
Scalable Computing: Practice and Experience

Volume 7, Number 3, pp. 9–25. http://www.scpe.org
ISSN 1895-1767

c© 2006 SWPS

MANAGING HETEROGENEITY IN A GRID PARALLEL HASKELL

A. D. AL ZAIN , P. W. TRINDER , G. J. MICHAELSON∗, AND H-W. LOIDL†

Abstract. Computational Grids potentially offer cheap large-scale high-performance systems, but are a very challenging
architecture, being heterogeneous, shared and hierarchical. Rather than requiring a programmer to explicitly manage this complex
environment, we recommend using a high-level parallel functional language, like GpH, with largely automatic management of
parallel coordination.

We present GRID-GUM, an initial port of the distributed virtual shared-memory implementation of GpH for computational
Grids. We show that, GRID-GUM delivers acceptable speedups on relatively low latency homogeneous and heterogeneous compu-
tational Grids. Moreover, we find that for heterogeneous computational Grids, load management limits performance.

We present the initial design ofGRID-GUM2, that incorporates new load management mechanisms that cheaply and effectively
combine static and dynamic information to adapt to heterogeneous Grids. The mechanisms are evaluated by measuring four non-
trivial programs with different parallel properties. The measurements show that the new mechanisms improve load distribution
over the original implementation, reducing runtime by factors ranging from 17% to 57%, and the greatest improvement is obtained
for the most dynamic program.

Key words. Parallel Computing, Programming Languages

1. Introduction. Hardware price/performance ratios and improved middleware and network technologies
make cluster computing and computational Grids increasingly attractive. These architectures are typically
heterogeneous in the sense that they combine processing elements with different CPU speeds and memory
characteristics. Parallel programming on such heterogeneous architectures is more challenging than on classical
homogeneous high performance architectures.

Rather than requiring the programmer to explicitly manage low level issues such as heterogeneity we ad-
vocate a high-level parallel programming language, specifically Glasgow parallel Haskell (GpH), where the
programmer controls only a few key parallel coordination aspects. The remaining coordination aspects, includ-
ing heterogeneity, are dynamically managed by a sophisticated runtime environment, Gum. Gum has been
engineered to deliver good performance on classical HPCs and clusters [1].

This paper presents GRID-GUM, a port of Gum to computational Grids using the de-facto standard
Globus Toolkit, in Section 4. Measurements in Section 6 show that GRID-GUM gives good performance in
some instances, e. g. on homogeneous low-latency multi-clusters. However for heterogeneous architectures load
management emerges as the performance-limiting issue.

We present the initial design of GRID-GUM2 in Section 7, which incorporates new load distribution mech-
anisms for virtual shared-memory over a wide area network. The new mechanisms are decentralised, obtaining
complete static information during start up, and then cheaply propagating partial dynamic information during
execution. The effectiveness of the new mechanisms for multi-clusters Grid environment is investigated using
four non-trivial programs from a range of application areas, and with varying degrees of irregular parallelism
and using both data parallel and divide-and-conquer paradigms in Section 8. Related work is discussed in
Section 9, and we conclude in Section 10.

2. Grids & the Globus Toolkit.

2.1. Overview. Grid technology is an infrastructure which provides the ability to dynamically link dis-
tributed resources as an ensemble to support these execution of large scale, resource-intensive applications [19].

The idea behind the Grid is to serve as an enabling technology for a broad set of applications in sci-
ence, business, entertainment, health and other areas. Using Berman’s classification [19], we are working with
computational Grids, which use the Grid to aggregate substantial computational resources in order to tackle
problems that cannot be solved on a single system

2.2. Globus Toolkit. The Globus Toolkit is open source software with an open architecture, comprising
a collection of software components designed to support the development of applications for high performance
distributed computing environments or “Grids” [20]. The three main components are:

∗ School of Mathematical and Computer Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U. K.
({ceeatia,trinder,greg}@macs.hw.ac.uk)

† Ludwig-Maximilians-Universität München, Institut für Informatik, D 80538 München, Germany,
hwloidl@informatik.uni-muenchen.de

9

10 A. D. Al Zain et al

• Resource Management: allocation and management of Grid resources;
• Information Services: providing information about Grid resources;
• Data Management: accessing and managing data in a Grid environment.

Globus Toolkit is similar to a distributed operating system with uniform access to system features. Globus
Toolkit uses a standard application programming interface (API) for sending data and work to other machines
which can be expressed in terms of extensible resource specification language (RSL), which is used as a common
notation for describing resource requirements. While, RSL is no more sophisticated than other systems for
cluster computing e. g. a Beowulf cluster running standard Linux distribution, there are components which
might be very useful for GRID-GUM in the long run: for example for monitoring system behaviour.

The Grid architecture in the Globus Toolkit [26] identifies the fundamental system components, specifies
the purpose and function of these components, and indicates how these components interact with one another.
Grid layers defines a slim API for resource and connectivity protocols, so that collective services have a simple
interface to work with; on fabric layer, many and often specialised resources are covered (e.g. storage, sensors),
not just the usual for parallel computing such as memory, CPU etc. The fabric layer provides the resources that
are shared by the Grid: CPU time, storage, sensors. The connectivity layer defines the core communication
and authentication protocols required for Grid-specific multi-clusters transactions. In the resource layer there
are information protocols that tells us about the state of the resource and management protocols that negotiate
access to a resource. The collective layer includes directory services, scheduling, data replication services,
workload management, col-laboratory services and monitoring services.

3. Gum and GpH.

3.1. GpH. GpH is a parallel dialect of the functional language Haskell. Its only extension to Haskell is a
primitive, par, which indicates a possible parallel execution for a program expression. All dynamic control of
the parallelism is completely implicit. This programming model encourages the generation of massive amounts
of fine-grained parallelism and puts even higher importance on the efficiency of its management in the runtime
environment.

3.2. Gum. Gum (Graph reduction for a Unified Machine model) is a parallel runtime environment, imple-
ments a functional language and is based on parallel graph reduction [7]. In this model a program is represented
as a graph structure and parallelism is exploited by reducing independent subgraphs in parallel. The most nat-
ural implementation of parallel graph reduction uses a shared heap for memory management. Gum implements
a virtual shared heap on a distributed memory model, using Pvm as generic communication library for transfer-
ring data. For efficient compilation we use a state-of-the-art, optimising compiler, namely the Glasgow Haskell
Compiler [2]. Originally Gum was defined for homogeneous clusters and currently does not consider information
on latencies or the load on other nodes. Gum uses blind load distributed mechanism, where requests are sent
to random processing elements (PEs).

Gum has a simple run-time model. Essentially, in the course of execution, PEs generate sparks representing
potential parallel activities which may subsequently be realised as threads. Idle PEs which lack local sparks
may request work from other randomly chosen PEs by sending them fish messages. If a fished PE does not
have spare sparks then it will pass the message onto another PE. Thus, Gum utilises a pull approach for work
stealing to dynamically balance activity across PEs.

In a homogeneous HPC, the Gum model assumes that all PEs have the same processing and communication
characteristics. It is also assumed that a parallel program has sole use of the HPC so its performance is not
affected by unpredictable concurrent usage. Thus load balance in Gum may be maintained without reference
to run-time loads, with communication overhead from excess fishing restricted through a very simple throttling
mechanism.

