SCALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 7, Number 3, pp. 27-37. http://www.scpe.org (© 2006 SWPS

0,..

DYNAMIC MEMORY MANAGEMENT IN THE LOCI FRAMEWORK

YANG ZHANG AND EDWARD A. LUKE*

Abstract. Resource management is a critical concern in high-performance computing software. While management of pro-
cessing resources to increase performance is the most critical, efficient management of memory resources plays an important role
in solving large problems. This paper presents a dynamic memory management scheme for a declarative high-performance data-
parallel programming system—the Loci framework. In such systems, some sort of automatic resource management is a requirement.
We present an automatic memory management scheme that provides good compromise between memory utilization and speed. In
addition to basic memory management, we also develop methods that take advantages of the cache memory subsystem and explore
balances between memory utilization and parallel communication costs.

Key words. Memory management, declarative languages, parallel programming, software synthesis

1. Introduction. In this paper we discuss the design and implementation of a dynamic memory man-
agement strategy for the declarative programming framework, Loci [5, 6]. The Loci framework provides a
rule-based programming model for numerical and scientific simulation similar to the Datalog [12] logic program-
ming model for relational databases. In Loci, the arrays typically found in scientific applications are treated as
relations, and computations are treated as transformation rules. The framework provides a planner, similar to
the FFTW [3] library, that generates a schedule of subroutine calls that will obtain a particular user specified
goal. Loci provides a range of automatic resource management facilities such as automatic parallel scheduling
for distributed memory architectures and automatic load balancing. The Loci framework has demonstrated
predictable performance behavior and efficient utilization of large scale distributed memory architectures on
problems of significant complexity with multiple disciplines involved [6]. Loci and its applications are in active
and routine use by engineers at various NASA centers in the support of rocket system design and testing.

The Loci planner is divided into several major stages. The first stage is a dependency analysis which
generates a dependency graph that describes a partial ordering of computations from the initial facts to the
requested goal. In the second stage, the dependency graph is sub-divided into functional groups that are further
partitioned into a collection of directed acyclic graphs (DAGs). In the third stage, the partitioned graphs are
decorated with resource management constraints (such as memory management constraints). In the forth stage
a proto-plan is formed by determining an ordering of DAG vertices to form computation super-steps. (In
the final parallel schedule, these steps are similar to the super-steps of the Bulk Synchronous Parallel (BSP)
model [13, 10, 2].) The proto-plan is used to perform analysis on the generation of relations by rules as well
as the communication schedule to be performed at the end of each computation step in the fifth and sixth
stages (existential analysis and pruning), as described in more detail in this recent article [6]. Finally the
information collected in these stages is used to generate an execution plan in the seventh stage. Dynamic
memory management is primarily implemented as modifications to the third and fourth stages of Loci planning.

2. Related Work. The memory system and its management has been studied extensively in the past.
These studies are on various different levels. On the software level, memory management can be roughly
categorized into allocation techniques and management strategies. Allocation techniques mostly deal with how
memory is requested and returned to the operating system in order to efficiently satisfy application requests.
Memory management strategies often study how and when to recycle useless memory. Allocation is usually
performed by the “allocator,” which is typically implemented as a library component (such as the malloc routine
in the standard C library). The central themes in various allocation techniques are fragmentation and locality
problems. If care is not taken, then the allocator could build up large internal fragmentation with significant
inaccessible memory. The locality property in the allocator can greatly affect the cache and page misses and
hence also contributes to the program performance. Wilson et al. [15] has an excellent survey for various
allocation techniques. The memory management strategies can be subdivided mainly into two directions: one is
to managing memory manually; while the other direction is to automatically reclaim useless memory. Manual
memory management is usually performed by explicit programming. Programmer has full control over memory
recycling. There has been much debate concerning various aspects of the advantages and disadvantages for

*Department of Computer Science and Engineering, and Computational Simulation and Design Center, Mississippi State Univer-
sity, Mississippi State, MS 39762. Questions, comments, or corrections may be directed to the first author at fz15@cse .msstate.edu

27

28 Y. Zhang and E. A. Luke

manual memory recycling. But a general consensus is that for large complex systems, a manual strategy is not
encouraged due to its complex interaction with other software components. Automatic memory management
frees the programmers from bookkeeping details of reclaiming memory and is typically a built-in feature in
many modern languages such as Java, ML, Smalltalk, etc. The most prevalent technique for automatic memory
recycling is “garbage collection” where the run-time system periodically reclaims useless memory [14]. Recent
studies proposed “region inference” as another technique for automatic memory recycling. Region inference [11]
relies on static program analysis and is a compile-time method and uses the region concept. The compiler
analyzes the source program and infers the allocation. In addition to being fully automatic, it also has the
advantage of reducing the run-time overhead found in garbage collection.

