Conversely, the page-fault rate makes insigni�
ant impa
t on the performan
e of WAL, and WAL-FC. Sin
ethe high I/O load imposed on the disks is diminished either by balan
ing the I/O load or by improvingthe bu�er utilization. This observation suggests that the feedba
k 
ontrol me
hanism is 
apable of boostingthe performan
e of 
lusters under I/O-intensive workload even in the absen
e of any dynami
 load-balan
ings
hemes.5.4. Memory and I/O intensive Workload. The two previous se
tions presented the best 
ases forthe proposed s
heme sin
e the workload was either highly memory-intensive or I/O-intensive but not both. Inthese extreme s
enarios, the feedba
k 
ontrol me
hanism provides more bene�ts to 
lusters than load-balan
ingpoli
ies do. This se
tion attempts to show another interesting 
ase in whi
h the 
luster has a workload withboth high memory and I/O intensive jobs. The I/O a

ess rate is set to 1.5 No./ms. The page fault rate isfrom 7.2 No./ms to 8.4 No./ms with in
rements of 0.2 No./ms.Figure 5.4 shows that the performan
es of CM, IO, and WAL are 
lose to one another. This is be
ausethe tra
e, used in this experiment, 
omprises a good mixture of memory-intensive and I/O-intensive jobs.Hen
e, while CM takes advantage of balan
ing CPU-memory load, IO 
an enjoy bene�ts of balan
ing I/Oload. Interestingly, under this spe
i�
 memory and I/O intensive workload, the resultant e�e
t of balan
ingCPU-memory load is almost identi
al to that of balan
ing I/O load.A se
ond observation is that, under the memory and I/O intensive workload, load-balan
ing s
hemes a
hievehigher level of improvements over NLB. The reason is that when both memory and I/O demands are high, thebu�er sizes in a 
luster are unlikely to be 
hanged, as there is a memory 
ontention among memory-intensiveand I/O-intensive jobs. Thus, instead of �u
tuating widely to optimize the performan
e, the bu�er sizes �nally
onverge to a value that minimizes the mean slowdown.Third, in
orporating the feedba
k 
ontrol me
hanism in the existing load-balan
ing s
hemes is able tofurther boost the performan
e. For example, 
ompared with WAL, WAL-FC further de
reases the slowdownby up to 54.5% (with an average of 30.3%). This result suggests that, to sustain a high performan
e in
lusters, 
ompounding a feedba
k 
ontroller with an appropriate load-balan
ing poli
y is desirable and stronglyre
ommend.



A Feedba
k Control Me
hanism for Balan
ing I/O- and Memory-Intensive Appli
ations 105
0


10


20


30


40


50


60


70


80


90


100


7.2
 7.4
 7.6
 7.8
 8
 8.2
 8.4


NLB

CM

IO

WAL

WAL-FC


Number of Page Fault Per Millisecond


Mean Slowdown


Fig. 5.4. Mean slowdowns as a fun
tion of the page-faultrate, I/O a

ess rate of 1.5 No./ms. 0


20


40


60


80


100


120


100
 150
 200
 250
 300
 350
 400


IOCM,IO rate=2.6


WAL-PM,IO rate=2.6


WAL-RE,IO rate=2.6


 Average Data Size (KByte)


Mean Slowdown


Fig. 5.5. Mean slowdown as a fun
tion of the size ofaverage data size. Page fault rate is 0.5 No./ms, and I/O rateis 2.6 No./ms.5.5. Average Data Size. In the previous experiments, the data sizes are 
hosen based on typi
al mul-timedia appli
ations. It is noted that I/O load depends on I/O a

ess rate and the average data size of I/Orequests, whi
h in turn rely on the I/O a

ess patterns of appli
ations. The purpose of this experiment is tostudy the performan
e improvements a
hieved by the feedba
k 
ontrol me
hanism for other types of appli
a-tions if they exhibit di�erent 
hara
teristi
s. Spe
i�
ally, Figure 5.5 shows the impa
t of average data size onthe performan
e of the feedba
k 
ontrol me
hanism. The page fault rate and the I/O a

ess rate are set to0.5 No./ms and 2.6 No./ms., respe
tively. The average data size is 
hosen from 100 KByte to 400 KByte within
rements of 50 KByte.Figure 5.5 indi
ates that, for three examined load-balan
ing poli
ies, the mean slowdown in
reases as theaverage data size in
reases. This is be
ause, under 
ir
umstan
e that both page fault rate and I/O a