3.3. Communication Libraries. Gum is independent of the library used to communicate between PEs.
Gum was originally based on the Pvm communication library but now has been adapted to use Mpi, in
particular Mpich and Mpich-G2. We summarise these libraries before considering their integration into Gum.
Pvm(Parallel Virtual Machine) emerged as one of the most popular cluster message-passing systems in 1992 [21].

The Mpi (Message Passing Interface) Standard defines a library of routines that implement the message
passing model [22], and it has a richer set of constructs than Pvm. Mpich is a popular implementation of
the Mpi standard [23]. Mpich-G2 is a Grid-enabled implementation of the Mpi standard [25]. It is a port of

Managing Heterogeneity In a Grid Parallel Haskell 11

Mpich, built on top of services provided from the Globus Toolkit to support efficient, transparent execution in
the Grid heterogeneous environments.

4. GRID-GUM. To port GpH to computational Grids its Gum runtime environment must be ported to
the Grid collective layer as depicted in Figure 4.1. Gum sits above the collective layer provided by Globus
Toolkit, which in turn provides a unified distributed environment on the clusters comprising the underlying
Grid. Such integration depends on the provision of appropriate communication libraries within the collective
layer to link Gum transparently to the Grid: this is considered in more detail in the next section.

GUM
Parallel Program

GpH

Grid Collective Layer

Computational Grid

High Level Grid RTE

runs−on

runs−on

compiles−to

Fig. 4.1. System Architecture

GRID-GUM extends the existing Gum memory management, and thread management techniques. In
particular, it implements a virtual shared heap over a wide-area network [3]. The communication management
in GRID-GUM is similar to Gum, but it uses a different communication library: built around Mpich-G2, and
hence the Globus Toolkit [8] as middle-ware. While Gum uses a system manager process to start and stop parallel
execution, GRID-GUM generates an RSL file internally at the beginning of the execution. This file contains:
the PE name, port number, and certificate name, environment variables, arguments for the executable program,
the directory where the executable program is located in the specified PE, and the executable program’s name.
This RSL file is used by MpichG2 to spawn the specified number of PEs.

PE 1

run

spark activate

run

spark

PE 2

FISH

activate

Spark Pool

Thread Pool

CPU

awake

block

Closure

Blocking Queue

Spark Pool

Thread Pool

CPU

awake

block

Closure

Blocking Queue

SCHEDULE

Fig. 4.2. Interaction of the components of a Gum processing element.

Figure 4.2 illustrates the load distribution mechanism in GRID-GUM, depicting the logical components on
each PE of the GRID-GUM abstract machine. When activated a spark causes a new thread to be generated.
Threads that are not currently being executed reside in the thread pool. When the CPU is idle, and the thread
pool is empty, a spark will be activated to generate a thread. If a running thread blocks on unavailable data,
it is added to the blocking queue of that node until the data becomes available.

12 A. D. Al Zain et al

The thick arrows between the PEs in Figure 4.2 show load distribution messages exchanged inGRID-GUM.
Initially all processors, except for the main PE, will be idle, with no local sparks available. PE2 sends a FISH

message to a random-chosen PE. On arrival of this message, PE1 will search for a spark and, if available, send it
to PE2. This mechanism is usually called work stealing or passive load distribution, since an idle processor has
to ask for work.GRID-GUM also improves load distribution by using Limited Thread mechanism which includes
specifying a hard limit on the total number of live threads, i. e. runnable or blocked threads in the thread pool.
Figure 4 summarises the GRID-GUM load distribution mechanism, it deals locating work (Figure 4.4), and
handling work requests (Figure 4.3), where these activities are performed in the main scheduler loop between
thread time slices.

IF received FISH THEN
 IF sparks availabel THEN
 send spark in SCHEDULE
 to originPE
 ELSE

 THEN
 return back to orginPE
 ELSE
 destPE = random PE
 from PEs list
 send FISH to destPE

 IF FISH exceed age

Fig. 4.3. Work request

IF idle THEN
 IF runnable thread THEN

 IF spark in spark pool THEN

 evaluate new thread
 ELSE

 active new spark
 ELSE
 IF last SCHEDULE from
 mainPE THEN
 destPE = mainPE
 ELSE

 PEs list
 send FISH to destPE

 destPE = random PE from

Fig. 4.4. Work location

The load distribution mechanisms in GRID-GUM

5. Measurement Framework.

5.1. Hardware Apparatus. The measurements have been performed on five Beowulf clusters: three
located at Heriot-Watt Riccarton campus (Edin1, Edin2, and Edin3), a cluster located at Ludwig-Maximilians
University Munich (Muni), and a cluster located at Heriot-Watt boarder campus(SBC); see Tables 5.1 and 5.2
for the characteristic of these Beowulfs.

All run-times in the coming tables represent the median of three executions to ameliorate the impact of
operating system and shared network interaction. In addition, tables include at the bottom, the minimum,
maximum and the geometric mean (root mean square) values.

Table 5.1

Characteristics of Beowulf Clusters

CPU Cache Memory

MHz kB kB

Edin1 534 128 254856
Edin2 1395 256 191164
Edin3 1816 512 247816
SBC 933 256 110292
Muni 1529 256 515500

Table 5.2

Approximate Latency between Clusters (ms)

Edin1 Edin2 Edin3 SBC Muni

Edin1 0.20 0.27 0.35 2.03 35.8
Edin2 0.27 0.15 0.20 2.03 35.8
Edin3 0.35 0.20 0.20 2.03 35.8
SBC 2.03 2.03 2.03 0.15 32.8
Muni 35.8 35.8 35.8 32.8 0.13

5.2. Software Apparatus. The programs measured in this experiment are classified by the communica-
tion degree, which is the number of messages the program sends per second, so we can study the impact of the
latency of the network on program behaviour. Six programs are measured in this experiment. Three have low

Managing Heterogeneity In a Grid Parallel Haskell 13

communication degree, parFib, queens and sumEuler, and the other three have relatively high communication
degree, raytracer, matMult, and linSolv.

The parFib computes Fibonacci numbers. The sumEuler program computes the sum over the application
of the Euler totient function over an integer list. The queens program places a chess pieces on a board. The
raytracer calculates a 2D image of a given scene of 3D objects by tracing all rays in a given scene of 3D objects
by tracing all rays in a given grid, or window. The matMult multiples two matrices. The linSolv program
finds an exact solution of a linear system of equations. See Table 5.3

Table 5.3

Programs Characteristics and Performance

Program Application Area Paradigm Regularity

queens AI Div-Conq. Regular
parFib Numeric Div-Conq. Regular
linSolv Symb. algebra Data Para. Limit irreg.
sumEuler Nume. Analysis Data Para. Irregular
matMult Numeric Divi-Conq. Irregular
raytracer Graphic Data Para. High irreg.

6. GRID-GUM Performance. In developingGRID-GUM, a crucial first step was to ensure that Gum could
seamlessly support GpH in a Grid environment. In particular, it was important to demonstrate conclusively
that the HPC-oriented Gum communication layer could be modified for transparent use in a heterogeneous
Grid. As discussed above, Gum communication is based on Pvm, where communication in widely used Grid

environments like Globus Toolkit is based on special forms of Mpi. While there is some evidence that Pvm

and Mpi offer comparable behaviours, it was not known whether the additional Grid control layers might
add unacceptable overheads costs to Gum, rendering its use inappropriate for parallel functional programming
support in a Grid.