When designing the memory management subsystem for Loci, we are mostly interested in designing a
memory management strategy and not in low level allocator designs. The programming model in Loct is
declarative, which means the user does not have direct control of allocation. Also one major goal of the Loci
framework is to hide irrelevant details from the user. Therefore we are interested in designing an automatic
memory management scheme. Garbage collection typically works better for small allocations in a dynamic
environment. While in Loci, the data-structures are often static; and allocations are typically large. Thus, the
applicability of garbage collection to this domain is uncertain. Another problem of garbage collection is that
the time required for collecting garbage cannot be predicted easily. While there has been research work on
real-time garbage collection [4, 9] that attempt to address such issues, we find a memory management scheme
without garbage collection to be straightforward and easy to reason about. Therefore instead of applying
traditional garbage collection techniques, we have adopted a strategy that shares some similarities to the region
inference techniques as will be described in the following sections. We also note interactions between the
parallel scheduling of tasks and memory management strategies. Similar interactions have been observed in
recent studies in continuous data streams [1] where it is demonstrated that operator scheduling order in the
context of continuous data streams can affect overall memory requirements. They suggested a near-optimal
strategy in the context of stream models. Although this is in a context that differs from our data-parallel
programming domain, it shares some similarities with our approaches in balancing the memory utilization and
parallel communication costs within the Loci framework.

3. Basic Dynamic Memory Management. In Loci, the aggregations of attributes found in scientific
computing are treated as binary relations and are stored in Loci provided value containers. These value contain-
ers are the major source of memory consumption. Therefore the management of allocation and deallocation of
these containers is the major focus of our memory management scheme. A simple way to manage the lifetime of
these containers is preallocation. In this approach we take advantage of the Loci planner’s ability to predict the
sizes of the containers in advance. In the preallocation scheme, all containers are allocated at the beginning and
recycled only at the end of the schedule. While this scheme is simple and has little run-time overhead, it does not
offer any benefits for saving space. Scientific applications for which Loci is targeted tend to have large memory
requirements. The primary goal of the management is therefore to reduce the peak memory requirement so
that larger problems can be solved on the same system. Preallocation obviously fails this purpose.

After the user submits a request, the Loci planner generates a dependency graph. This graph describes
the relationship between rules that obtains the specified goal. The dependency graph usually contains cycles
caused by the specification of iteration, conditional execution blocks, and rule recursion. To simplify scheduling,
the dependency graph is partition to a hierarchical graph where each level contains a DAG. Cycles have been
removed in this graph and replaced by super-nodes that represent the semantics (e.g. iteration or recursion).
This hierarchical graph is referred to as the multi-level graph. Thus, most of Loci scheduling is reduced to
scheduling a DAG of rules. A simple approach to incorporating appropriate memory scheduling would be
to incorporate relevant memory management operations into the multi-level graph. Then, when the graph
is compiled, proper memory management instructions are included into the schedule and will be invoked in
execution. We refer this process of including memory management instructions into the dependency graph as
graph decoration. Thus memory management for Loci becomes the graph decoration problem. For example,
Fig. 3.1 shows a decoration for a simple DAG. However, the multi-level dependency graph for a real application
is likely to be complex. For example, multiple nested iterations and conditional specifications, recursions, etc.
could also be involved. A global analysis of the graph is performed to determine the lifetime of all containers
in the final schedule [16].

Dynamic Memory Management In the Loci Framework 29

B ALLCCATE: D A

D:- AB
ALLOCATE: E
:
E:-BD F:- ABD
é é} ALLOCATE: C
C:- BDF

DELETE: D @ DELETE: F

Fic. 3.1. Memory Management by means of Graph Decoration

A J

w
>

o
% Qaﬁ N

shift domain
&
r epeat

O
w

@..

2
<

O
(@]

@..

