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THE FACTORY SUPPLY CHAIN MANAGEMENT OPTIMIZATION MODEL BASED ON
DIGITAL TWINS AND REINFORCEMENT LEARNING

XINBO ZHAO∗AND ZHIHONG WANG†

Abstract. This paper introduces the ”digital twin” to solve the problem of material allocation and real-time scheduling in the
warehouse site. This project intends first to establish mathematical modeling based on a digital twin unmanned warehouse and
dynamically optimize materials in the unmanned warehouse by combining visual analysis and deep reinforcement learning. Then, a
security sharing mechanism of digital twin-edge network data based on blockchain fragmentation is proposed. For twin models with
time-varying characteristics, a multi-node adaptive resource optimization method such as multipoint cluster selection, local base
station consistent access selection, spectrum and computational consistency is constructed. This is done to maximize blockchain
business processing power. A two-layer near-end strategy optimization (PPO) algorithm is proposed to solve the adaptive resource
optimization problem. Experiments have proved that this method can significantly improve the overall processing power of the
blockchain. In addition, this method is more adaptable than conventional deep reinforcement learning.
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1. Introduction. To achieve accurate scheduling and optimal allocation of resources, most of the existing
methods use heuristic methods to convert multiple high-quality multi-objective programming problems into a
single programming problem. Alternatively, vehicles, three-dimensional shelves, testing equipment, etc., are
regarded as a resource, and the optimal decision method is adopted to solve the problem [1]. However, the
existing methods are limited in computing power and flexibility and can not effectively deal with multi-frequency,
uncertain quantity of goods arrival, shelf, AGV, forklift and other resource optimization allocation problems.
This seriously affects the service level and efficiency of the warehouse system. As a frontier and hot spot
in intelligent manufacturing and storage, a digital twin is introduced into unmanned storage in this paper.
Literature [2] takes the digital twin five-dimensional model as an example to introduce the application of this
model in the warehouse. However, this method is mainly used in the manufacturing industry and can only play
a reference role. Literature [3] uses digital twins to develop a new multi-mode intelligent terminal to solve the
problem that real-time interaction cannot occur in manufacturing. Literature [4] integrates cyber twins with
digital twins to build a networked digital twin model and remote control system oriented to information-physical
fusion. This paper takes ”digital twin” and ”unmanned storage” as the starting point to study the integration
of ”multi-class resource scheduling” and ”efficient scheduling.” The working condition of the equipment is
monitored in real-time utilizing the Internet and visualization to improve its working efficiency and accurate
scheduling level. Therefore, the digital twin unmanned warehouse architecture with multi-level characteristics
is constructed according to the characteristics of the unmanned warehouse operation process. A real-time map
construction method of unmanned warehouses based on physical modeling and data service systems is proposed.
Then, the resource scheduling problem of a digital twin unmanned warehouse based on deep reinforcement
learning is studied utilizing multidimensional information fusion.

2. Digital twin unmanned storage system design.

2.1. System Architecture. This paper establishes the architecture of a digital Twin unmanned ware-
house (Figure 2.1 is referenced in Building the Digital Representation with Digital Twin using Microsoft stack).
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Fig. 2.1: Architecture of digital twin unmanned storage system.

The model consists of a visual, physical entity layer, two technology platforms, three layers, three databases,
six logical process mappings, and six physical realities time mapping.

Among them, the sensing layer mainly identifies and acquires the target [5]. This layer uses the sensor node
method to process the relevant data of shelves, forklifts, AGVs, goods, pallets, robots, warehouses, etc. and
then transmits it to the corresponding location through relevant networking means to realize the collection of
information on the lower layer.

At the data level, it realizes the management of user rights, the model interaction interface between the
target model base, the real-time database and the local database [6]. Including warehouse signal, equipment
status, equipment location, display information, warehouse location information, etc. Local databases include
layout data, logical data, trigger mapping, initialization rules, scan point mapping tables, configuration files,
etc. The system includes equipment data, production data, model base, operation base, order information, user
personal information and so on.

At the business level, a predictive data-driven modeling method is adopted based on the twin data. This
will make the warehouse management intelligent, thereby optimizing resource efficiency, optimizing the number
of orders, optimizing the warehouse location, optimizing the area, and sharing resource information [7]. At
the same time, the optimal results will also be transmitted back to the data center of the perception layer for
virtual monitoring of the perception layer.

2.2. Elements of the operation process of digital twin unmanned warehouses. Among them,
the operation process of a digital twin unmanned warehouse includes establishing the twin entity model, data
system, and mapping logic.