Table 6.1

Dynamic Program Properties on 16 PEs

program comm No of Alloc comm Average

Name library Threads Rate Degree Pkt Size

MB/s Pkts/s Byte

parFib Pvm 26595 55.3 65.5 5.5
Mpich 26595 52.7 58.0 5.5
Mpich-G2 26595 43.2 14.8 5.6

sumEuler Pvm 82 52.8 2.09 90.2
Mpich 82 47.9 1.4 90.3
Mpich-G2 82 45.7 0.7 90.2

raytracer Pvm 350 60.0 46.7 321.7
Mpich 350 61.4 45.5 320.4
Mpich-G2 350 49.5 62.9 323.0

linSolv Pvm 242 40.3 5.5 290.6
Mpich 242 40.8 3.1 300.1
Mpich-G2 242 26.5 2.5 276.3

matMult Pvm 144 39.0 67.3 208.8
Mpich 144 40.1 52.2 213.3
Mpich-G2 144 40.0 31.2 209.3

queens Pvm 24 38.8 0.2 851.8
Mpich 24 37.0 0.2 818.9
Mpich-G2 24 34.0 0.1 846.1

14 A. D. Al Zain et al

Table 6.2

Speedup on 16 PEs

program comm Runtime Speedup %variance

Name library Seq 16 PE Wall Exec Wall Exec
sec sec Clock Clock

parFib Pvm 413.7 22.8 14.8 17.1 00% 00%
Mpich 409.4 20.5 6.8 19.8 54% -15%
Mpich-G2 465.1 26.3 2.3 17.6 84% -2%

sumEuler Pvm 1607.1 131.8 11.1 12.1 00% 00%
Mpich 1585.1 139.2 8.8 11.3 20% 6%
Mpich-G2 1598.1 188.1 3.5 8.4 68% 30%

raytracer Pvm 2855.4 315.3 8.9 9.6 00% 00%
Mpich 2782.7 365.2 7.8 8.9 12% 7%
Mpich-G2 2782.7 301.7 6.8 9.2 22% 4%

linSolv Pvm 834.2 102.6 6.5 8.9 00% 00%
Mpich 828.4 110.5 5.5 7.3 15% 17%
Mpich-G2 828.9 112.2 5.1 7.3 21% 17%

matMult Pvm 891.9 150.2 5.9 5.9 00% 00%
Mpich 891.9 191.9 4.6 4.6 21% 21%
Mpich-G2 916.3 292.6 3.1 5.0 47% 15%

queens Pvm 2802.7 375.1 7.4 7.4 00% 00%
Mpich 2802.7 390.9 7.1 7.1 4% 4%
Mpich-G2 2816.4 567.8 4.9 6.2 33% 16%

Min Pvm

Mpich 4% -15%
Mpich-G2 21% -2%

Max Pvm

Mpich 54% 21%
Mpich-G2 84% 30%

Geometric Mean Pvm

Mpich 26% 13%
Mpich-G2 49% 16%

6.1. Communication Library Impact. This experiment investigates the impact of using different com-
munication libraries on the performance on a single cluster.

The measurements in this section have been performed on the Edin1 cluster. In Table 6.2, the fifth and
sixth columns record the wall-clock and execution speedup. The wall-clock time is the execution time plus the
startup time. The seventh and the last columns show the percentage variance of the wall-clock and execution
speedup relative to the Gum/Pvm implementation speedup.

Overall, the Gum/Pvm implementation consistently shows the best wall-clock speedup and Gum/Mpich-
G2 the worst marked as the average packet size, in Gum level, shrinks. As shown in measurements in the
Table 6.1, the average packet size is relatively small for parFib, and sumEuler, and the wall-clock speedup
variance is big between the different Gum implementations for these programs. For raytracer, matMult, and
linSolv the average packet size is significantly larger and the wall-clock speedup variance is smaller.

The main source of overhead for the communication is the time needed for packing and unpacking in the
communication libraries. Good performance for small packets is important for Gum, since parallel functional
programs have massive amount of fine grained parallelism including many small messages. This is untypical
for general parallel applications, and Mpi implementations may well be tuned for the common case of large
packet sizes. However, the big difference between Mpich and Mpich-G2 is related to the extra startup security
checking overhead which Globus Toolkit adds for Mpich-G2

Comparison of the execution-time speedup of the Gum implementations with the different GpH programs
shows that no implementation is always better than the others. However, the differences in execution-time
speedup are less marked than the differences on the wall-clock speedup.

To summarise:

• For programs with long execution time the performance of Gum is independent of the communication
libraries (Table 6.2);

Managing Heterogeneity In a Grid Parallel Haskell 15

• For small programs Gum with Pvm gives the best wall clock speedup and Gum with Mpich-G2 the
worst (Table 6.2);

• Mpich-G2 has a high startup cost relative to Pvm or Mpich (Table 6.2).

6.2. GRID-GUM on Multiple Clusters.

6.2.1. Low Latency Multi-Cluster. This experiment investigates the performance impact of executing
GpH programs on multiple heterogeneous clusters with moderate latency interconnect.

Table 6.3

Heterogeneous Clusters and Low Latency Interconnect Results

raytracer queens(13)

Speedup Rtime Speedup Rtime

F S Sec. F S Sec.

F 1.0 3.3 1483.3 1.0 3.2 719.5

S 0.3 1.0 4894.0 0.3 1.0 2324.7

FF 1.9 6.3 772.8 1.8 6.0 384.6

FS 1.2 4.0 1199.4 0.9 3.0 753.5

SS 0.5 1.8 2698.5 0.6 1.9 1176.9

SF 0.7 2.3 2106.1 1.0 3.4 666.3

FFF 2.7 8.9 545.1 2.8 9.3 249.5

FFS 2.0 6.7 728.6 0.9 3.0 768.2

FSS 1.4 4.8 1002.3 0.9 3.1 733.6

SSS 0.8 2.9 1663.0 0.9 2.9 795.7

SSF 1.4 4.6 1047.8 1.1 3.7 627.6

SFF 1.4 4.8 1002.1 1.5 4.8 478.3

raytracer queens(13)

Speedup Rtime Speedup Rtime

F S Sec. F S Sec.

FFFF 3.4 11.4 425.9 2.7 9.0 258.2

FFFS 2.7 9.0 538.8 1.4 4.8 483.0

FFSS 2.2 7.2 675.7 1.2 4.0 578.0

FSSS 1.7 5.8 833.1 1.2 4.1 561.6

SSSS 1.1 3.8 1280.9 0.9 3.1 741.6

SSSF 1.6 5.3 916.2 1.2 4.1 560.3

SSFF 1.4 4.8 1006.7 1.2 4.1 563.5

SFFF 1.4 4.6 1046.3 1.9 6.1 375.5

FFFFF 4.0 12.9 376.7 4.0 12.8 181.1

FFFFS 3.5 11.5 422.9 2.8 9.1 254.5

FFFSS 2.9 9.4 519.2 1.3 4.2 544.9

FFSSS 2.4 7.9 615.3 1.3 4.3 530.1

FSSSS 1.9 6.4 755.6 1.2 4.0 577.7

SSSSF 1.7 5.7 850.7 1.2 4.1 560.5

SSSFF 1.8 6.2 786.0 1.5 4.9 474.3

SSFFF 1.8 6.1 790.4 1.9 6.1 375.4

SFFFF 1.9 6.5 747.6 2.2 7.3 316.5

The measurements in Table 6.3 use Mpich communication library on SBC and Edin3 Beowulf clusters
described in Table 5.1. Each SBC machine is labelled S (Slow) and each Edin3 machine is labelled F (Fast).
Two programs are measured: raytracer with relatively high communication degree, and queens with relatively
low communication degree. The first column shows different combinations of machines. The second and the fifth
columns record the speedup using F ’s sequential runtime for raytracer and queens respectively. The third
and the sixth columns records the speedup using S’s sequential runtime, and the fourth and the last columns
show the wall-clock time. The first machine in the configuration string is where the program starts.