Fic. 4.1. The Chomping Idea

4. Chomping. Chomping is a technique we used in Loci to optimize the cache performance. The idea of
chomping is borrowed from the commonly known loop scheduling technique: strip mining. In Loci, relations,
the primary data abstractions, are collections of attributes that are stored in array-like containers that represent
aggregations of values. Since these containers dominate the space consumed by Loci applications, they are ideal
candidates for cache optimization by data partitioning. Data partitioning also creates further chance for memory
savings in addition to the basic memory management implemented in Loci. Consider the rule chain in Fig. 4.1.
Relation A is the source to the chain and D is the final derived relation; B and C are intermediate relations.
We can break the rules in the chain into small sub-computations. In each of these sub-computation, only part of
the derived relations are produced. This implies for any intermediate relations, only partial allocation of their
container is required. Because these partial allocations can be made small, they enhance cache utilization and
can further reduce memory requirements. Breaking computations into smaller intermediate segments not only
reduces absolute memory allocation requirements, but also helps to reduce fragmentation by reusing a pool of
small uniformly sized memory segments.

4.1. Chomping Implementation. The implementation of chomping extends the partitioning second
stage in the Loci planner. In each level in the multi-level dependency graph generated by the Loci planner,
all suitable rule chains for chomping are first identified. Then each chain is replaced by a special chomping
rule and is handled separately in the graph compilation phase. The replacement is illustrated in Fig. 4.2. This
allows smooth integration of chomping and dynamic memory management implemented in the Loci planner.
As we presented in section 3, memory management in the Loci planner is implemented as a graph decoration

30 Y. Zhang and E. A. Luke

)

vy}
>

ALLOCATE: D

o

(@]
ve)

(o

W)
(@]

@..

Fic. 4.2. Implementation of Chomping

i ndex
i ndex contai ner i ndex map cont ai ner

1

S

o— 1 l:; O—
(@]
®o— S ®o— 2
@ —31Eg @— 3
&—ii°f @— 4
o— e O— 5
&—8|°F @— 6
regul ar contai ner non- af fi ne cont ai ner
access access

Fic. 4.3. Memory Reference Patterns

problem. The graph decorator does not have to know the chomping chain. For example, for the replaced graph
in Fig. 4.2, the decorator can proceed as normal without the knowledge of the chomping chain. The memory
allocation of the chomped relations B and C' are handled internally in the chomping rule.

Obviously, the central problem in the implementation is how we identify suitable rule chains that can
be chomped in a DAG in the multi-level dependency graph. Because of the existence of non-affine memory
references in Loci rules, we cannot group arbitrary rules into rule chains that can be chomped. Consider
the examples of memory access shown in Fig. 4.3. For a regular container access, there is a pre-determined
access order to the domain of the container. For the case shown in Fig. 4.3, the access order to the domain is
[1,2,3,4,5,6]. Since this pattern is pre-determined, we can allocate memory for domain [1, 2] first and perform
the computation on this sub-domain of the container. Then we can shift this sub-domain by a distance of 2
and obtain the following sub-domain [3,4], and finally [5,6]. Therefore the container and the rules associated
can be chomped directly. For a non-affine container access, essentially we have the pattern of A[B[i]]. A is the
container and B is the index map. The index map is often unknown until run-time. Therefore the access pattern
to the container is also unknown until run-time. For the case shown in Fig. 4.3, the access order to the domain
is [6,4, 3,1, 2,5]. We have no direct way to allocate and shift sub-domains as in the regular container access. As

Dynamic Memory Management In the Loci Framework 31

Fi1a. 5.1. Different Scheduling for a DAG

a result, the container and its associated rules cannot be chomped directly. In Loci, we use a heuristic search
to identify suitable chains in the multi-level dependency graph and apply chomping only to them. The running
time and the searching results of our algorithm are of satisfactory for large Loci applications. In section 6, we
include an empirical evaluation of this heuristic chomping searching algorithm.

4.2. The Decision of Chomping Size. The total allocation size for chomped relations in a chomping
rule is referred to as chomping size in the Loci planner. For example, the chomping size for the chomping chain
in Fig. 4.1 is the total memory allocation for segments for relations B and C. Ideally, as in matrix blocking
algorithms, the chomping size should be approximately the size of the data cache in order to utilize the cache
performance. However, in Loci, we typically set it to be approximately half the size of the data cache. Chomping
in Loci does not completely resemble typical cache optimization techniques such as matrix blocking algorithms.
The source and target relations for a chomping rule chain is not chomped. They could be large and rules in
the middle of the chomping chain could also have access (or non-affine access in the worst case) to the source
relations. These potentially destroy the cache benefits obtained through chomping. We set the chomping size
smaller than the data cache size with the hope to alleviate some of these problems. In our implementation, users
can also specify a particular chomping size for the Loci planner. Chomping may create some further chances
for program optimization, we will touch some of these in our conclusion section.

