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A SIMD ENVIRONMENT FOR GENETIC ALGORITHMS WITH INTERCONNECTED
SUBPOPULATIONS
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Abstract. The algorithmic form of GAs conforms well to SIMD computing environments with relatively minor adjustments
to the operators. In this paper we consider in detail a GA implementation on a MasPar machine. The question of the degree
to which control parameters affecting intercommunication impact performance is addressed using ANOVA methods. The purpose
is to supplant anecdotal experience with statistical evidence. A set of control parameters—topology, migration operator, migra-
tion radius, and migration probability—were chosen together with four representative levels of each. Metrics for three response
variables—efficiency, diversity, and schema propagation—were developed that allowed insight into the behavior under the various
parametric conditions. These were incorporated into three 4 × 4 × 4 × 4 randomized factorial experiment designs. Among other
things, it was determined that the interconnection topology is not in itself a significant factor but the extent of connectivity and
frequency of communication are. An important outcome of this study is that, while the individual factors are significant, the factors
do not interact in unexpected ways.
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functions, experiment design.

1. Introduction. Because of the complexity of large optimization problems, the value of parallel realiza-
tions of optimization algorithms has become quite evident [10, 11]. In particular, in this paper we present a
study of an approach to parallel genetic algorithms.

Amenability to parallelization has always been viewed as a major strength of Genetic Algorithms (GAs).
GAs operate on populations of individuals. When the population is distributed into (perhaps overlapping)
subpopulations, the introduction of new operators is possible as well as altering the semantics of existing ones.
We consider a GA to be parallel if its operators reflect the new interactions that are enabled by the presence of
subpopulations.

Furthermore, we are interested in the case for which there are thousands, not dozens, of subpopulations.
When there are a massive number of subpopulations, there are larger number of local behaviors competing
for the opportunity to expand and their expansion is more acutely observable. The operators that affect
subpopulation interactions are defined in part by parameters. In some cases, the number of alternative values
for these parameters increase as the number of subpopulations increase. Thus choices made by algorithm
designers must be more informed. These two factors, measurability of effects and the need for insights, make
massively parallel GAs a useful domain of investigation.

One aspect of this paper is the methodology that is applied, namely, experimental design methods [21, 29].
It has the purpose of establishing the quantitative significance of various factors, singly and in combination, that
affect performance. This is in contrast to the “typical” GA experiment that quantifies performance prediction
but only qualifies the factors affecting the prediction. The method used here, we believe, should be used more
often because, beyond quantification, it is able to elicit evidence of the effects of factor interaction. That is,
how the effect of factors change when used in combination with others.

The SIMD parallel genetic algorithm is analyzed. Its structure tends to be uniform across many applica-
tions and platforms thus identification of factors to investigate requires less subjective judgment. Many SIMD
computers are in use and the architecture itself is now re-emerging in the context of special-purpose VLSI
plug-ins.

Using experiment design methods tends to require many individual trials over a small number of factors.
In this case, more than 2,500 individual instances of the algorithm comprised the single experiment reported.
The outcome showed all factors investigated – network topology, migration policy, migration probability, and
migration radius—were significant at confidence levels ranging from 90% to 99%. A key question was: Do
these factors interact with each other in a simple additive fashion or in a more complex manner? It was found
that the interactive effects were sufficiently close to additive that no special precautions by the practitioner are
necessary.
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2. Background.

2.1. Sequential GAs. Genetic algorithms originated from the studies of cellular automata, conducted
by John Holland [22]. A GA is a search procedure modeled on the mechanics of natural selection rather than
a simulated reasoning process. Domain knowledge is embedded in the abstract representation of a candidate
solution termed an organism. Organisms are grouped into sets called populations. Successive populations are
called generations. A generation GA creates an initial generation, G(0), and for each generation, G(t), generates
a new one, G(t + 1). An abstract view of the algorithm is

generate initial population, G(0)
evaluate G(0)
t := 0
repeat

t := t + 1
generate G(t) using G(t − 1)
evaluate G(t)

until solution is found.

The operation “evaluate G(t)” refers to the assignment of a figure of merit to each of the population’s organisms.
In simple GAs, an alternative exists to replacing an entire population at once; that alternative is to replace one
organism in the population whenever a new organism is created. This variant is known as a steady state GA.

In most applications, an organism consists of a single chromosome. A chromosome of length n is a vector
of the form 〈x1, x2, . . . , xn〉. where each xi is an allele, or gene. The domain of values from which xi is chosen is
called the alphabet of the problem. Frequently, the alphabet used consists of the binary digits {0, 1}. We can
view a specific chromosome as representative of many patterns. Using # as “don’t care,” an example pattern or
schema over the binary alphabet is 〈##110#〉. The chromosomes 〈111100〉 and 〈101100〉 are specific instances
of this and other schemata; for example, 〈##100〉. The order of a schema is the number of non-# symbols it
contains. Its length is the distance from the first to the last non-# position. Thus, the length of 〈#1#0#1〉 is
four, and its order is three.

GAs differ from traditional search techniques in several ways

• First, GAs optimize the trade-off between exploring new points in the search space and exploiting
the information discovered thus far. This was proven using an analogy with the k-armed bandit (an
extension of the one-armed bandit) problem.

• Second, GAs have the property of implicit parallelism. Implicit parallelism means that the GA’s effect
is equivalent to an extensive search of hyperplanes of the given space, without directly testing all
hyperplane values. Each schema denotes a hyperplane.