2.2.1. Twin entity modeling. The ontology modeling method is used first when constructing twin
entities. The ontology is constructed with class and attribute as the core. The category refers to the definition
of the entity, and the property is the expression of the specific role of the class. The target and its properties
must be modified before creation, and then its output is stored in the object library and recorded in the target
table [8]. Lightweight methods are selectively adopted to reduce the display load during operation. The movable
part in the 3D model is set as a movable body, and then the behavior trajectory of the movable part is modified.
Animate it with associated components to form a whole. The elements of an unmanned warehouse and their
relationship together constitute a complex network concept system. It includes 16 categories of objects, 21
connections, and 91 properties. You can see a detailed description in Figure 2.2.
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Fig. 2.2: Network structure of unmanned storage ontology model.

2.2.2. Data System Construction. Data service systems can realize real-time connections and calls
between local and system databases. Run with a real-time database-driven model. A dynamic database-driven
model is adopted. Entity knowledge ontology based on the OWL method is used to realize dynamic access to
dynamic data in a database [9]. The database interface module is accessed regularly to realize the data analysis
of the local database and system database. In this way, the unmanned storage environment can be quickly
restored.

2.2.3. Mapping Logic. A geometric modeling method based on ontology is proposed, which can realize
the unity of objects in space position, geometric size, motion characteristics, etc. The data service platform
provides a unified control interface inside and outside the schema and interacts with the three databases [10].
Based on the law of real-time mapping, this paper efficiently combines the physical elements of the digital
twin model to run the process of warehousing, tallying, storage, picking, order receiving, and delivery to the
online process. This forms a complete unmanned warehouse business process. The logical flow of the real-time
mapping is shown in Figure 2.3 (image cited in Developments in the Built Environment, Volume 17, March
2024, 100309).

2.3. Digital twin unattended warehouse scheduling optimization logic. The digital twin method
is used to realize the effective utilization of the warehouse. Cluster analysis and deep reinforcement learning are
used to analyze and optimize the resource effectiveness of the system [11]. After resource efficiency optimization,
the allocation scheme is compared with that before optimization and fed back to the database for vector iteration
to get the optimal solution. The specific content is shown in Figure 2.4.
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Fig. 2.3: Digital twin unmanned storage real-time mapping process logic diagram.

Fig. 2.4: Flow of resource efficiency optimization analysis.

2.3.1. Data analysis and prediction. The method of artificial neural network is adopted. Its input is
based on the inbound and outbound commodity data collected by the digital twin data center, including the
number of orders, order lines, received quantity, shipment quantity, inventory, dismantling amount, SKU and
equipment status, etc., select the data related to the number of hidden layers, and divide it into training data,
verification data and test data, the ratio of the three is about 7:1.5:1.5. The AUC value is used to determine
the training effect, usually in the range of 0.5-1. The closer the value is to 1, the better the prediction effect of
random judgment is. Combined with the collected data, the unmanned warehouse based on multidimensional
information is scheduled, and its potential energy efficiency problems are fed back.

2.3.2. Automatic facility resource configuration. The automated system optimization process in-
cludes cluster analysis for device resource efficiency, and the generated unmanned warehouse must be encapsu-
lated before it can be modeled to interact with deep reinforcement learning based on the Python language [12].
The unmanned warehouse model then takes the required form data from the cloud, executes the form and feeds
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Fig. 2.5: Deep Reinforcement Learning Deployment Framework.

it back to the current state function. After obtaining the state matrix, the model makes decisions and opera-
tions. When the algorithm reaches the next determined time point, the algorithm will feed the current income
and the state information of the next time point into the deep enhancement model. Finally, a trained deep
reinforcement learning model for optimizing unmanned storage resources is obtained. The specific operation
process is shown in Figure 2.5 (the picture is quoted in Using Deep Reinforcement Learning for Zero Defect
Smart Forging).

2.3.3. Feedback of optimization results. Under the HTML architecture, the proven deep reinforcement
learning mode is configured on Linux as an HTTP server. The jar bundle is configured in the cloud computing
to access it as an API. In the implementation process, the data is collected, processed and integrated into the
required data and uploaded to the cloud database [13]. In this paper, behavioral decisions are captured and fed
back based on the deep reinforcement learning method of cloud computing and API models of the unmanned
warehouse. Finally, the verified data is sent and returned to the terminal of the service layer. The user can
see the optimal model and related parameters through the intuitive display interface. This makes the resource
allocation of unmanned warehouses more scientific and reasonable.