essrate are �xed, a large average data size yields a high utilization of disks, 
ausing longer waiting times on I/Opro
essing. More importantly, Figure 5.5 shows that the performan
e improvement gained by the feedba
k
ontrol me
hanism be
omes more noti
eable when the average data size is large. This result suggests that theproposed approa
h is not only bene�
ial for multimedia appli
ations, but also turns out to be useful for a varietyof appli
ations that are data intensive in nature.6. Con
lusions. In this paper, we have proposed a feedba
k 
ontrol me
hanism to dynami
ally adjustthe weights of re
ourses and the bu�er sizes in a 
luster with a general and pra
ti
al workload that in
ludesmemory and I/O intensive workload 
onditions. The primary obje
tive of the proposed approa
h is to minimizethe number of page faults for memory-intensive jobs while improving the bu�er utilization of I/O-intensivejobs. The feedba
k 
ontroller judi
iously 
on�gures the weights to a
hieve an optimal performan
e. Meanwhile,under a workload where the memory demand is high, the bu�er sizes are de
reased to allo
ate more memoryfor memory-intensive jobs, thereby leading to a low page-fault rate.To evaluate the performan
e of the me
hanism, we 
ompared the proposed WAL-FC s
heme with WAL,CM, and IO. For 
omparison purposes, the NLB poli
y that does not 
onsider load balan
ing is also simu-lated. A tra
e-driven simulation provides extensive empiri
al results demonstrating that WAL-FC is e�e
tivein enhan
ing performan
e of existing dynami
 load-balan
ing poli
ies under memory-intensive or I/O-intensiveworkload. In parti
ular, when the workload is memory-intensive, WAL-FC redu
es the mean slowdown overthe CM and IO poli
ies by up to a fa
tor of 9. Further, we have made the following observations:1. When the page-fault rate is higher and the I/O rate is very low, WAL and CM outperform IO andNLB, and WAL-FC has better performan
e than WAL;2. When I/O demands are high, WAL and IO are signi�
antly superior to CM and NLB. And WAL-FChas noti
eably better performan
e than that of IO;3. Under an I/O intensive workload, the mean slowdowns of NLB and CM all in
rease noti
eably withI/O load. Conversely, the page-fault rate makes insigni�
ant impa
t on the performan
e of IO, WAL,and WAL-FC.4. Under the workload with a good mixture of memory and I/O intensive jobs, WAL-FC a
hieves highlevel of improvements over NLB.



106 X. Qin et al.5. The performan
e improvement gained by the feedba
k 
ontrol me
hanism be
omes pronoun
ed whenthe average data size is relatively large. Future studies in this area may be performed in severaldire
tions. First, the feedba
k 
ontrol me
hanism will be implemented in a 
luster system. Se
ond, wewill study the stability of the proposed feedba
k 
ontroller. Finally, it will be interesting to study howqui
kly the feedba
k 
ontroller 
onverges to the optimal value in 
lusters.7. A
knowledgements. This work was partially supported by an NSF grant (EPS-0091900), a start-upresear
h fund (103295) from the resear
h and e
onomi
 development o�
e of the New Mexi
o Institute of Miningand Te
hnology, a Nebraska University Foundation grant (26-0511-0019), a UNL A
ademi
 Program PrioritiesGrant, and a Chinese NSF 973 proje
t grant (2004
b318201). We are grateful to the anonymous referees fortheir insightful suggestions and 
omments. REFERENCES[1℄ A. A
harya and S. Setia, Availability and Utility of Idle Memory in Workstation Clusters, Pro
. ACM SIGMETRICS Conf.Measuring and Modeling of Computer Systems, May 1999.[2℄ E. Balafoutis, G. Nerjes, P. Muth, M. Paterakis, P. Triantafillou, and G. Weikum, Clustered S
heduling Algo-rithms for Mixed-Media Disk Workloads, Pro
. Int'l Conf. on Cluster Computing, 2002.[3℄ J. Basney and M. Livny, Managing Network Resour
es in Condor, Pro
eedings of the Ninth IEEE Symposium on HighPerforman
e Distributed Computing, Pittsburgh, Pennsylvania, August 2000, pp 298-299.[4℄ C.Chang, B. Moon, A. A
harya, C. Sho
k, A. Sussman, J. Saltz, Titan: A High-Performan
e Remote-sensing Database,Pro
. of International Conferen
e on Data Engineering, 1997.[5℄ D. Eager, E. Lazowaska, and J. Zahorjan, A 
omparison of re
eiver-initiated and sender-initiated adaptive load sharing,Pro
eedings of the 1985 ACM SIGMETRICS 
onferen
e on Measurement and modeling of 
omputer systems, Austin,Texas, 1985.[6℄ D. J. Evans and Wunbutt, Load balan
ing with network partitioning using host groups, Parallel 
omputing, 20:325-345,Mar
h 1994.[7℄ M. Garey and D. Johnson, Computers and Intra
tability: A Guide to the theory of NP-Completeness, W.H. Freeman, 1979.[8℄ R. L. Graham, Bounds on Multipro
essing Timing Anomalies, SIAM J. Applied Math., Vol.17, No.2, pp.416-429, 1969.[9℄ M. Har
hol-Balter and A. Downey, Exploiting Pro
ess Lifetime Distributions for Load Bala
ing, ACM transa
tion onComputer Systems, vol. 3, no. 31, 1997.[10℄ C. Hui and S. Chanson, Improved Strategies for Dynami
 Load Sharing, IEEE Con
urren
y, vol.7, no.3, 1999.[11℄ L. Lee, P. S
heauermann, and R. Vingralek, File Assignment in Parallel I/O Systems with Minimal Varian
e of Servi
etime, IEEE Trans. on Computers, Vol. 49, No.2, pp.127-140, 2000.[12℄ B. Li and K. Nahrstedt, A Control Theoreti
al Model for Quality of Servi
e Adaptations, in IEEE International Workshopon Quality of Servi
e, May 1998.[13℄ F.C.H. Lin and R.M. Keller, The Gradient Model Load Balan
ing Method, IEEE Trans. Software Engineering, vol. 13,no. 1, pp. 32-38, Jan. 1987.[14℄ F. Muniz and E.J. Zaluska, Parallel Load Balan
ing: An Extension to the Gradient Model, Parallel Computing, vol. 21,pp. 287-301, 1995.[15℄ R. Pollak, A Hierar
hi
al Load Balan
ing Environment for Parallel and Distributed Super
omputer, Pro
. of the Interna-tional Symposium on Parallel and Distributed Super
omputing, Fukuoka, Japan, September 1995.[16℄ X. Qin, H. Jiang, and D. R. Swanson, An E�
ient Fault-tolerant S
heduling Algorithm for Real-time Tasks with Pre
eden
eConstraints in Heterogeneous Systems, Pro
. the 31st Int'l Conf. on Parallel Pro
essing (ICPP 2002), Van
ouver, Canada,Aug 2002, pp. 360-368.[17℄ X. Qin, H. Jiang, Y. Zhu, and D. Swanson, Dynami
 Load Balan
ing for I/O-Intensive Tasks on Heterogeneous Clusters,Pro
. of the 10th International Conferen
e on High Performan
e Computing (HiPC 2003), De
.17-20, 2003, Hyderabad,India.[18℄ P. S
heuermann, G. Weikum, P. Zabba
k, Data Partitioning and Load Balan
ing in Parallel Disk Systems, The VLDBJournal, pp. 48-66, July, 1998.[19℄ H. Shen, S. Lor, and P. Maheshwari, An ar
hite
ture-independent graphi
al tool for automati
 