• Third, GAs are randomized algorithms, in that they use operators whose results are governed by
probability. The results for such operations are based on the value of a random number.

• Fourth, GAs operate on several solutions simultaneously, gathering information from current search
points to direct subsequent search. Their ability to maintain multiple solutions concurrently makes
GAs less susceptible to the problems of local maxima and noise.

As noted, GAs are randomized—but not random—search algorithms. Each organism represents a point
(that is, an intersection of hyperplanes) in the search space. Randomization must balance two competing
concerns, exploration and exploitation. A solution cannot be tested unless it appears as an organism. Therefore,
a reasonable number of solutions must be explored. On the other hand, unlimited exploration would not
be efficient search. The strength of highly fit organisms must be exploited and allowed to propagate in the
population. Yet, giving too much precedence to such organisms results in premature termination at a local
optimum.

We can compare GA recombination operators to controlled breeding among, say, thoroughbred horses.
The objective is to combine highly fit organisms to produce a still more fit individual. Both the selection of
“parents” and the steps within the recombination operators are randomized. Parent selection dynamics are
based on an application-dependent measure of an organism known as the fitness function, fi (fi is a figure of
merit, computed using any domain knowledge that applies). In principle, this is the only point in the algorithm
at which domain knowledge is necessary. Organisms are chosen using the fitness value as a guide; organisms
having higher fitness values are chosen more often. Selecting organisms based on fitness value is a major factor
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in the strength of GAs. The greater the fitness value of an organism, the more likely that the organism will be
selected for recombination.

There are two popular approaches for implementing selection. The first, roulette selection, assigns a prob-
ability to each organism, i, computed as the proportion

Fi = fi/
∑

j

fj

A parent is then randomly selected, based on this probability. A second method, deterministic sampling, assigns
to each organism, i, a value

Ci = RND(Fi × n) + 1

where n organisms reside in the population (RND means round to integer). The selection operator then assures
that each organism participates as a parent exactly Ci times.

Parents participate in the later recombination operations. Alleles from the parents are mixed via an operator
called a crossover rule, of which many exist. Simple one-point crossover of chromosomes from two parents at a
random point, j, is illustrated by

〈xi x2 · · ·xj xj+i xj+2 · · ·xn〉 (2.1)

+ (2.2)

〈y1 y2 · · · yj yj+1 yj+2 · · · yn〉 (2.3)

= (2.4)

〈x1 x2 · · · yj yj+1 yj+2 · · · yn〉 (2.5)

where the result is a chromosome of the offspring and is placed in the next generation.
A mutation is the random change of an allele from one alphabet value to another. For a problem over

the binary alphabet, the original allele is exchanged for its complement. The mutation operator offers the
opportunity for new genetic material to be introduced into a population. From the theoretical perspective, it
assures that—given any population—the entire search space is connected. The new genetic material does not
originate from the parents and is not introduced into the child by crossover. Rather, it occurs after crossover a
small percentage of the time.

Several stopping criteria exist for the algorithm. The algorithm may be halted when all organisms in a
generation are identical, when fi = fj for all i and j, or when |fi − fj | < TOL for some small value TOL and
all i and j. An alternative criterion would halt after a fixed number of evaluations and take the best solution
found.

2.2. Parallel GAs. Parallel versions of GAs have, more often than not, different semantics from the
canonical serial algorithm [6, 45]. In other words, the behavior of the algorithm in terms of the computational
actions taken as well as the the results generated for any given set of inputs can be expected to differ for
the two versions. In contrast, for most other algorithms, parallelization usually implies a parallel version
of the algorithm which maintains the semantics of the serial version. Not surprisingly, early parallel GA
implementations (e.g. [34]) focused mainly on achieving computational speedup. There have been a variety of
applications of parallel GAs including topics such as fuzzy logic controller design [1], VLSI routing [25], financial
market computations [32], SAT methods [15], land use modeling [49], and many others [2].

The changed semantics of a parallel GA is primarily the result of the way in which the population mem-
bers are distributed among subpopulations as well as the nature and the extent of interactions among such
subpopulations. A serial GA which uses a single centralized population and global access to all its members
(as evidenced by panmictic selection) simply constitutes one end of a spectrum of possibilities [8]. At the other
end of that spectrum lies a fine-grained parallel GA with completely decentralized population (resulting in
singleton subpopulations) and a local neighborhood-based selection. Most other parallel GAs can be seen as
being somewhere in between these two cases. They employ a varying extent of decentralization of the global
population and access among the resulting subpopulations during selection. The subpopulations resulting from
the distribution of the global population members can be called demes, a very evocative term from the field of
population biology. Parallel GA literature also refers to them as islands [48, 27].
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The interaction among the demes can take two forms: migration and overlapping selection [7]. Migration
refers to the process of periodic import of population members from neighboring demes into the local subpopu-
lation. In the artificial setting of parallel GAs, this involves a sequence of export-import-replace actions. First,
every deme must decide on candidates for export or emigration from the local subpopulation, which in turn
can be imported by the neighboring demes. Next, a deme can decide to import or immigrate some of such can-
didate emigrants available in the neighboring demes. The frequency of import is determined by the migration
probability. Since most parallel GA models enforce fixed size populations, a necessary third step would be to
incorporate the newly imported members into the local subpopulation by replacing local members.