5. Memory Utilization and Parallel Communication Costs. In section 3, we transformed the mem-
ory management into a graph decoration problem. However the graph decoration only specifies a dependencies
between memory management and computation. It is up to the Loci planner to generate a particular execution
order that satisfies this dependence relationship. From the memory management point of view, the order to
schedule allocation and deallocation affects the peak memory requirement of the application. On the other
hand, the Loci planner can produce a data-parallel schedule. In the data-parallel model, after each super-step,
processors need to synchronize data among the processes. From the communication point of view, different
schedules may create different numbers of synchronization points. While the number of synchronization points
does not change the total volume of data communicated, increased synchronization does reduce the opportu-
nity to combine communication schedules to reduce start-up costs and latency. Thus with respect to parallel
overhead, less synchronization is preferred.

Figure 5.1 shows the effect of different scheduling of a DAG. Schedule one is greedy on computation, a
rule is scheduled as early as possible. Therefore schedule one has fewer synchronization points. Schedule two
is greedy on memory, a rule is scheduled as late as possible. Therefore derived relations are spread over more
super-steps, hence more synchronization points are needed.

A trade-off therefore exists in the Loci planner. In order to optimize memory utilization and reduce peak
memory requirement, the planner will typically generate a schedule with more synchronization points, and
therefore increase the communication start-up costs and slow down the execution. Attempting to minimize the
synchronization points in a schedule results in a fast execution, but with more memory usage. Such trade-off
can be customized under different circumstances. For example, if memory is the limiting factor, then a memory
optimization schedule is preferred. In this case, speed is sacrificed for getting the program run within limited

32 Y. Zhang and E. A. Luke

resources. On the other hand, if time is the major issue, then a computation greedy schedule is preferred, but
users have to supply more memory to obtain speed. In the Loci planner, we have implemented two different
scheduling algorithms. One is a simple computation greedy scheduling algorithm, which minimizes the total
synchronization points. The other one is a memory greedy scheduling algorithm. It relies on heuristics to
attempt to minimize the memory usage. Users of Loci can instruct the planner to choose either of the two
policies.

The scheduling infrastructure in the Loci planner is priority based. Loci planner schedules a DAG according
to the weight of each vertex. In this sense, scheduling policies can be implemented by providing different weights
to the vertices. For a computation greedy schedule, we simply set the same weight for each vertex in the graph,
since vertices with same weight will be scheduled together according to the graph topology. This effectively
schedules all possible rules together to form a super-step and hence minimizes the barrier points needed to
synchronize intermediate results among processes.

PRIOGRAPH(gr)
1 |+ NIL 1 prio — 1
2 forvieVv 2 Sorr(l, ASCEND(a))
3 do a — ALLocNuM(vi) 3 STABLESORT(I/, DESCEND(d))
4 d < DELNUM(vi) 4 for i — 1 to LENGTH(])
5 0 «— TARGETOUTEDGENUM (vi) 5 do s « [[i]
6] — APPEND(!, (vi, a,d, 0)) 6 if s.d #0
7 prio 0 7 then p[s.vi] < prio
8 for i — 1 to LENGTH(]) 8 ERrasE(l, 1[i])
9 do s — [[f] 9 prio «— prio +1
10 if s.a=0 10 Sort(l, ASCEND(0))
11 then p[s.vi] « prio 11 for i «— 1 to LENGTH(I)
12 ERrasg(l, [[i]) 12 do s « I[i]
13 pls.vi] — prio
14 prio «— prio +1

We also provide a heuristic for assigning vertices weight that attempts to minimize the memory utilization
for the schedule. The central idea of the heuristic is to keep low memory usage in each scheduling step. Given
a DAG with memory management decoration, rules that do not cause memory allocation have the highest
priority and are scheduled first. They are packed into a single step in the schedule. If no such rules can be
scheduled, then we must schedule rules that cause allocation. The remaining rules are categorized. For any
rule that causes allocation, it is possible that it also causes memory deallocation. We schedule one such rule
that causes most deallocations. If multiple rules have the same number of deallocations, we schedule one that
causes fewest allocations. Finally, we schedule all rules that do not meet the previous tests, one at a time with
the fewest outgoing edges from all relations that it produces. This is based on the assumption that the more
outgoing edges a relation has in a DAG, the more places will it be consumed, hence the relation will have a
longer lifetime.