Table 6.3 shows that, replacing a local machine S by a faster remote machine F decreases the runtime and
increases the speedup. For example in Table 6.3, SSS cluster requires 1663.0s to finish the computation of
raytracer; however, if S machine has been replaced by F remote machine, the runtime is decreased by 37%.
Interestingly, this result supports the idea of using a fast remote machine to improve the performance of a GpH

parallel program, and it shows thatGRID-GUM can cope with moderate latency network without modification.
However, it is observable thatGRID-GUM, with its blind load mechanism, often gives unsatisfactory schedul-

ing in heterogeneous Grid multi-clusters. For example, replacing one of the FFF machines by a slower remote
machine S increases the runtime of queens from 249.5s to 768.2s, i. e. by a factor of three. Likewise, adding a
slower remote machine S to two FF local machines increases the runtime of queens from 384.6s to 768.2s i. e.
by a factor of two.

GRID-GUM shows relatively poor performance on heterogeneous cluster for many programs, and that is due
to poor load management. For example, Figure 6.1 shows GRID-GUM per-PE activity profile for raytracer

on a heterogeneous and a homogeneous cluster. A per-PE activity profile shows the behaviour for each of the
PEs (y-axis) over execution time (x-axis). Each PE is visualised as a horizontal line, with darker shades of gray

16 A. D. Al Zain et al

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s Wed Sep 14 13:49:52 BST 2005GUM

0

1

2

3

4

5

6

7

0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s Tue Oct 26 14:50:20 CEST 2004GUM

0

1

2

3

4

5

6

7

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k120.0 k140.0 k160.0 k180.0 k200.0 k220.0 k240.0 k260.0 k280.0 k300.0 k320.0 k340.0 k360.0 k

a) Homogeneous clusters b) Heterogeneous cluster

Fig. 6.1. per PE Activity Profile for raytracer

(green in a colour profile) indicating a larger number of runnable threads. Gaps in the horizontal lines (red
areas in the colour profile) indicate idleness.

Figure 6.1.a depicts the performance on homogeneous cluster where all PEs have the same CPU speed.
Figure 6.1.b depicts the performance on heterogeneous cluster where there are four fast machines (0-3) and four
slow machines (4-7). All PEs in Figure 6.1.a are uniformly loaded, and finish at the same time, in contrast
the PEs in Figure 6.1.b have numerous idle periods, and finish at different times. Figure 6.1.b also shows long
idle periods at the beginning of the computation, where only a small amount of parallelism is available, and
blocking on data that is remotely evaluated will cause the entire PE to remain idle until new work is obtained
(see the start of PE 6). Matching the profile in Figure 6.1.a, the fast processors in Figure 6.1.b (0-3) show a
fairly balanced load and finish at about the same time. Towards the end only PE 3 has useful work, and the
main PE 0 has to wait for it to finish. Considering the runtime of the heterogeneous cluster, 368.0s, is almost
two times greater than the runtime of the homogeneous cluster, 220.0s.

To summarise:
• Replacing a local PE with a faster remote PE reduces execution time (Table 6.3);
• GRID-GUM’s load balancing mechanism does not deliver good scheduling in a heterogeneous Grid

multi-clusters (Figure 6.1);
• In a moderate latency configuration, latency is not the dominating factor, sinceGRID-GUM can overlap

communication with computation, provided a sufficient amount of parallelism is available (Table 6.3).

6.2.2. High Latency Multi-Cluster. This experiment investigates the performance impact of executing
GpH programs on multiple homogeneous clusters with a high latency interconnect. We measure programs with
both low and high communication degrees.

The measurements in Table 6.4, and 6.5 use Mpich-G2 communication library on the Muni and Edin2
Beowulf clusters described Table 5.1. Each Muni machine is labelled M and each Edin2 machine is labelled E

Five programs have been tested: two programs with relatively low communication degree parFib, and
sumEuler, and three programs with relatively high communication degree raytracer, linSolv, and matMult,
see Table 6.1.

For programs with a low communication degree, Table 6.4 shows that adding a remote machine M decreases
the runtime. Even on multi-clusters configurations with very high latency between the clusters, the additional
computational power outweighs the expensive but infrequent communication. It also shows that replacing a
local machine E by a remote machine M does not grossly deteriorate performance. For example, in Table 6.4,
in an EEE configuration sumEuler requires 899.7s to finish, machine M is added EEEM the runtime decreases
by 26.0%. Furthermore, replacing a local machine E by a remote machine M , yielding a EEM configuration,
shows little change in the runtime (3.5%). In short, using remote machines in high latency communications
does not have impact on the performance of low communication degree programs.

Table 6.5 shows, programs with a high communication degree, replacing a local machine with a slightly
faster remote machine increases the runtime and decreases the speedup. For instance linSolv on two lo-

Managing Heterogeneity In a Grid Parallel Haskell 17

Table 6.4

Low Communication Degree Programs

parFib(45) sumEuler

Rtime Spedup Rtime Spedup

Sec. E M Sec. E M

M 867.5 1.2 1.0 3138.5 1.0 1.0

E 1070.1 1.0 0.8 3227.6 1.0 0.9

MM 431.0 2.2 2.0 1270.4 2.5 2.4

EM 480.6 2.2 1.8 1308.8 2.4 2.3

EE 536.8 1.9 1.6 1332.8 2.4 2.3

MMM 298.8 3.5 2.9 869.9 3.7 3.6

EMM 331.1 3.2 2.6 838.7 3.8 3.7

EEM 338.9 3.1 2.5 867.9 3.7 3.6

EEE 374.8 2.8 2.3 899.7 3.5 3.4

parFib(45) sumEuler

Rtime Spedup Rtime Spedup

Sec. E M Sec. E M

MMMM 241.9 4.4 3.5 629.7 5.1 4.9

EMMM 251.3 4.2 3.4 670.7 4.8 4.6

EEMM 268.0 3.9 3.2 665.8 4.8 4.7

EEEM 274.9 3.8 3.1 665.5 4.8 4.7

EEEE 292.9 3.6 2.9 662.2 4.8 4.7

MMMMM 205.9 5.0 4.2 523.2 6.1 5.9

EMMMM 212.7 5.0 4.0 544.0 5.9 5.7

EEMMM 226.2 4.7 3.8 553.7 5.8 5.6

EEEMM 224.7 4.7 3.8 620.8 5.1 5.0

EEEEM 234.0 4.5 3.7 588.4 5.4 5.3

EEEEE 251.3 4.2 3.4 570.8 5.6 5.4

cal machines EE takes 174.9s, if one of the local machine is replaced by a remote machine EM , the run-
time increases by 41.4%. Note that for all programs the runtime increases when adding a remote machine
in such a way. Furthermore, a configuration of the form EMM . . . M is always worst among the config-
urations with the same number of PEs. This is because the local machine E, which has all the work in
the beginning of the execution, has to communicate with the other machines through a high latency net-
work, which becomes a bottleneck in the execution. Finally, configurations of the form E . . . E or M . . .M

are usually the best configurations, because all machines communicate with others through the low latency
network.