A different kind of interaction among the demes is based on the notion of selection using effectively over-
lapping subpopulations. In this scheme, during the selection and reproduction stage of GAs, some of the
neighboring subpopulations are also taken into consideration along with the local subpopulation. Thus, using
k neighboring demes and a subpopulation size of n at each deme, selection and reproduction step results in
sampling n members from the pool of size (k + 1)×n. Depending on such overlap, the effective subpopulations
employed over all the demes constitute either a partition or a covering set of the global population. Obviously,
a meaningful migration operation in such a model can be designed only by considering the demes which are not
in the same selection pool.

2.3. Related Research. Here we focus on parallel GAs that support the deme concept. It was recognized
early that a variety of choices existed with respect to the spatial distribution of population members [41, 5].
At one end of the spectrum are so-called coarse-grained parallel GAs [3]. In this case, the global population
is divided into a few distinct non-overlapping subpopulations. Communication among them is accomplished
by periodic migration [12, 13]. Selection within a subpopulation is an issue but there are no inter-deme selec-
tion issues. If a parallel computer is applied to coarse-grained GA simulation, a MIMD architecture is most
appropriate [43].

Rigorous experimentation with coarse-grained GAs was first performed by Tanese [44]. She examined
the frequency and subpopulation fraction for migration. It was discovered that moderate values of each are
the most effective. She also noted something else that was peculiar: Even in the absence of any inter-deme
communication, the parallel GA with small subpopulations performed better than the serial GA. Forrest et al.,
in follow-up work [17], determined that this was an artifact of the problem to which the GA was applied (a
subset of Walsh functions). The coarse-grained approach allows considerable freedom such as varying control
parameters, e.g., crossover rate, between subpopulations [44], varying the representation from one subpopulation
to the next [37], and even dynamically varying the subpopulation sizes and number of subpopulations [46, 20].

In contrast, a fine-grained parallel GA is, strictly speaking, one in which the number of demes is the same
as the population size. That is, each deme consists of one individual. A classic example is one reported by
Manderick et al. [26]. In this class of GAs the principal issue is selection policy (radius, for example) [14].
A SIMD architecture is the more appropriate parallel computer for fine-grained GA simulations. Some other
terms that have been used for fine-grained GAs include cellular GAs [47] and diffusion GAs [33]. The fine-
grained approach has also been applied to evolution strategies to study different selection schemes [18]. Cellular
programming of cellular automata is an approach that is also related to fine-grained parallel GAs [40, 9].

Mühlenbein initially developed a fine-grained GA [30] on a double-ring grid that incorporated hill-climbing.
Later, the system was extended [31] in a manner that incorporated non-singleton subpopulations with both
inter-deme selection and migration issues and so was not strictly fine-grained. The algorithm we have used is
also not strictly fine-grained, but tends in that direction [35]. Small subpopulations were isolated with respect
to selection but connected with respect to migration. This was in accordance with the controlled variables we
wished to study. Otherwise, the algorithm as illustrated in Figure 2.1 has all the recognizable elements of a
serial GA.

3. Logical Architecture. This experiment focuses primarily on the interactions of subpopulations. Such
interactions are constrained by the connectivity among the subpopulations and the consequent neighborhood
structure within the logical architecture of the parallel GA. The physical architecture does not prohibit any
specific logical architecture. Suppose that n nodes are given. Any graph that weakly connects them induces a
topology. The topologies considered in this study further assume that the graph is not directed. Specifically,
the four topologies considered are shown in Figure 3.1. Choice of a topology results in a neighborhood for each
node. A neighborhood can be compact or not. A compact neighborhood of size r consists of a reference node
together with all other subpopulations reachable by traversing at most r links of the topology. A noncompact
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Set the number of subpopulations;

Set the topology and migration radius;

For all nodes synchronously Do:

{
Randomly generate initial subpopulations;

Evaluate all members of initial subpopulations;

While termination conditions not met, Do:

{
/* Migration stage */

Export: for every node copy a candidate to export;

Choose a subset of nodes based on migration neighborhood;

For these nodes synchronously Do:

{
Import: Pick zero or one from the import candidates based on

migration probability;

Replace: Replace a local member by candidate chosen;

}
endFor

/* Reproduction stage */

Selection: For each node, assign fitness-based target

sampling rates; /* ideal value for re-use as parent */

Sampling: Sample members based on target sampling rates;

/* Transformation stage */

Crossover: Stochastically recombine pairs generating offspring pair;

Mutation: Stochastically make small changes in offspings;

/* Evaluation and iteration stage */

Evaluate each new individual;

Replace parent subpopulation by offsprings; /* generational GA */

}
endWhile

}
endFor

Fig. 2.1. The parallel genetic algorithm

neighborhood consists of any other strongly connected subgraph of the topology. Figure 3.2 shows an example
of compact neighborhoods for r = 1 and r = 2 for a node in a 4-neighbor torus topology.

Selection using overlapping subpopulations—a form of subpopulation interaction—is based on the notion
of compact neighborhoods. We define the selection neighborhood of size rs, termed selection radius, for a node
to be the corresponding compact neighborhood of that node. Let KS denote the set of subpopulations in the
neighborhood. By extending the chances of reproduction in the local node to members of all the subpopulations
in the selection neighborhood, overlapping subpopulations can be effectively simulated based on the selection
neighborhood. We consider only the cases for which rs = 0, that is, the selection neighborhood is the local
subpopulation.

Subpopulation interaction by migration provides access to members of subpopulations that lie outside the
selection neighborhood. Given a selection radius of rs, we define the migration neighborhood of size rm to be the
noncompact neighborhood resulting from deleting the selection neighborhood from the compact neighborhood
of size (rs + rm) where rm is termed migration radius. In other words, if we denote KS+M to be the set of
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Fig. 3.1. Subpopulations in ring, tree, 4- and 8-neighbor torus topologies. Open-ended arrows denote wrap-around connectivity.