We used a sorting based algorithm in Loci for computing vertex priority based on the heuristics described
above for memory minimization, which is shown in the procedure PRIOGRAPH. Given a graph, we start off
from building a list of statistical information for each vertex. Line 3 to line 5 compute the allocation number,
the deallocation number, and the number of outgoing edges for all target relations respectively for every rule
(for a relation, these numbers are all 0). Then all vertices that do not have allocation number get a priority of 0,
which represents the highest priority. Then we sort the remaining list first according to the ascending order of
the allocation number (line 2) and then the descending order of deallocation number (line 3). After this, all the
remaining rules will be ordered according to their deallocation and allocation number. We assign appropriate
priority to each rule that causes deallocation. The remaining rules are sorted again according to the number of
outgoing edges for target relations (line 10) and priorities are assigned accordingly.

6. Experimental Results. In this section, we present some of our measurements for the work discussed
in the previous sections. First of all, Loci planning is carried out at run-time. Our work in memory management
incurs some additional costs to the planner. We performed a measurement first for the planner itself in order to
evaluate the planning performance. Table 6.1 shows our measurement of various planning stages discussed in

Dynamic Memory Management In the Loci Framework 33

previous sections. The measurement is performed on a typical Linux workstation for an average complex Loci
application. We can conclude that the planning overhead is virtually negligible since typical running time for
Loci applications range from hours to several days on large parallel machines. For substantially larger problems
(e.g., a complex unstructured grid), the total planning time will increase correspondingly. But the planning
for the work addressed in the paper only depends on the number of rules and relations in an application and
does not relate to the input problem size. The measurements here should be a good suggestion for practical
problems we are currently considering.

TABLE 6.1
Loci planner statistics

unit: second

decoration 0.5402
chomping chain
searching 0.3760
computation

greedy schedule 0.0103
memory greedy

schedule 0.1350
total Loci
planning time 10.9706

We used the CHEM program as the benchmark in our profiling. CHEM (7, 8] is a finite-rate non-equilibrium
Navier-Stokes solver for generalized grids fully implemented using the Loci framework. CHEM can be configured
to run in several different modes, they are abbreviated as Chem-I, Chem-IC, Chem-E, and Chem-EC in the
following figures and tables. An IBM Linux Cluster (total 1038 1GHz and 1.266GHz Pentium III processors on
519 nodes, 607.5 Gigabytes of RAM), and various Linux and SGI workstations are used in the measurement. In
addition to taking the measurement of the real memory usage, we also record the bean-counting memory usage
numbers. (By bean-counting we mean tabulating the exact amount of memory requested from the allocator. It
is shown as a reference as we use GNU GCC’s allocator in Loci.) In most of the measurements, we are comparing
the results with the preallocation scheme mentioned in section 3, as the preallocation scheme represents the
upper-bound for space requirement and the lower-bound for run-time management overhead.

We did extensive profiling of the memory utilization on various architectures. Figure 6.1(a) shows a mea-
surement of Chem-EC on a single node on the Linux cluster. Figure 6.1(b) shows the same measurement on an
SGI workstation. The “dmm” in the figure means the measurement was performed with the dynamic memory
management enabled; “chomp” means chomping was also activated in the measurement in addition to basic
memory management. As can be found from the figures, when combining with memory greedy scheduling and
chomping, the peak memory usage is reduced to at most 52% (on Linux) of preallocation peak memory usage.
The actual peak memory also depends on the design of the application. We noticed that for some configurations,
the difference between the real measurement and the bean-counting is quite large. We suspect that this is due
to the quality of the memory allocator. We also found that under most cases, using chomping and memory
greedy scheduling improves the memory fragmentation problem. We suspect this is attributable to allocations
that are much smaller and regular, thus the same allocations may be more effectively reused.