testLinSolv_mp.mpi 31 83 +RTS -qp4 -H64M -s Wed Jul 6 13:58:50 BST 2005GUM

0

1

2

3

0 5.0 k 10.0 k 15.0 k 20.0 k 25.0 k 30.0 k 35.0 k 40.0 k 45.0 k 50.0 k 55.0 k 60.0 k 65.0 k 70.0 k 75.0 k 80.0 k

testLinSolv_mp.mpi 31 83 +RTS -qp4 -H64M -s Wed Jul 6 14:06:34 BST 2005GUM

0

1

2

3

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k

a) Homogeneous low latency interconnect b) Heterogeneous high latency interconnect

Fig. 6.2. per PE Activity Profile for linSolv on multi-Clusters

GRID-GUM shows relatively poor performance on high latency interconnect multi-clusters for many pro-
grams. For example, Figure 6.2 shows GRID-GUM per-PE activity profile for linSolv on a homogeneous low
and a heterogeneous high latency interconnect multi-clusters. Figure 6.2.a depicts the performance on homo-
geneous low latency interconnect cluster. Figure 6.2.b depicts the performance on heterogeneous high latency
interconnect where PE 0 & PE 1 and PE 2 & PE 3 are connected pairwise by a low latency network, and with
a high latency network between the pairs.

In Figure 6.2.b the PEs exhibit significantly more idle time, i. e. gaps in the horizontal line, and complete
at different times. In contrast, the work is fairly evenly balanced in Figure 6.2.a. The idle time in Figure 6.2.b
is due to PEs waiting for data to without other threads execute.

18 A. D. Al Zain et al

Table 6.5

High Communication Degree Programs

raytracer matMult linSolv

Rtime Speedup Rtime Speedup Rtime Speedup

Sec. E M Sec. E M Sec. E M

M 903.8 1.1 1.0 265.8 0.9 1.0 290.0 1.0 1.0

E 1027.8 1.0 0.8 259.9 1.0 1.0 299.3 1.0 0.9

MM 548.6 1.8 1.4 228.8 1.1 1.1 196.5 1.5 1.4

EM 624.6 1.6 1.4 393.0 0.6 0.6 232.0 1.2 1.2

EE 545.7 1.8 1.6 227.8 1.1 1.1 164.9 1.8 1.7

MMM 383.7 2.6 2.3 133.0 1.9 1.9 139.4 2.1 2.0

EMM 535.8 1.9 1.6 297.7 0.8 0.8 231.8 1.2 1.2

EEM 494.9 2.0 1.8 201.9 1.2 1.3 141.1 2.1 2.0

EEE 387.5 2.6 2.3 137.8 1.8 1.9 136.8 2.1 2.1

MMMM 312.8 3.2 2.8 121.9 2.1 2.1 119.5 2.5 2.4

EMMM 497.6 2.0 1.8 295.0 0.8 0.9 142.5 2.1 2.0

EEMM 421.7 2.4 2.1 213.9 1.2 1.2 134.9 2.2 2.1

EEEM 377.9 2.7 2.3 145.9 1.7 1.8 120.9 2.4 2.3

EEEE 326.4 3.1 2.7 114.8 2.2 2.3 117.1 2.5 2.4

MMMMM 287.8 3.5 3.1 108.6 2.3 2.4 104.4 2.8 2.7

EMMMM 473.8 2.1 1.9 290.8 0.8 0.9 147.0 2.0 1.9

EEMMM 413.7 2.4 2.1 228.8 1.1 1.1 142.1 2.1 2.0

EEEMM 378.7 2.7 2.3 150.9 1.7 1.7 104.9 2.8 2.7

EEEEM 329.9 3.1 2.7 125.1 2.0 2.1 107.7 2.7 2.7

EEEEE 279.8 3.6 3.2 95.9 2.7 2.7 102.9 2.9 2.8

To summarise:

• For high communication degree programsGRID-GUM delivers poor performance on high latency multi-
clusters (Table 6.5);

• For low communication degree programs GRID-GUM can delver good performance on high latency
multi-clusters (Table 6.4);

• The poor performance of GRID-GUM on high latency multi-clusters is primarily due to poor load
management (Figure 6.2).

7. GRID-GUM2. Based on the results in previous section, it is essential to modifyGRID-GUM for execution
on a computational Grid, (GRID-GUM2). GRID-GUM2 uses the monitored information to provide a good load
distribution over the Grid using the following policies:

• An idle PE sends a FISH message only to a PE that has high load relative to its CPU speed.
• PEs have a preference for obtaining work from PEs that currently have low communication latency.
• The recipient PE switches from passive to active load distribution if a FISH message received from

another cluster.

The new GRID-GUM2 mechanism has two main components: information collection and adaptive load
distribution. The information collection is supported by a monitoring mechanism to provide the current state
information of the Grid network. The monitoring mechanism performs during the whole course of execution. It
collects static information like CPU speed at the start of program in PEStatic table (Figure 7.1), and dynamic
information such as load and latency during the execution in PEDynamic and ComMap tables (Figures 7.2
and 7.3) respectively. The adaptive load distribution of GRID-GUM2 comprises the following aspects:

• Resource-level load distribution: programs executed do not required specific resource, present on only
same PEs. Idle PEs use load distribution mechanism inGRID-GUM2 to seek work from PEs relatively

Managing Heterogeneity In a Grid Parallel Haskell 19

PE

550 MHz

550 MHz

350 MHz

350 MHz

Time Stamp

350 MHz

13:40:01

13:45:00

12:40:03

13:44:03

14:40:03

A

D

C

B

F

CPU Speed

Fig. 7.1. PEStatic Table

Load time_stamp

2000 14:13:49

3000 14:13:59

10000 14:12:22

PE

A

B

D

Fig. 7.2. PEDynamic Table

PE

0.75 msec

Last Update

12:45:20F

Latency

C 10.00 msec 12:50:25

G 2.05 msec 12:24:50

Fig. 7.3. ComMap Table

IF received fish THEN
 update tables with data
 from fishing PE
 IF sparks availabelTHEN
 IF fishing PE is local THEN
 send sparks in sechedule
 to fishing PE+local data
 ELSE
 send spark(s) in super−schedule
 to fishing PE+local data
 ELSE
 IF another PE has spark
 forward fish+local data
 to busiest local PE

Fig. 7.4. Work Request

IF idle THEN

 to busiest PE from tables

 IF runnable−thread THEN

 execute runnable−thread

 IF spark in the spark−pool THEN

 create runnable−thread

 execute runnable−thread

 ELSE

 send fish+local data

 to busiest PE from tables

 send fish+local data

Fig. 7.5. Work Location

The Load Distribution Mechanisms in GRID-GUM2

heavily loaded.
• Dependent load distribution: GRID-GUM2 aims for an efficient load distribution mechanism to a single

parallel program with dependent tasks.
• Decentralised information services: GRID-GUM2 maintains a decentralised scheme where every PE is

responsible for maintaining state information of some nearby PEs and share it with other PEs.
• Dynamic load distribution: GRID-GUM2 assumes that limited knowledge about the load and PEs are

available a priori, and load distribution decisions have to be made during the execution.
• Decentralised load distribution organisation: GRID-GUM2 distributes the load distribution decision to

every PE. Therefore, each PE acts as both a load distributer and a computational resource.
• Redistribution support: GRID-GUM2 supports work placement which enhance system reliability and

flexibility.
• Adaptive load distribution: GRID-GUM2 is a mainly passive load distribution system where lightly

loaded PEs have to explicitly ask for work from PEs with excess load. However, if an idle PE requests
work from a PE residing outside its cluster and the request originated from relatively powerful cluster,
it changes from a passive to an active system and the recipient PE sends more work to the idle PE.