Fig. 3.2. Compact neighborhoods for a node of a four-torus topology. The nodes in the inner shaded area are included for
r = 1. The nodes in both the shaded areas are included for r = 2.

subpopulations for the size (rs + rm), then the set of subpopulations available for the migration operation is
defined by (KS+M − KS). Figure 3.3 illustrates a migration neighborhood for rs = 1 and rm = 1. For a
zero-valued selection radius, the migration neighborhood reduces to the compact neighborhood of size rm, sans
the reference node.

4. Experimental Design. Many empirical studies reported in the computer literature compare one
method with another or the effect of one factor. This is in contrast to the natural sciences in which it is
common to simultaneously study the effects of a number of factors and their interactions. The study here is
closer in spirit to the principles of statistical experiment design as first used in agricultural, and then manufac-
turing, settings. At least one previous study [39] of GAs has adopted a similar strategy.

Specifically, we employed an (m1 ×m2 ×m3×m4)− factorial design with complete randomization of trials.
That is to say, there were four factors (independent variables) with m1, m2, m3, and m4 levels, respectively. A
level is a quantitative or qualitative value at which a factor is tested. An experiment consists of a set of trials.
A trial is a test involving each factor set at one of its levels. (In this experiment, a trial consists of one complete
run.) Each trial corresponds to a single measurement of a response variable (dependent variable). Trials at
the same factor levels are repeated several times with different initial conditions in order to obtain meaningful
statistical properties.

Trials in an experiment must be conducted using a specific problem. An appropriate problem is one that is
both generic and which provides insight into the behavior of the algorithm. Holland’s revised version of Royal
Road functions meets these criteria [24]. The Royal Road function chosen is particularly large and difficult
to optimize. It is sufficiently difficult to exhibit meaningfully different behavior under different experimental
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Fig. 3.3. Migration neighborhood for a node in four-torus topology, given rs = 1. The nodes in the shaded area are included
by a migration radius of rm = 1.

conditions as is needed in studies such as this. The Royal Road functions were designed to reward the discovery
of lowest level building blocks of the optimal solution as well as the successful recombination of such blocks into
higher level blocks in a hierarchical fashion. Royal Road functions have been widely used in a number of areas,
for example, crossover variations [42], dual GAs [50] and applications such as learning of neural networks [23].

Here we briefly describe the function adopting the symbols and terminology used by Holland [28] and
Jones [24]. For this problem, populations are formed from individuals over the binary alphabet. The structure
of the solutions in the population is uniformly specified by the triple 〈b, g, k〉. Each genome is composed of 2k

basic blocks of length (b + g). Thus, each individual consisted of 240 genes using the parameter values shown
in Table 4.1. Within each block, allele values at pre-specified b positions (block bits) are relevant for fitness
computation and the allele values of the remaining g positions (gap bits) do not affect the fitness. Such basic
blocks are called level-0 blocks. A level-0 block is considered complete when all of its block bits take the value 1.
Even-odd pairs of level-0 blocks comprise level-1 blocks. Level-i blocks, for 1 ≤ i ≤ k, are comprised of even-odd
pairs of level-(i-1) blocks. Further, any level-i block is considered complete if the two adjacent blocks forming
its constituent level-(i-1) even-odd pair are both complete.

The computation of the Royal Road function used itself can be described in two parts, typically referred
to as the part and the bonus computations. part computes a value with respect to level-0 blocks using two
parameters, m∗ and v. Let j stand for the number of 1s present in the b block bits for a given level-0 block in
the genome. Now, the part contribution for that block is given by (j × v), if j ≤ m∗, and by ((m∗ − j)×−v),
if m∗ < j < b. The contribution is zero (0) if j = b. The full part value is computed by summation over all the
level-0 blocks. The intentional penalties for near-optimal blocks at the lowest level make this problem harder
for hill-climbing algorithms.

The bonus computation rewards the presence of complete blocks at each level i, 0 ≤ i ≤ k, and is specified
by the parameters u∗ and u. Recall that only the presence of a corresponding even-odd pair of complete blocks
of level-(i-1) can generate a complete block at level-i. Let j stand for the number complete blocks present in the
genome for a given level-i. The bonus contribution for level-i is zero, if j = 0 and is given by (u∗ + (j − 1)× u)
for j > 0. The complete bonus value for the genome is computed by summation over all the levels. The fitness
function itself is again a sum of part and bonus values. The parameter values used in this study are shown in
Table 4.1 and they are similar to the values suggested by Holland.

4.1. Factors. The four factors studied are given in Table 4.2. Each was tested at four levels, leading to a
4× 4× 4× 4 factorial experiment. Two factors—migration radius and migration probability—are quantitative.
Two—topology and migration operator—are qualitative. Thus the experiment consisted of 256 combinations
of different levels of factors, or “cells”. Each such cell was sampled ten times resulting in a total of 2560 runs
of the parallel GA using the same set of ten random seeds for each cell. The sequence of runs was determined
in a fully randomized fashion. The parameters held constant over the experiment are listed in Table 4.3. The
values in Table 4.3 were chosen following an extensive study of the SIMD algorithm literature. They appear to
be robust and generally accepted in applications. Each subpopulation exported one individual (by copy) during
each generation. When a subpopulation chose to import, it imported one individual from the set of candidates
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Table 4.1

Parameters for the Royal Road function.