Figure 6.2(a) shows one timing result for chomping on a single node on the Linux cluster. Figure 6.2(b)
shows the same measurement on an SGI workstation. The results showed different chomping sizes for different
CHEM configurations. Typically using chomping increases the performance, although no more than 10% in our
case. The benefit of chomping also depends on the Loci program design, the more computations are chomped,
the more benefit we will have. The box in Fig. 6.2(a) and Fig. 6.2(b) shows the speed of dynamic memory
management alone when compared to the preallocation scheme. This indicates the amount of run-time overhead
incurred by the dynamic memory management. Typically they are negligible. The reason for the somewhat
large overhead of Chem-I under “dmm” on Linux machine is unknown at present and it is possible due to
random system interactions.

To study the effect of chomping under conditions where the latencies in the memory hierarchy are extreme,
we performed another measurement of chomping when virtual memory is involved. To invoke virtual memory, we
intentionally execute CHEM on a large problem such that the program had significant access to disk through

34 Y. Zhang and E. A. Luke

Summary of Space Profiling on Linux Summary of Space Profiling on SGI

Chem-EC Chem-EC
100 =

L b 100
c I Real Measurement| 1 c Real Measurement
-(% L Bean-Countmg i -(% i k Bean-Countlng
38 80 S - .
= - 73 . = 80
E - lRT7Ql e E - . 1
a L oW i a - : E
g | 03.9 I 63.9 .
£ £ 57.5
g i ig; 52 . i g oL 554 T 1
£ | 46, 1 E 469 |46]
o r b o L |
g 40| i ® 40
[} 1%} L i
> L i >
Q L i Q B 7
Q Q - m
g ¢ 18 I]
2 20 2 20
o r 1 o - 4
S r b S - R

0 dmmcomp dmm mem chomp comp chomp mem 0 dmmcomp dmm mem chomp comp chomp mem
greedy greedy greedy greedy greedy greedy greedy greedy

(a) Space Profiling on Linux (b) Space Profiling on SGI

Fic. 6.1. Space Measurement

virtual memory. We found in this case, chomping has superior benefit. Schedule with chomping is about 4
times faster than the preallocation schedule or the schedule with memory management alone. However the
use of virtual memory tends to destroy the performance predictability and thus it is desirable to avoid virtual
memory when possible. For example, a large memory requirement can be satisfied by using more processors.
Nevertheless, this experiment showed an interesting feature of chomping. Chomping may be helpful when we
are constrained by system resources.

We are also interested to see how well the searching algorithm for chomping chain (as discussed in section 4.1)
performs for real applications. We did a measurement for the searching for the CHEM program as shown in
table 6.2. The “chomping candidates” in the table refers to relations in the program that do not involve non-
affine accesses. As discussed in section 4.1, they represent the upper bound of the relations that we can possibly
chomp. But the constraints of relations and rules in the graph may force us to discard some of them. We
do not know whether the searching results are optimal or not. But the results shown in the table are close
to the upper bound and we consider them to be good enough for practical use. We also took a measurement
of the size of the total chomped relations. Interestingly, for this measurement, the percentage of size is larger
than the percentage of number in total relations. This further shows the importance of chomping. If a Loci
program is designed appropriately, from the memory management point of view, doing chomping alone would
eliminate a large portion of memory requirement. Typically the peak memory is determined by the number
of relations that needs to be in the memory simultaneously. If most of these relations can be chomped, then
memory requirement can be potentially reduced greatly in addition to performance benefits.

TABLE 6.2
Statistics of Chomping
CHEM-I | CHEM-IC | CHEM-E | CHEM-EC
total relations 192 196 162 166
chomping
candidates 47 49 49 51
chomped
relations 40 42 44 47
% of the size of
chomped relations 32.25 32.39 44.74 51.03
in total relations

Dynamic Memory Management In the Loci Framework 35

Summary of Timing on Linux
For the Chem Program

©
o

110 7
c 108 : Chem-I chomp :
= L B Chem-IC chomp]
g 106 : 4 ¢ Chem-E chomp :
T r dmm results >—> Chem-EC chomp]
2 104 | Chem-I: 115.2% |
. Chem-IC: 100.1% .
> 102| Chem-E: 101.9%]
£ C Chem-EC: 100.0% i
® B ¥
Qo
S 100 :
]
o
e}
()
(%]
>
()
=
'_
kS
$

16 32 64 128 256 512 1024
Chomping Size (KB)