The core of GRID-GUM2 load distribution can be summarised as work location (Figure 7.4), and work
request handling (Figure 7.5).

8. GRID-GUM2 Performance on Heterogeneous Architecture. This experiment investigates the
performance impact of using the adaptive load distribution of GRID-GUM2 on multiple heterogeneous clusters
with moderate latency interconnect.

The measurements in Table 8.1 use GRID-GUM and GRID-GUM2 on Edin1 and Edin2 Beowulf clusters
described in Table 5.1. Four GpH programs are measured in this experiment: queens, sumEuler, linSolv
and raytracer described in Section 5. In Table 8.1, The second and third columns record the run-time using
GRID-GUM and GRID-GUM2 in seconds respectively. The last column shows the percentage improvement of

20 A. D. Al Zain et al

GRID-GUM2.

Table 8.1

Performance On Heterogeneous Architecture

Program Run-time (s) Improvement %

GRID-GUM GRID-GUM2

queens 668 310 53%
sumEuler 570 279 51%
linSolv 217 180 17%

raytracer 1340 572 57%

Min 17%
Max 57%

Geometric
47.3%

Mean

Table 8.1 shows that,GRID-GUM2 outperformsGRID-GUM on multiple heterogeneous clusters with moder-
ate latency interconnect as far as the execution time is concerned. GRID-GUM2 shows run-time improvements
between 17% and 57%. The greatest improvement are given with the most dynamic program, raytracer.
Through the rest of this sub-section we consider studying in more details the behaviour of raytracer in multi-
clusters heterogeneous architecture.

raytracer has highly irregular execution, and consequently is very sensitive to changes in parallel environ-
ment. Figure 8.1 shows per-PE and overall activity profiles for raytracer, with execution on four fast machines
(0,2,4,6), and four slow machines (1,3,5,7). A per-PE activity profile shows the behaviour for each of the PEs
(y-axis) over execution time (x-axis). An overall activity profile shows the behaviour of the program at each
instant of its execution.

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s Thu Mar 10 14:49:57 GMT 2005GUM

0

1

2

3

4

5

6

7

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k 240.0 k 260.0 k 280.0 k 300.0 k 320.0 k 340.0 k 360.0 k

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s

running runnable fetching blocked migrating
0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k120.0 k140.0 k160.0 k180.0 k200.0 k220.0 k240.0 k260.0 k280.0 k300.0 k320.0 k340.0 k360.0 k

ta
sk

s

0

5

10

15

20

25

30

35

40

45

 cycles368005Runtime =

Average Parallelism = 5.2GrAnSim

a) Per-PE activity profile b) Overall activity profile

Fig. 8.1. GRID-GUM: raytracer with 350X350 Image on a Heterogeneous multi-Clusters

Figure 8.1.a shows a poor load distribution of GRID-GUM with raytracer to calculate an image with
resolution 350×350 using eight heterogeneous machines, i. e. four fast and four slow machines. PEs as depicted
in Figure 8.1 have numerous idle period and finish at different time. From Figure 8.1.b, it is observable that
there are a considerable number of runnable threads waiting to be evaluated at most of the execution time.
This may explain the poor load distribution in GRID-GUM. PEs with slow CPU speed in a heterogeneous
architecture inGRID-GUM show the same demand of seeking work as PEs with fast CPU speed. This concludes
that PEs with slow CPU speed accumulate and activate sparks as PEs with fast CPU speed. If a spark has
been activated, it remains in its local PE as runnable or blocked thread in the thread pool and it can not
be evaluated by another PE. Considering that PEs have different capabilities of evaluating their own threads
explains the reason that there are many runnable threads are waiting to be evaluated while there are some PEs
are idle.

GRID-GUM provides explicit control over the load distribution by specifying a hard limit on the total
number of live threads, i. e. runnable or blocked threads. Figure 8.2 shows per-PE and overall activity profiles

Managing Heterogeneity In a Grid Parallel Haskell 21

for raytracer to calculate an image with resolution 350×350, with execution on four fast machines (0,2,4,6),
and four slow machines (1,3,5,7). GRID-GUM in this experiment uses a hard limit of 1 on the total number of
live threads in the thread pool.

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -qt1 -H32M -s Thu Mar 10 15:00:37 GMT 2005GUM

0

1

2

3

4

5

6

7

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -qt1 -H32M -s

running runnable fetching blocked migrating
0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

 cycles234626Runtime =

Average Parallelism = 7.2GrAnSim

a) Per-PE activity profile b) Overall activity profile

Fig. 8.2. GRID-GUM with Thread Limitation: raytracer with 350X350 Image on a Heterogeneous multi-Clusters

In Figure 8.2, GRID-GUM with thread limitation shows an efficient load distribution in a heterogeneous
architecture with moderate latency interconnect. it completes the image manipulation in 327 s, while the
version of GRID-GUM does not employ thread limitation requires 441 s. Expectedly, for the same problem
GRID-GUM2 has similar performance, i. e. 338 s, with GRID-GUM using thread limitation (Figure 8.3).

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s Wed Sep 14 17:36:05 BST 2005GUM

0

1

2

3

4

5

6

7

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k 240.0 k

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s

running runnable fetching blocked migrating
0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k 240.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

 cycles247869Runtime =

Average Parallelism = 7.2GrAnSim

a) Per-PE activity profile b) Overall activity profile

Fig. 8.3. GRID-GUM2: raytracer with 350X350 Image on a Heterogeneous multi-Clusters

However, GRID-GUM’s load distribution efficiency regress when the size of the input increased even with
thread limitation. Figure 8.4 shows per-PE and overall activity profiles for raytracer to calculate an image
with resolution 500×500, with execution on four fast machines (0,2,4,6), and four slow machines (1,3,5,7).
GRID-GUM in this experiment uses a hard limit of 1 on the total number of live threads in the thread pool.

PEs in Figure 8.4.a finish at the same time, but they still have numerous idle periods which deteriorate
the performance. This idle periods are caused by the dependencies between threads in raytracer. These
dependencies are effected badly by the thread limitation, which causes PEs to remain idle waiting for certain
threads to be evaluated. Figure 8.4.b shows that the idle periods are not caused by lack of tasks to be evaluated.
Generally speaking, thread limitation has a serious impinge on many programs performance. Figure 8.5 shows
per-PE profiles for linSolv with and without thread limitation on 8 homogeneous machines from Edin1 Beowulf
cluster.