Parameters Value

k 4
b 8
g 7

m∗ 4
v 0.02
u∗ 1.0
u 0.3

Table 4.2

Experimental Factors

Factor Symbol Levels

Topology G { G 0 = Ring, G 1 = Tree,
G 2 = 4-Torus, G 3 = 8-Torus }

Migration Radius R { R 0 = 1, R 1 = 3, R 2 = 5, R 3 = 7 }
Migration Operator O { O 0 = Import-random & Replace-random,

O 1 = Import-random & Replace-worst,
O 2 = Import-best & Replace-random,
O 3 = Import-best & Replace-worst }

Migration Probability P { P 0 = 0.0, P 1 = 0.33, P 2 = 0.66, P 3 = 1.0 }

available. The experiments were performed on the MasPar MP-216 at NASA/GSFC using MPGA [36], a
massively parallel GA package developed by the authors.

4.2. Response Variables. The effect of the factors was tested using response variables corresponding to
population diversity, schemata propagation, and search efficiency. More than one method was employed [35],
but here we restrict the discussion to one representative method for each.

An objective in a GA, parallel or serial, is to obtain a balance between population diversity and the speed of
convergence, i. e., exploration and exploitation. Therefore studying the effect of the factors on the population
diversity is important. To measure diversity we use a metric similar in spirit to the one described by Collins [13,
pages 118–120].
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(4.1)

where, l is the length of the chromosome in bits, m is the number of subpopulations, and n is the number of
chromosomes in each subpopulation. Bit(i, k, j) denotes the value of the ith bit of the kth member in the jth
subpopulation. δ is in the range [0, 1] where zero (0) is the response for a global population consisting of one
individual replicated and one (1) is the response when the global population is maximally diverse, i. e., at each
position all alleles are uniformly distributed.

Schemata propagation is used here to mean the extent to which a fit schema is present among all the
subpopulations. A priori choice of a single schema to be monitored is not practical because there are a number
of search paths from different schemata that lead to an optimum. Taking advantage of the problem symmetry,
eight complementary schemata were chosen for monitoring. These schemata are shown in Figure 4.1. At selected
generations the subpopulations were examined for presence of the schemata. In the results of Section 5 the final
measurement is used.

The response value was not simply the fraction of subpopulations in which a schema was found. It was
computed as the number of subpopulations containing instance(s) of the schema less the subset of those demes
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Table 4.3

GA parameters used in the experiment.

Parameters Value

Number of subpopulations 16,384
Subpopulation size 10
Number of maximum generations 100
Export operator Export-current-best
Selection radius 0
Selection operator Ranking
Elitism No
Sampling operator Stochastic universal sampling
Mutation operator Bit-mutation
Mutation probability 0.005 per bit
Crossover operator Two-point crossover
Crossover probability 0.7

having no neighbors (with respect to the topology) also containing instance(s). That is, only those subpopula-
tions in which the schema could plausibly have occurred as a result of migration are counted. The maximum for
the eight candidate schemata was chosen as the basis for the response. This accounts for the various search paths
the GA might traverse. The response variable was normalized to be the fraction of the number of applicable
subpopulations meeting the propagation criteria.

1 1· · · 1 #· · · # #· · · # #· · · # #· · ·# #· · ·# #· · ·# #· · ·#

2 #· · · # 1· · · 1 #· · · # #· · · # #· · ·# #· · ·# #· · ·# #· · ·#

3 #· · · # #· · · # 1· · · 1 #· · · # #· · ·# #· · ·# #· · ·# #· · ·#

4 #· · · # #· · · # #· · · # 1· · · 1 #· · ·# #· · ·# #· · ·# #· · ·#

5 #· · · # #· · · # #· · · # #· · · # 1· · ·1 #· · ·# #· · ·# #· · ·#

6 #· · · # #· · · # #· · · # #· · · # #· · ·# 1· · ·1 #· · ·# #· · ·#

7 #· · · # #· · · # #· · · # #· · · # #· · ·# #· · ·# 1· · ·1 #· · ·#

8 #· · · # #· · · # #· · · # #· · · # #· · ·# #· · ·# #· · ·# 1· · ·1

Legend: 1· · · 1 ⇒ 11111111#######11111111#######

#· · · # ⇒ ##############################

Fig. 4.1. The list of schemata monitored.

Finally, search efficiency is measured in terms of the time taken to reach the optimum. In this case, the
number of generations taken to find the globally optimal solution is recorded. If a particular trial failed to
locate the optimum, the preset value of maximum number of generations was used. Typically, the value for
efficiency tends to be domain-specific. However, it is hoped that the premise underlying the design of the Royal
Road functions—building-block hypothesis—renders the results a significance sufficiently independent of specific
applications.

5. Results and Analysis. An important aspect of this paper is the experimentation and analysis of
variance methods employed. It is more common to see less formal experiments having a different objective—
performance prediction. The formal experimental design approach used here discovers which factors affect
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performance. A factor may affect performance by itself, in combination with other factors, or both. The most
important result here, given that each factor investigated affected performance as might be expected, is that
there were no unusual effects that occurred when factors were used in combination. That is, the effects in
combination are a linear combination of the effects of each single factor.

5.1. ANOVA. An illustrative ANOVA is shown in Table 5.1. A complete table for each response variable
is in the appendix. The source column lists the factor (e.g., R or migration radius) or factor combination
(e.g., O × P or migration operator with migration probability) that was tested for its effects. The last column
(Computed F ) is a statistic that is compared to standard tables to extract the degree of confidence that the
source factor or source combination has a significant influence on the response. Further description of the
ANOVA tables and the columns can be found in the appendix.