(a) Timing on Linux

Summary of Timing on SGI
For the Chem Program

104

| dmm results Chem-I chomp

| - [v) a

SECE T
102 Chem-E: 100.7% T SrERS SIRID

C Chem-EC: 101.4% B> Chem-EC chomp |]
100| |

% of Time Used Comparing to Preallocation

16 32 64 128 256 512 1024
Chomping Size (KB)

(b) Timing on SGI

FiGc. 6.2. Timing Measurement

Finally we present one result of the comparison of different scheduling policies in table 6.3. The measurement
was performed on 32 processors of our parallel cluster. We noticed the difference of peak memory usage between
computation greedy and memory greedy schedule is somewhat significant, however the timing results are almost
identical albeit the large difference in the number of synchronization points. We attribute this to the fact that
CHEM is computationally intensive, the additional communication start-up costs do not contribute significantly

36 Y. Zhang and E. A. Luke

TABLE 6.3
Mem vs. Comm under dmm on Linuzx Cluster

memory usage (MB) sync time

real bean-counting | points | time (s) | ratio
comp greedy | 372.352 174.464 | 32 317798 | 1
mem greedy | 329.305 158.781 | 50 3179.24 | 1.0004

to the total execution time. This suggests for computationally intensive applications, the memory greedy
scheduling is a good overall choice, as the additional memory savings do not incur undue performance penalty.
For more communication oriented applications, the difference of using the two scheduling policies may be more
obvious. In another measurement, we artificially ran a small problem on many processors such that parallel
communication is a major overhead. The results are presented in table 6.4. We found the synchronization points
in the memory greedy schedule is about 1.6 times more than the one in computation greedy schedule and the
execution time of memory greedy schedule increased roughly about 1.5 times. Although this is an exaggerated
case, it provided some evidence that such a trade-off does exist. However, for scaling small problems, conserving
memory resources should not be a concern and in this case the computation greedy schedule is recommended.

TABLE 6.4
Mem vs. Comm under chomping on Linux Cluster (A Small Case)
sync time
be(MB) | points | time (s) | ratio
comp greedy | 1.08 32 115555 | 1
mem greedy | 1.05 52 1699.33 | 1.47

7. Conclusions. This study presented a new dynamic memory management technique implemented in
a novel declarative parallel programming framework, Loci. The approach utilizes techniques to improve both
cache utilization and memory bounds. In addition, we studied the impact of memory scheduling on parallel
communication overhead. Results show that memory management is effective and is seamlessly integrated into
the Loci framework. By utilizing the chomping technique, which is similar to strip-mining in traditional loop
optimizations, we were able to reduce both memory bounds and run times of Loci applications. In addition, we
illustrate that the aggregation performed by Loci also facilitates memory management and cache optimization.
We were able to use Loci’s facility of aggregating entities of like type as a form of region inference. The
memory management is thus simplified as managing the lifetime of these containers amounted to managing the
lifetimes of aggregations of values. In this sense, although Loci supports fine-grain specification [6], the memory
management does not have to be at the fine-grain level. This has some similarity with the region management
concept. The initial graph decoration phase resembles the static program analysis performed by the region
inference memory management, although much simpler and is performed at run-time.

We also observed an interesting phenomenon with our chomping technique. While we expected it to increase
performance and to a small extent reduce memory requirements, its benefits in memory reduction were greater
than expected. Apparently this result comes from two sides. The first one is due to heap fragmentation:
the uniformly sized chomps were more efficiently managed by the allocator. Obviously there are interesting
and complex interactions between allocation policy and heap management. The SGI platform seems to have
significant benefit from the improved memory fragmentation by chomping. The second reason is due to that
the memory allocations for chomping is virtually negligible. Therefore the more relations are chomped, the less
we pay for their memory space allocations. We found that we were able to chomp many relations in our CHEM
program and the aggregate size of all these relations is large.

We also note that the performance gains in real applications achieved by using chomping is significantly
less than potential gains. While the CHEM application saw a performance increase on the order of 10 percent
in some cases, simple example programs that made significant use of the chomping facility saw performance
boosts of as much as a factor of five. We suspect that the cache performance suffers from large non-chain access
as well as non-affine accesses to other data in the middle of the chomping chain as discussed in section 4.2. We
believe that these issues may be mitigated by identifying common non-affine references and factoring them out

Dynamic Memory Management In the Loci Framework 37

of the computations through program transformations. However, this transformation may require replicating
some work to achieve full effect, limiting the potential performance boost.