From Figure 8.5, GRID-GUM delivers better performance with linSolv without using thread limitation.
GRID-GUM requires 2802 s to finish linSolv computation using thread limitation, unlike when thread limitation
is excluded GRID-GUM requires only 1521 s to finish the same computation in the same platform.

However,GRID-GUM2 shows more effective load distribution in heterogeneous architecture in comparison
with GRID-GUM’s load distribution. Figure 8.6 shows per-PE and overall activity profiles for raytracer to
calculate an image with resolution 500×500, with execution on four fast machines (0,2,4,6), and four slow
machines (1,3,5,7).

22 A. D. Al Zain et al

Main_mp.mpi 12 5 500 500 UK4 +RTS -qp8 -qt1 -H32M -s Wed Sep 14 18:22:50 BST 2005GUM

0

1

2

3

4

5

6

7

0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k 500.0 k 550.0 k 600.0 k

Main_mp.mpi 12 5 500 500 UK4 +RTS -qp8 -qt1 -H32M -s

running runnable fetching blocked migrating
0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k 500.0 k 550.0 k 600.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

 cycles647985Runtime =

Average Parallelism = 5.4GrAnSim

a) Per-PE activity profile b) Overall activity profile

Fig. 8.4. GRID-GUM with Thread Limitation: raytracer with 500X500 Image on a Heterogeneous multi-Clusters

testLinSolv_mp.mpi 31 81 +RTS -qp8 -qt1 -H128M -s Fri Sep 16 14:22:41 BST 2005GUM

0

1

2

3

4

5

6

7

0 200.0 k 400.0 k 600.0 k 800.0 k 1.0 M 1.2 M 1.4 M 1.6 M 1.8 M 2.0 M 2.2 M 2.4 M 2.6 M

testLinSolv_mp.mpi 31 81 +RTS -qp8 -H128M -s Fri Sep 16 11:51:07 BST 2005GUM

0

1

2

3

4

5

6

7

0 200.0 k 400.0 k 600.0 k 800.0 k 1.0 M 1.2 M 1.4 M

a) With thread limitation b) With no thread limitation

Fig. 8.5. GRID-GUM: linSolv on a Heterogeneous multi-Clusters

PEs in Figure 8.6.a are fairly balanced and and finish at about the same time. Figure 8.6.b shows thatGRID-

GUM2 scores a good average parallelism in 8 PEs, 6.9, and generates enough tasks for all PEs at each instant of
the execution time. Finally, GRID-GUM2 outperforms GRID-GUM with thread limitation in raytracer when
the image resolution increases from 350×350 to 500×500, the execution time forGRID-GUM2 andGRID-GUM

with thread limitation is 572 s and 814 s, respectively.

To summarise:

• GRID-GUM2 shows efficiency and automatic management of data and work on heterogeneous multi-
clusters Grid environment (Table 8.1);

• For some programs, thread limitation improves the performance ofGRID-GUM on heterogeneous multi-
clusters but not for all (Figures 8.2 and 8.5);

• GRID-GUM2 outperforms GRID-GUM and GRID-GUM with thread limitation for large input sizes
(Figures 8.6 and 8.4).

9. Related Work. The most closely related to our philosophy of semi-implicit management of parallelism
in a high level language is the ConCert system [10] system and the Hemlock compiler [11], which translates a
subset of ML to machine code, for execution on a Grid architecture. In contrast to our work, parallelism is
expressed via explicit synchronisation.

Under the topic of meta-computing several projects, like Harness [12], aim at provide functionality similar
to GRID-GUM2. The characteristic difference to GRID-GUM2 is the automatic management of parallelism
within one parallel program.

Alt et al apply skeletons to computational Grids [13]. This work focuses on providing the application
user with skeletons to capture common patterns of Grid abstractions. However, our aim is to provide more
general programming language support for parallelism through an implementation that incorporates new im-
plicit dynamic coordination-management strategies. Aldinucci et al also apply skeletons to computational
Grids [14].This work focuses on providing a skeleton to centralise load management in the Grid environment.
However, our aim is to solve load scheduling on the Grid by developing a dynamic decentralised load schedule.

Managing Heterogeneity In a Grid Parallel Haskell 23

Main_mp.mpi 12 5 500 500 UK4 +RTS -qp8 -H32M -s Wed Sep 14 18:25:35 BST 2005GUM

0

1

2

3

4

5

6

7

0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k

Main_mp.mpi 12 5 500 500 UK4 +RTS -qp8 -H32M -s

running runnable fetching blocked migrating
0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

 cycles470757Runtime =

Average Parallelism = 6.9GrAnSim

a) Per-PE activity profile b) Overall activity profile

Fig. 8.6. GRID-GUM2: raytracer with 500 × 500 Image on a Heterogeneous multi-Clusters

10. Conclusion. We have presented and measured two Grid-enabled runtime environments for the GpH

high-level parallel programming language.

Measurements of GRID-GUM showed that for large programs, the performance of Gum on a single cluster
is largely independent of the communication library used. Despite being designed for homogeneous clusters,
GRID-GUM delivers good and predictable speedups on Grid multi-clusters with a low latency interconnect.
In contrast, on Grid multi-clusters with heterogeneous architecture,GRID-GUM does not deliver good perfor-
mance due to poor scheduling. In addition, on Grid multi-clusters with a high latency interconnect, Grid-GUM
only delivers acceptable speedups for low communication degree programs.

We have presented the initial design ofGRID-GUM2 that incorporates new load management mechanisms,
informed by the GRID-GUM results. GRID-GUM2 achieves good parallel performance for a typical set of
symbolic applications running on two heterogeneous clusters connected via the Globus Toolkit, realising a small
but typical computational Grid. The improved performance is achieved by dynamically distributing work
between the machines on top of a virtual shared memory implementation. No explicit thread placement or
scheduling has to be done by the programmer. In particular, our system makes contributions towards load
distribution on such wide-area networks

We conclude that, with appropriate load management strategies, acceptable performance can be obtained
on hereogeneous computational Grids from a distributed virtual shared heap implementation of a high-level
parallel language.

REFERENCES

[1] H-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik, R. Loogen, G. J. Michaelson, R. Peña,

Á. J. Rebón Portillo, S. Priebe and P. W. Trinder, Comparing Parallel Functional Languages: Programming and
Performance, in Higher-order and Symbolic Computation, Kluwer Academic Publishers, 16(3),2003.

[2] GHC,The Glasgow Haskell Compiler, Department of Computing Science, University of Glasgow
(http://www.dcs.gla.ac.uk/), January 1998, “The Glasgow Haskell Compiler compiles code written in the functional
programming language Haskell” URL: http://www.dcs.gla.ac.uk/fp/software/ghc/

[3] P. W. Trinder, K. Hammond, J. S. Mattson Jr., A. S. Partridge and S. L. Peyton Jones, GUM: a Portable
Parallel Implementation of Haskell, in PLDI’96—Conf. on Programming Language Design and Implementation, 1996,
Philadephia USA.