Table 5.1

Abbreviated ANOVA for global allelic diversity

# Source DF Sum Sq Mean Sq Computed F

1 R 3 3.8493 1.2831 40437.7601
2 P 3 81.5102 27.1701 856282.9984
3 R × O 9 0.4826 0.0536 1689.9835
4 O × P 9 7.1838 0.7982 25155.7570
5 G × R × O 27 0.1644 0.0061 191.8747
6 G × O × P 27 1.0641 0.0394 1242.1203
7 G × R × O × P 81 0.3613 0.0045 140.5775

Since a large computed F -statistic value relative to the corresponding critical value indicates that the effect
under scrutiny is significant under normal circumstances, the ANOVA tables shown would lead one to conclude
that all the factors and their interactions have significant effect on the response variables. This is, in fact,
conclusive with respect to the single factor rows in Table 5.1 and the tables in the appendix. However, it is not
conclusive with respect to the factor interaction effects. Their appearance of significance may be a carry-over
effect of the individual factor effects. The standard recourse in such instances is to scrutinize in greater detail
the effects. Generally, a graphical approach is used and that approach is taken in the following sections. For
completeness, we examine the individual factors this way as well as the factor interactions.

5.2. Effects of individual factors. Note that in the ANOVA analysis, Tables A.1, A.2, and A.3, the
computed F -statistic values for migration probability factor are the greatest. Migration probability, in fact,
clearly affects all three responses as is evident from Figure 5.1. In the single factor graphs, the feature one looks
for in order to confirm visually that a factor affects performance is a curve with a slope other than zero. The
response values (Y -axis) for these and succeeding plots are described in Section 4.2. To summarize, the Y -axis
of the top graph of Figures 5.1-5.4 is the value from Eq. 4.1. The Y -axis of the middle graph of the figures is
the fraction of subpopulations in which a key schema occurs (plausibly) by means of migration. Finally, the
Y -axis of the bottom graph is the number of generations required for convergence. For single-factor plots, each
data point is an average over all possible combinations of other factors, i. e., each point is an average of 640
values. The error bars depict the standard deviation.

Figure 5.1 emphatically demonstrates that subpopulations when interconnected behave differently than
when isolated, i. e., P = 0. Further, up to a point, the level of intercommunication, as reflected by the
magnitude of migration probability, makes a difference. In the absence of migration, i. e., zero probability,
there is little exploitation (i. e., maximal diversity), schema proliferation only by chance rediscovery, and poor
search efficiency. In contrast, moderate to high migration probabilities result in significantly different behavior
with respect to all response variables. As is seen in the following subsections, migration probability also exhibits
significant interaction with other factors.

In Figure 5.2, it can be seen that the migration operator also affects all three responses. The effects,
however, are less dramatic compared to the effect of migration probability. Recall that the migration operator
components include an import policy and a replacement policy. Figure 5.2 suggests that the former is more
important than the latter. In each plot the first data point is similar to the second and the third data point is
similar to the last. See again Table 4.2 to correlate the data points with migration policies.
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Fig. 5.1. Effect of factor P (Migration Probability) on the response variables

Figures 5.3 and 5.4 indicate that the independent effects of topology and migration radius are minimal.
The changes in responses between the first and the second data points of each plot might best be explained in
terms of changes in the degree of connectivity. The similarity among the remaining data points suggest that
further increases in the degree of connectivity have little effect.

5.3. Effects of multiple factor interactions. One method for examining in more detail the higher order
interactions is to visually compare different components of the effect under scrutiny, using two factors at a time.
The cell means of the response variable are plotted against one of the factors, for each level of the second factor.
All the cell means are averaged over all the combinations of levels of the remaining factors.

To illustrate the approach, the effects of the two factor interactions—migration radius vs. migration operator
and migration operator vs. migration probability—on the response variable measuring diversity are shown in
Figures 5.5 and 5.6 respectively. The null hypothesis here is: The effects of factor level combinations are an
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Fig. 5.2. Effect of factor O (Migration Operator) on the response variables

additive (linear) combination of the individual factor levels. The visual feature one looks for to “not reject the
null hypothesis” is roughly parallel lines. The four plots in Figure 5.5 are roughly parallel to each other, thus
the interaction effect is not significant with respect to diversity. Figure 5.6 shows an example that might suggest
some factor interaction but the lines are parallel statistically speaking.

When we consider any three-factor interaction, one should examine all the plots that can be generated by
choosing two factors at a time for each level of the third factor. For any response variable there are twelve
graphs for each of the four possible three-factor interactions. If most of those graphs show parallel plots, we
can conclude the effect of the interaction is insignificant. A similar procedure can be carried out to determine
the significance of the four-factor interaction.

The complete analysis for three response variables of a 4 × 4 × 4 × 4 experiment uses more than 450 such
graphs. Here we selectively present those which best illuminate the behavior. More details and a complete set
of graphs can be found in [35].
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Fig. 5.3. Effect of factor G (Subpopulation Topology) on the response variables

Since the migration probability and migration operator have the greatest single factor effects, as can be
expected, they exhibit the most pronounced second-order effects. The second order effect of O×P on diversity
is shown in Figure 5.6. Similar behavior can be observed with respect to the other response variables. In
Figure 5.6, there is evidence explaining the interaction of O × P . Namely, the import policy impacts the
migration effect to a greater extent than the replacement policy. Also, reinforcing our expectations, a migration
probability of zero produces the most distinctively different results.