ontention-free pro
ess-to-pro
essor mapping, Journal of Super
omputing, Vol. 18, No. 2, 2001, p. 115-139.[20℄ D. C. Steere, A. Goel, J. Gruenberg, et. al., A Feedba
k-driven Proportion Allo
ator for Real-Rate S
heduling, Oper-ating Systems Designand Implementation, New Orleans, Louisiana, Feb 1999.[21℄ M. Surdeanu, D. Modovan, and S. Harabagiu, Performan
e Analysis of a Distributed Question/ Answering System,IEEE Trans. on Parallel and Distributed Systems, Vol. 13, No. 6, pp. 579-596, 2002.[22℄ T. Tanaka,Con�gurations of the Solar Wind Flow and Magneti
 Field around the Planets with no Magneti
 �eld: Cal
ulationby a new MHD, Journal of Geophysi
al Resear
h, pp. 17251-17262, O
t. 1993.[23℄ G. Voelker, Managing Server Load in Global Memory Systems, Pro
. ACM SIGMETRICS Conf. Measuring and Modelingof Computer Systems, May 1997.[24℄ M. Willebe
k-LeMair and A. Reeves, Strategies for Dynami
 Load Balan
ing on Highly Parallel Computers, IEEE Trans.Parallel and Distributed Systems, vol. 4, no. 9, pp. 979-993, Sept. 1993.[25℄ X. Wu, V. Taylor, and R. Stevens, Design and Implementation of Prophesy Automati
 Instrumentation and Data EntrySystem, Pro
. of the 13th International Conferen
e on Parallel and Distributed Computing and Systems, Anaheim, CA,August 2001.



A Feedba
k Control Me
hanism for Balan
ing I/O- and Memory-Intensive Appli
ations 107[26℄ L. Xiao, S. Chen, and X. Zhang, Dynami
 Cluster Resour
e Allo
ations for Jobs with Known and Unknown MemoryDemands, IEEE Transa
tions on Parallel and Distributed Systems, vol.13, no.3, 2002.[27℄ X. Zhang, Y. Qu, and L. Xiao, Improving Distributed Wrokload Performan
e by Sharing both CPU and Memory Resour
es,Pro
. 20th Int'l Conf. Distributed Computing Systems (ICDCS 2000), Apr. 2000.Edited by: Hong ShenRe
eived: February 27, 2004A

epted: June 6, 2004