[4] T. L. Casavant and J. G. Kuhl, A Taxonomy of Scheduling in General-Purpose Distribution Computing Systems, in IEEE
Transactions on Software Engineering, 14(2),1988, ISSN 0098-5589, pages 141–154, IEEE Press, Piscataway NJ USA.

[5] Y-T. Wang, and R. J. T. Morris, Load Sharing in Distributed Systems , In Scheduling and Load Balancing in Parallel
and Distributed Systems, 1995, Shirazi, A. and Hurson, A. R. and Kavi, K. M., eds, IEEE Transactions on Software
Engineering, pp. 7–20, ACM.

[6] D. L. Eager, E. D. Lazowska and J. Zahorjan, A comparison of receiver-initiated and sender-initiated adaptive load shar-
ing (extended abstract), in SIGMETRICS ’85: Proceedings of the 1985 ACM SIGMETRICS conference on Measurement
and modeling of computer systems, 1985, ISBN 0-89791-169-5, pp. 1–3, Austin Texas United States, ACM Press.

[7] S. L.Peyton Jones, C. Clack, J. Salkild and M. Hardie, GRIP—a High-Performance Architecture for Parallel Graph
Reduction, in Intl. Conf. on Functional Programming Languages and Computer Architecture, pp. 98–112, September
1987, LNCS 274, Portland Oregon, Springer-Verlag.

[8] I. Foster, and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, in “The International Journal of
Supercomputer Applications and High Performance Computing”, 11(2), pp. 115–128, 1997.

24 A. D. Al Zain et al

[9] A. Al Zain, P. Trinder, H-W. Loidl and G. Michaelson, Grid-GUM: Towards Grid-Enabled Haskell, in Draft Proceedings
of IFL’04—Intl. Workshop on the Implementation of Functional Languages, Septamber 2004, Lübeck Germany.

[10] Trustless Grid Computing in ConCert, B-Y. Evan Chang, K. Crary, M. DeLap, R. Harper, J. Liszka, T. Murphy VII,
and F. Pfenning, In Proceedings of the GRID 2002 Workshop, 2536 of LNCS, Springer-Verlag, 2001.

[11] T. Murphy VII, Hemlock and Concert v2 Framework, Talk at Carnegie Mellon University, August 2003
[12] M. Beck, J. Dongarra, G. Fagg, A. Geist, P. Gray, M. Kohl, J. Migliardi, K. Moore, T. Moore P. Papadopoulos,

S. Scott and V. Sunderam HARNESS: A Next Generation Distributed Virtual Machine, in Future Generation
Computer Systems, 15(5/6):571-582, October 1991, Special Issue in Metacomputing.

[13] M. Alt, H. Bischof and S. Gorlatch, Program Development for Computational Grids Using Skeletons and Performance
Prediction, in CMPP’02—Int. Workshop on Constructive Methods for Parallel Programming, June 2002.

[14] M. Aldinucci, M. Dnelutto and Dünnweber, Optimization Techniques for Implementing Parallel Sckeletons in Grid Envi-
ronments, in CMPP’04—Intl. Workshop on Constructive Methods for Parallel Programming, July 2004, Stirling Scotland

[15] M. Litzkow, M. Livny and M. Mutka, Condor- A Hunter of Idle Workstations, in Proc. the 8th InternationalConference
of Distributed Computing Systems, San Jose, California, June 1988.

[16] J. Frey and T. Tannenbaum and M. Livny and I. Foster and S. Tuecke, Condor-G: A Computation Management
Agent for Multi-Institutional Grids,in HPDC10 — Tenth International Symposium on High Performance Distributed
Computing, August, 2001, IEEE Press.

[17] F. Berman and R. Wolski, The AppLeS Project: A Status Report, 1997.
[18] A. S. Grimshaw, M. J. Lewis, A. J. Ferrari and J. F. Karpovich, Architectural Support for Extensibility and Autonomy

in Wide-Area Distributed Object Systems, Department of Computer Science, University of Virginia, 1998, Technical
Report, CS-98–12.

[19] F. Berman, G. Fox and T. Hey, The Grid: past, present, future, in Grid Computing—Making the Global Infrastructure
a Reality, pp. 9–50, John Wiley & Sons, Ltd, West Sussex, England, 2003.

[20] I. Foster and C. Kesselman, The Globus project: a status report, in Future Generation Computer Systems, 15(5–6),
pp. 607–621, 1999.

[21] A. Geist, A. Beguelin, J. Dongerra, W. Jiang, R. Manchek and V. Sunderam, PVM: Parallel Virtual Machine, MIT,
1994.

[22] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing Interface,
MIT, second ed. , 1999

[23] W. Gropp, E. Lusk, N. Doss and A. Skjellum, A high-performance, portable implementation of the MPI Message-Passing
Interface standard, in Parallel Computing, 1996, 22(6), pp. 789–828.

[24] G. A. Geist, J. A. Kohl and P. M. Papadopoulos, PVM and MPI: A comparison of features, in Calculateurs Parallels,
8(2), 1996.

[25] N. Karonis, B. Toonen and I. Foster, MPICH-G2: A Grid-Enabled Implementation of the Message Passing Interface.,
in Journal of Parallel and Distributed Computing, 2003.

[26] I. Foster, C. Kesselman and S. Tuecke, The Anatomy of the Grid: Enabling Scalable Virtual Organizations, in Int. J.
Supercomputer Applications, 2001.

[27] S. Zhou,X. Zheng, J. Wang and P. Delisle, Utopia: a Load Sharing Facility for Large, Heterogeneous Distributed
Computer Systems, in Software—Practise and Experience, 23(12), pp. 1305–1336, 1993.

[28] Sun Microsystems, Grid-Engine Project, 2001, http://gridengine.sunsource.net/
[29] P. W. Trinder, K. Hammond, H-W. Loidl and S. L. Peyton Jones, Algorithm + Strategy = Parallelism, in Journal of

Functional Programming, 1998, 8(1), pp. 23–60.

Managing Heterogeneity In a Grid Parallel Haskell 25

Appendix A: sumEuler.

module Main(main) where

import System(getArgs)

import Strategies

sumTotient :: Int ->---lower limit of the interval

Int ->---upper limit of the interval

Int ->---chunk size

Int

sumTotient lower upper c =

sum (map (sum . map euler) (splitAtN c [upper, upper-1 .. lower])

‘using‘ parList rnf)

euler :: Int -> Int

euler n = length (filter (relprime n) [1 .. n-1])

relprime :: Int -> Int -> Bool

relprime x y = hcf x y == 1

hcf :: Int -> Int -> Int

hcf x 0 = x

hcf x y = hcf y (rem x y)

mkList :: Int -> Int -> [Int]

mkList lower upper = reverse (enumFromTo lower upper)

splitAtN :: Int -> [a] -> [[a]]

splitAtN n [] = []

splitAtN n xs = ys : splitAtN n zs

where (ys,zs) = splitAt n xs

main = do args <- getArgs

let

lower = read (args!!0) :: Int---lower limit of the interval

upper = read (args!!1) :: Int---upper limit of the interval

c = read (args!!2) :: Int---chunksize

putStrLn ("Sum of Totients between [" ++

(show lower) ++ ‘‘.." ++ (show upper) ++ ‘‘] is ‘‘ ++

show (sumTotient lower upper c))

Edited by: Frédéric Loulergue
Received: October 20, 2005
Accepted: February 1st, 2006