Given that O × P is the most significant second order interaction, we show first an example of a three-
factor interaction not involving both simultaneously. Figure 5.7 depicts some of the effects of the interaction
among migration radius, migration operator, and topology, i. e., R×O×G, on the response variable measuring
schemata propagation. It compares the first factor against the second while keeping the third factor constant at
some level. In this figure, only the first graph, which corresponds to ring topology, indicates some significance.
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Fig. 5.4. Effect of factor R (Migration Radius) on the response variables
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This is probably a reflection of the effect migration radius has in a low-connectivity architecture. The plots in
terms of other response variables indicate essentially the same behavior.

Contrast Figure 5.7 with Figure 5.8 in which the effects of the interaction among migration radius, migration
operator, and migration probability on schemata propagation are shown. While the R×O×P interaction effect
is not highly pronounced in the figure, it does assert itself in the second plot. This again is further corroboration
of the importance of the import policy component of the migration operator.

The computed F -statistic for the fourth order interaction is low in a relative sense in each of the ANOVA
Tables A.1, A.2, and A.3 shown in the appendix. This leads one to suspect that the interaction effect is minimal.
Figure 5.9, which illustrates the fourth order interaction partially, supports this observation. The plots are in
terms of the search efficiency response but the graphs of other response variables lead one to the same conclusion.

5.4. Global Behavior. Recall that in the experiments, the number of cells was 256 (4× 4× 4× 4). Since
we took 10 samples for each cell (using the same set of 10 random seeds across all the cells) a total of 2,560
runs were made. Of the 2,560 runs, the algorithm found the maximum royal road (RR) level of 4 in 1,316
runs, reached RR level 3 in 1, 834 runs, and reached RR level 2 in 1,920 runs. It reached the first level in all
runs. (While we are speaking here of global behavior, let us remind the reader the 640 runs that it failed to
climb above level 1 are the same runs for which the migration probability was zero, i. e., the subpopulations
were isolated. Table 5.2 summarizes the global behavior. We suggest that the measure “Evaluations (Avg.)”

Table 5.2

Summary across experiments.

RR Level Reached in . . . That is . . .
Fuction

Evaluations (Avg.)
Generations

(Avg.)

1 2,560 runs 100% of runs 163,840 1.00
2 1,920 runs 75% of runs 2,723,840 16.63
3 1,834 runs 72% of runs 6,102,459 37.25
4 1,316 runs 51% of runs 7,809,790 47.67

(the number of function evaluations required to reach a specific level) is not as informative as the number of
generations given that 16,384 evaluations are done in parallel. That is 16,384 evaluations occur between points
at which the level noted.

In general, suppose someone were to budget or use the same computational effort using a non-parallel GA.
An example would be a GA with population size of 100 running for 81,920 generations. Would that setup reeach
RR level 4 much faster than the 8,192,000 evaluations used in the MPGA of Table 5.2? That is, would the
algorithmic performance of such a setup, as measured by machine cycles needed to find the optimal fitness vlaue,
be much better? We think that is extremely likely to be true. For example, you might reach the same fitness
value by 5,000 generations. However, the wall-clock time for 5,000 generations will be prohibitive, especially
for complex fitness functions. On the other hand, the actual number of fitness function evaluations is not that
important for massively parallel GAs because the required wall-clock time is small.
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Fig. 5.7. Partial effect of RxOxG interaction on schemata propagation

6. Conclusions. The motivation of this study was to rigorously but empirically examine the behavior
of GAs in a SIMD environment. Such an environment imposes constraints on the parallelization including
uniformity of representation, commonality of operators, and synchronous execution. With this objective in
mind, a reasonable set of control parameters and response metrics were devised and a rigorous randomized
experiment was performed. Approaching an empirical study from a statistical experiment design is highly
effective with respect to the objectives of this study. One purpose of this paper is to demonstrate the method-
ology.
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Fig. 5.8. Partial effect of RxOxP interaction on schemata propagation

The results demonstrate that migration probability and the choice of migration operator have the greatest
impact. This applies to both individual and interaction effects. With respect to the migration operator, the
import policy (import random vs. import best) appears more important than the replacement policy. Concerning
the other factors, (topology and migration radius), the real effect is due to the degree of connectivity and both
factors contribute to this implicit factor. Looking beyond the individual factors and at the degree of connectivity,
it seems that above moderate levels, additional increases in connectivity have little additional effect. Finally, the
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Fig. 5.9. Partial effect of RxOxGxP interaction on search efficiency.

results lend strong credence to a conclusion already largely accepted: There is a distinct behavioral difference
between isolated subpopulations and those that communicate.

There are issues that are open to further study. Selection radius is one of them. Varying the selection radius
has the effect of controlling the number of breeding pools to which an individual can belong. The migration
operator, treated here as a single factor, deserves more detailed analysis. It consists of an import policy and
a replacement policy. Each was instantiated using two options in the experiment. Other options are possible
and the policies could be treated as stand-alone control parameters. Additionally, one might consider an export
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policy. On the other side of the ledger, the choice of topology does not seem to be an important one as long as
the communication is bidirectional. The native topologies of SIMD architectures, such as a 4- or 8-torus, can
be used without impacting the performance.
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Appendix A.