3. Adaptive resource optimization method based on blockchain segmentation. The PPO method
is a solid deep incentive learning method introduced by OpenAI in 2017, which is superior to other robust deep
incentive learning methods in terms of sampling complexity [14]. By setting the trusted range, the method
has an adaptive solid ability to avoid errors. Some scholars proposed adopting the PPO algorithm to adapt to
the mapping error of digital twin model of the sheet metal assembly line to obtain the best clamping position.
Currently, the edge data processing method based on the PPO method has a severe mapping error between the
boundary twin and the physical network, and there are no corresponding research results. This paper studies
the two-layer PPO algorithm to process different data types (Figure 3.1).

This paper presents a multi-layer PPO algorithm based on multiagent PPO. Block Administrator A uses
a single PPO policy. Each K base station and block manager observed the existing dual-layer digital twin and
imported the observations into the PPO neural network [15]. Finally, the boundary twin model was used to
verify the output. Finally, the verified algorithm is optimized to the corresponding physical node. Compared
with the conventional PPO method, this project proposes a dual multi-layer PPO method so that K BS and
block administrators can obtain the data they need simultaneously, thus reducing the resource consumption
required by manual intervention.

3.1. Application of two-layer PPO algorithm in digital twin. A two-level Markov decision model
is constructed, and the model’s state space, behavior space and reward function are studied.
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Fig. 3.1: PPO algorithm based on Downlink.

3.1.1. Phase space. At decision time t(t = 1, 2, . . .) there is a κ BS for maintaining the AP twin mode
state of the local data sharing link. The algorithm includes the signal-to-noise ratio Θn,jk of intelligent terminal
n to APjK and the signal-to-noise ratio Θjκ,jκ′ of APjκ to APjκ′, and jκ, jκ

′ ∈ Jκ, jκ ̸= jκ
′, n ∈ Nα

κ , α ∈ α.
The state space of the κ base station is shown below

Rz
κ,t =

[
Θn,jκ ,Θjκ,jκ′

]
K BS, whose state space is as follows

Rz
t =

{
Rz

1,t, · · · , Rz
κ,t, · · · , Rz

K,t

}
In block administrator a, save the signal interference noise ratio Θb,a,Θa,β ,Θβ,β′ ,Θβ,a of the multicast

transmission subchannel of the authentication node twin mode of the block, the maximum available computing
resources gmax

h of the block manager and the authentication node, and a, β, β′ ∈ β, a ̸= β, a ̸= β′, β ̸= β′. The
block size is RA,b, the local access is ASb and the block manager is a. Then, the state space of the block
manager a can b expressed as:

| Rβ
t = [RA,b,Θb,a,Θa,β ,Θβ,β′ , gmax

h ]

3.1.2. Action space. The decision parameters of each node must be modified appropriately to meet the
characteristics of time variability and maximize the benefit of K base stations and administrators of each layer
[16]. The connection vector η between nodes and the bandwidth resource configuration vector Qz of A-nodes
are regulated in the local data sharing link. The local base station access vector is λ. The bandwidth resource
configuration vector of the block manager and the parity node is Qβ . The resource allocation vector of the
block manager and the parity node is gβ . In this way, the behavior space for optimal configuration of κ BS at
the decision time t can be expressed as

Hz
κ,t = [η,Qz]

Thus, the optimal behavior space for the utility of K BS can be expressed as

Hz
t =

{
Hz

1,t, · · · ,Hz
κ,t, · · · ,Hz

K,t

}
In addition, the operation space for optimizing the utility of the regional manager a can be expressed as

Hβ
t = [λ,Qβ , gβ ]

3.1.3. Reward function. The constraints of C1 − C7 must be verified in the operation of Layer 2PPO,
so the following real-time reward function rt is proposed in this paper. Here’s rzt =

∑
κ∈K KBSx

γβ
t = Kβ

a . If
C1-C7 constraints cannot be met at the same time, it means that the current optimal strategy is not effective
[17]. To prevent invalid decisions, the immediate return is set to 0 .
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3.2. Dual-layer PPO algorithm principle. Combining deep neural networks with reinforcement learn-
ing solves the constructed two-layer Markov decision problem. The two-layer PPO method obtains the best-
determining variable ξ∗ by establishing the best parameters of the artificial neural network. This maximizes
the average rate of return in formula

S(ξ) = Eδ∼πξ(·r)

[
T∑

t=1

1rt

]
0 ≤ 1 ≤ 1 stands for discount factor. E stands for random sampling based on transformation order δ. The
expected value of the immediate return is found given the strategy πξ, and the state r.δ represents the sequence
of conditions and behavior changes at the corresponding time point t, which is δ = {Rz

1, R
β
1 ,H

z
1 ,H

β
1 , · · · , Rz

t , R
β
t ,

Hz
t ,H

β
t }. PPO is a reinforcement learning method that uses new strategy gradients and confidence intervals.