While we have demonstrated a trade-off between an efficient memory schedule and communication barriers
in the parallel program, we have not provided an automated way of selecting the appropriate policy. This is
currently under user control. It would be fairly simple to use a model-based approach to decide when a memory
efficient schedule would cost more than some small percentage of overall run-time and then select the appropriate
policy automatically. However, preliminary investigations into replicating work to eliminate communication
barriers appears in many cases to eliminate most of the barriers introduced by the memory efficient schedule.
While this replication technique is still under development, we believe, based on our preliminary results, that
the combination of work replication and a memory efficient schedule may provide the best of both techniques
and eliminate the need for a more sophisticated policy selection mechanism.

Acknowledgment. We thank the financial support from the National Science Foundation (ACS-0085969),
NASA GRC (NCC3-994), and NASA MSFC (NAG8-1930). In addition we are grateful to the anonymous
reviewers for their insightful suggestions and comments.

REFERENCES

(1] B. BABCOCK, S. BABU, M. DATAR, AND R. MOTWANI, Chain: Operator scheduling for memory minimization in data stream
systems, in Proceedings of the ACM International Conference on Management of Data (SIGMOD 2003), San Diego,
California, June 2003.

[2] R. H. BISSELING, Parallel Scientific Computation: A Structured Approach using BSP and MPI, Oxford University Press,
2004.

[3] M. FriGo AND S. G. JOHNSON, FFTW: An adaptive software architecture for the FFT, in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, vol. 3, Seattle, WA, May 1998, pp. 1381-1384.

[4] H. LIEBERMAN AND C. HEWITT, A real time garbage collector based on the lifetimes of objects, Communications of the ACM,
26(6) (1983), pp. 419-429.

5] E. A. LUKE, Loci: A deductive framework for graph-based algorithms, in Third International Symposium on Computing in
Object-Oriented Parallel Environments, S. Matsuoka, R. Oldehoeft, and M. Tholburn, eds., no. 1732 in Lecture Notes in
Computer Science, Springer-Verlag, December 1999, pp. 142—-153.

(6] E. A. LUKE AND T. GEORGE, Loci: A rule-based framework for parallel multi-disciplinary simulation synthesis, Journal of
Functional Programming, Special Issue on Functional Approaches to High-Performance Parallel Programming, 15 (2005),
pp. 477-502. Cambridge University Press.

[7] E. A. Lukg, X. ToNG, J. Wu, AND P. CINNELLA, Chem 2: A finite-rate viscous chemistry solver — the user guide, tech.
report, Mississippi State University, 2004.

8] E. A. Lukg, X. ToNnG, J. Wu, L. TANG, AND P. CINNELLA, A step towards “shape-shifting” algorithms: Reacting flow
simulations using generalized grids, in Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, AIAA,
January 2001. ATAA-2001-0897.

[9] S. M. NETTLES AND J. W. O’TOOLE, Real-time replication-based garbage collection, in Proceedings of SIGPLAN’93 Conference
on Programming Languages Design and Implementation, Albuquerque, NM, June 1993, pp. 217-226.

[10] D. B. SKILLICORN, J. M. D. HiLL, AND W. F. McCoLL, Questions and answers about BSP, Scientific Programming, 6 (1997),
pp- 249-274.

[11] M. ToFTE AND L. BIRKEDAL, A region inference algorithm, Transactions on Programming Languages and Systems (TOPLAS),
20 (1998), pp. 734-767.

[12] J. ULLMAN, Principles of Database and Knowledgebase Systems, Volume I, Computer Science Press, 1988.

[13] L. G. VALIANT, A bridging model for parallel computation, Communications of the ACM, 33 (1990), pp. 103-111.

[14] P. R. WILSON, Uniprocessor garbage collection techniques, in Proceedings of International Workshop on Memory Management,
St. Malo, France, 1992, Springer-Verlag.

[15] P. R. WILsON, M. S. JOHNSTONE, M. NEELY, AND D. BOLES, Dynamic storage allocation: A survey and critical review, in
Proceedings of International Workshop on Memory Management, Kinross, Scotland, 1995, Springer-Verlag.

[16] Y. ZHANG, Dynamic memory management for the Loci framework, master’s thesis, Mississippi State University, Mississippi
State, Mississippi, May 2004.

Edited by: Frédéric Loulergue
Received: October 3, 2005
Accepted: February 1st, 2006