Analysis of Variance (ANOVA) for various experimental designs is adequately covered in numerous texts
(e.g. [21, 29]). The experiment design used here is known as randomized factorial. There are four factors and
four levels of each, thus 44 level combinations. For each level of each factor, g, r, o, p, the outcome of a single
repetition, k, is represented by ygropk. For this experiment, g ∈ {1, 2, 3, 4}, r ∈ {1, 2, 3, 4}, and o ∈ {1, 2, 3, 4},
and p ∈ {1, 2, 3, 4}, and k ∈ {1, 2, . . . , 10}, yielding 10 × 44 individual trials. The degrees of freedom are (one
less) than than the number of choices possible for a component. For total trials (line 17 in Tables A.1-A.3)
there are 2,559 (10 × 44 − 1) degrees of freedom. For any given factor (lines 1–4 in Tables A.1–A.3) there are
three (four levels – 1) degrees of freedom. For combinations of factors, the degrees of freedom are the product
of the degrees for individual factors (i. e., nine for pairs, 27 for triples, and 81 for the combination of all four
factors).

Table A.1

ANOVA for global allelic diversity

# Source DF Sum Sq Mean Sq Computed F

1 G 3 4.2971 1.4324 45141.8887
2 R 3 3.8493 1.2831 40437.7601
3 O 3 14.6118 4.8706 153500.4667
4 P 3 81.5102 27.1701 856282.9984
5 G × R 9 0.6086 0.0676 2131.1502
6 G × O 9 0.9484 0.1054 3321.1950
7 G × P 9 1.5872 0.1764 5558.0741
8 R × O 9 0.4826 0.0536 1689.9835
9 R × P 9 1.6751 0.1861 5865.8867

10 O × P 9 7.1838 0.7982 25155.7570
11 G × R × O 27 0.1644 0.0061 191.8747
12 G × R × P 27 0.4341 0.0161 506.6511
13 G × O × P 27 1.0641 0.0394 1242.1203
14 R × O × P 27 0.8969 0.0332 1046.8983
15 G × R × O × P 81 0.3613 0.0045 140.5775
16 Errors 2304 0.0731 0.0000
17 Totals 2559 119.7481
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Table A.2

ANOVA for schemata propagation

# Source DF Sum Sq Mean Sq Computed F

1 G 3 16.6509 5.5503 25888.3304
2 R 3 8.4362 2.8121 13116.4494
3 O 3 27.5620 9.1873 42852.7267
4 P 3 340.6299 113.5433 529602.2027
5 G × R 9 2.4828 0.2759 1286.7461
6 G × O 9 0.7596 0.0844 393.6835
7 G × P 9 6.8043 0.7560 3526.3902
8 R × O 9 0.1485 0.0165 76.9467
9 R × P 9 3.6515 0.4057 1892.4426

10 O × P 9 22.7254 2.5250 11777.6365
11 G × R × O 27 0.8185 0.0303 141.4041
12 G × R × P 27 1.5875 0.0588 274.2432
13 G × O × P 27 3.7258 0.1380 643.6473
14 R × O × P 27 2.2732 0.0842 392.7038
15 G × R × O × P 81 1.7956 0.0222 103.3959
16 Errors 2304 0.4940 0.0002
17 Totals 2559 440.5459

Table A.3

ANOVA for search efficiency

# Source DF Sum Sq Mean Sq Computed F

1 G 3 254008.7824 84669.5941 9667.5576
2 R 3 149389.6855 49796.5618 5685.7616
3 O 3 579318.1168 193106.0389 22048.8096
4 P 3 1124711.5105 374903.8368 42806.4464
5 G × R 9 7361.0035 817.8893 93.3864
6 G × O 9 46817.6848 5201.9650 593.9593
7 G × P 9 89067.4410 9896.3823 1129.9670
8 R × O 9 42775.2691 4752.8077 542.6746
9 R × P 9 50002.2004 5555.8000 634.3602

10 O × P 9 242684.8566 26964.9841 3078.8566
11 G × R × O 27 3590.1730 132.9694 15.1824
12 G × R × P 27 25966.8418 961.7349 109.8107
13 G × O × P 27 68730.3230 2545.5675 290.6524
14 R × O × P 27 41988.8262 1555.1417 177.5658
15 G × R × O × P 81 34339.4254 423.9435 48.4058
16 Errors 2304 20178.7000 8.7581
17 Totals 2559 2780930.8402

The fundamental idea in design of experiments is that if a factor has no significance, then the distribution
of all responses is the same as the distribution of responses for a given level of the factor. That is, we could
check the total mean against the mean for a specific factor level. Parametric comparisons in statistics more
frequently employ an equivalent method: Determine if there are differences in the variances (mean squares)
among factor levels. Let yg.... be the average of responses for a particular option, g, for the topology across all
other factors and repetitions. Similarly, let y..... be the overall average for all (in this case, 2,560) responses. To
describe via example, the sum of squares for line 1 of Tables A.1-A.3 is

∑

g

n(yg.... − y.....)
2
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where n is the number of replications (10 in our case). The mean square is the sum of squares divided by
the degrees of freedom. The total sum of squares is

∑

g

∑

r

∑

o

∑

p

∑

p(ygropk − (y).....)
2. The “easy” way to

compute the error sum of squares is subtract the individual factor sums from the total sum.
Variances are compared by dividing the factor mean square by the error mean square (the F -statistic).

Standard tabulations of critical F -statistic values can then be consulted to determine if the effect of a factor
or an interaction on the given response variable is significant. ANOVA results for the response variables
measuring population diversity, schemata propagation, and search efficiency are shown in Tables A.1, A.2,
and A.3, respectively.
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