The network of actors accepts the current situation of the actors and makes decisions accordingly [18]. The
confidence interval method is used to dynamically adjust the parameters in the network so that the network
has adaptive solid ability and good convergence. The loss function of the update process of the Actor-network
parameter ξak of the κBS is expressed as

J (ξaκ) = min (σt (ξ
a
k)Ht, clip (σt (ξ

a
κ) , 1− π, 1 + π)Ht)

σt (ξ
a
k) indicates the updating range of network parameters. Ht represents the dominance function, which

reflects the decision generated by the current network parameters. Compared to other possible decisions, Hz
k,t

is of superior value. π ∈ (0, 1) is the parameter that determines the upper and lower boundary (1 − π, 1 + π)
of the PPO algorithm’s confidence range. clip(·) function is used to constrain σt (ξ

a
k), so it has adaptive solid

ability and convergence. The definition of σt (ξ
a
k) is

σt (ξ
a
κ) :=

πξak

(
Hz

κ,t | Rz
κ,t

)
πξak,ald

(
Hz

κ,t | Rz
κ,t

)
ξaκ represents the network parameters that have been updated. ξaκ,old is the network parameter before the
upgrade. Ht is represented in formula (3.10). If the resulting decision Hz

κ,t gets a better-expected return, then
Ht > 0 is the opposite of Ht < 0. The dominant function Ht is defined in this way

Ht = δzt + ωδzt+1 + · · ·+ ωT−t+1δzT−1

ω ∈ [0, 1] stands for discount factor. δzt represents the time error of a single step as defined below

δzt = rzt+1 + ωρ
(
Rz

t+1

)
− ρ (Rz

t )

ρ(·) represents the Critic network’s estimated reward for deciding Hz
κ,t. rzt+1 + ωρ

(
Rz

t+1

)
represents the sum

of the immediate return rzt+1 and the expected return of the Critic network corresponding to decision Hz
κ,t.

The Critic neural network takes the change of the mean value of δzt as its loss function. The weight ξzk in the
model is modified so that the cost function is maximum and the reward ρ(·) obtained by the algorithm is more
accurate. The two different control strategies adopt the method of optimal learning rate to obtain the best
network parameters ξa

∗

k and ξz
∗

k .
4. System inspection. The project takes Z Company as an example to develop a digital twin unmanned

warehouse system. According to the number of purchases made by the company between the first quarter of
2022 and the second quarter of 2023, they are classified and counted every week. The artificial neural network
is used to analyze the actual production situation, and the AUC of 0.9245 is obtained, proving the method’s
effectiveness. This project adopts an A2C algorithm based on deep reinforcement learning for optimization [19].
The learning rate parameter was set to 1×10-6, the simulation time step was set to 5min, the number of steps
for each model training was 1000, and the total training step length was 5×106.

The tests compared to the inventory data are shown in Figure 4.1. Finally, the method is compared with
those often used in unmanned warehouses. Higher rewards can be obtained through the optimal allocation
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Fig. 4.1: Comparison of reward value, resource allocation and process time before and after optimization.

strategy. The deep enhancement method is adopted to optimize the design of forklift trucks in AGV, purchase
area and loading and unloading area. The deep reinforcement learning method is used to configure the system
resources dynamically, and the system’s running speed is shortened from 26 minutes to 24.5 minutes. The time
required to ship has been reduced from 3.6 points to 3.32 points. The material retention time in the warehouse
was reduced from 44.21 minutes to 41.24 minutes. Through the dynamic resource adjustment of the system,
the utilization rate and running speed are improved.

The best data information is returned to the data service system and is constantly adjusted to improve
the model in the future. At the same time, these data will also be fed back to the data-sharing platform on
the service side, and the decision maker can scientifically and reasonably allocate the corresponding resources
according to the model and parameters on the visual interface.

5. Conclusion. A resource optimization method for unmanned warehouse systems based on deep rein-
forcement learning is proposed. This project uses simulation software to build a training environment for
deep reinforcement learning. The model has effectively interacted with the production platform to realize
the effective management of the authentic warehouse. An interactive model of an unmanned warehouse with
man-machine interface is established. This project realizes collaborative optimization of unmanned warehouses
based on cloud computing. This method has achieved good results in the actual operation of Z Company. The
results prove the practicability of the proposed model, algorithm and prototype system.
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