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IOT ENABLED SMART AGRICULTURE SYSTEM FOR DETECTION AND
CLASSIFICATION OF TOMATO AND BRINJAL PLANT LEAVES DISEASE

ROHIT KUMAR KASERA ∗, SWARNALI NATH, BIKASH DAS, ANIKET KUMAR, AND TAPODHIR ACHARJEE

Abstract. Internet of Things (IoT) assisted smart farming techniques are gradually being used efficiently for identification
and classification of vegetable plant diseases. Detection and classification of diseases in these plant families like Solanaceae are
still problematic using DCNN due to variations in environmental conditions, genome variation, type of disease, etc. In this paper,
two methods for spotting and diagnosing diseases of brinjal and tomato plants leaves named as Optimal Environmental Traversing
Alert (OETA) and Optimum diagnosis of Solanaceae leaf diseases (ODSLD) respectively have been proposed. The OETA machine
learning (ML) based method is used first to detect the disease, and then the ODSLD deep convolutional neural networks (DCNN)
method is used to classify it. An analysis of the proposed method experiments showed that OETA disease detection for brinjal
plant (eggplants) was 97.81 percent and for tomato plants was 99.03 percent. For disease classification by ODSLD method, the
VGG-16 for brinjal plant and ResNet-50 for tomato plants outperformed other existing DCNN computer vision methods.
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1. Introduction. India and several other nations rely substantially on agriculture as their primary source
of income. It has an enormous influence on the economic development of many nations [1]. In traditional
farming, farmers in remote areas face obstacles in following and assessing meteorological conditions, soil quality,
water availability, insect control, disease identification, regular monitoring of farming field, and other factors
[2]. The majority of leaflets get struck with multiple diseases before and during harvest, which diminishes
crop quality and yields. Every year a lot of plants and crops are destroyed due to various causes, including
fungal microorganisms pH imbalances in the soil, severe temperatures, alterations in atmospheric moisture or
humidity, an inadequate volume of nutrients in the soil, and other aspects [3]. This work of disease detection
research focuses on two species of plants from the nightshade family (Solanaceae) [4] namely tomato and brinjal
(Eggplant). The diseases that mostly affect tomato and brinjal crops are given in Fig. 1.1 and 1.2.

We have selected tomato and brinjal in our study because both are cultivated simultaneously by farmers
across India in dry seasons and and are highly susceptible to diseases [5]. So if a single system can be used
to predict and classify disease in the plants, it will be quite a cheap software for farmers. Using precision
farming technology with the Internet of Things (IoT), farmers can effortlessly recognise the category of dis-
eases that harms a leaf of tomato and brinjal, thereby improving yield and production [6]. The automated
identification and categorization of diseases is an increasingly prominent area of research in smart agriculture
today. Various of research have been been pulled off for the recognition and categorization of crop illnesses by
employing predictive modelling or Deep convolutional neural networks (DCNN) approaches involving Support
vector machines (SVM), Random forest (RF) [7], Artificial neural networks (ANN) [8], Decision trees (DT) [9],
Convolutional neural networks (CNN), Visual Geometry Group-16 (VGG16), Inception v3, DenseNet-121, and
Residual Network 50 (ResNet 50), U-Net [10, 11]. Sophisticated smart farming systems could be enhanced
by combining IoT, machine learning (ML), and DCNN methods. Precisely anticipating and classifying crop
health metrics for boosting yield in agriculture is one of the main obstacles. Due to lack of accurate, proficient
data and efficient predictive models, genetic factors of plants, and variability in leaf images it is challenging
to develop a real-time decision system. Farmers often have difficulty in determining well-informed decisions
concerning crop monitoring, pest control, and irrigation without real-time disease detection systems, involving
soil nutrient data and a breakdown of tomato and brinjal crop disease types. As a consequence, reliable and
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Fig. 1.1: Segmentation of tomato ailments into classes

Fig. 1.2: Segmentation of brinjal plant ailments into classes

Table 1.1: Optimal Ranges values for Tomato and brinjal plant cultivation

Plant Temp [◦C] Hum [%] SM [%] pH N [mg/Kg] P [mg/Kg] K [mg/Kg]
Tomato 10 -28 60 - 80 60 - 90 5 - 8 40 - 120 30 - 110 30 - 100
Brinjal 20 - 28 60 - 80 65 - 90 4 - 7 60 - 120 50 - 80 50 - 90

scalable hybrid Edge IoT and AI-enabled alternatives have to exist for the ability to effectively detect illnesses,
forecast crop conditions, and allocate resources in intelligent agriculture systems [26]. Recent research indicates
the optimal temperature (Temp), humidity (Hum), soil moisture (SM), pH, nitrogen (N) phosphorus (P) and
potassium (K) values ranges for growing cultivating tomatoes [12, 13] and brinjal [14] are shown in the Table 1.1.
N, P, and K scales on the soil can be used to gauge tomato and Brinjal plant growth. It is possible to avoid
both inadequate nutrient supply and over fertilization by anticipating nutrient data. Consequently, farmers
can make informed decisions based on real-time temperature, humidity, soil moisture, pH, N, P, K levels and
determine the exact amount of fertilizer required for robust plant growth [15], and nutrient level information
will help the ML methods to decide the optimal disease prediction.

The intended effect of this research is to assist low-income farmers by predicting and recognizing types
of diseases in the early stage through the adoption of an amended IoT edge AI-based methods as Optimal
Environmental Traversing Alert (OETA) and Optimum diagnosis of Solanaceae leaf diseases (ODSLD). The
proposed system can be employed with some initial cost (specially season cost) in first years but following years
only minimal maintenance costs are to be borne by the farmers. This research’s key contributions are outlined
below:

1. Real-time data through sensor including camera were collected from tomato and brinjal plants fields
using an LPWAN communication method. These data are used to develop a disease monitoring system
that can detect and recognize diseases.

2. This article adopts an innovative approach utilizing an IoT Edge-based disease observation module
called the OETA prognosis method. It employs a modified stacked ensemble learning method. This
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method collects data from the surrounding environment (temperature and humidity) and soil (Moisture,
pH, N, P, and K) of tomato and brinjal growing fields in real-time to predict the illness and soil health
status.

3. The ODSLD hybrid DCNN computer vision technique was designed to classify the disease found on
brinjal and tomato plants.

4. An extensive comparative analysis of the hybrid disease testbed framework has been accomplished
through experimental results and discussions to validate its performance.

This article is structured into several sections, the Sect. 1 describes the problem domain, possible dis-
crepancies in existing research, objectives, and contributions to strengthen the IoT-enabled illness detection
system. Sect. 2 covers in-depth literature surveys along with their limitations and research deficiencies; Sect. 3
demonstrates the proposed methodology; Sect. 4 unveils experiment results and an assessment of the proposed
methodology with comparative analysis; and Sect. 5 conveys a summary of the proposed system with future
research.

2. Literature Review. In [16] researchers proposed an IoT monitoring system to analyze the minimal
and extreme ranges of every environmental factor to envision four types of plant diseases. For classification,
they used ANNs and achieved more than 98% accuracy, but the system is not fully automated and adaptive
and has very few sensors.

A disease recognition framework for tomato and brinjal plant has been put forward using SE-Inception
in [18]. The model utilizes a multi-scale mining module to boost its efficiency and a batch normalization
layer to accelerate network convergence. 98.29% accuracy was accomplished with this particular strategy.
The assessment of this methodology’s flaws indicates floating point arithmetic can impact the mobile device’s
efficiency although real-time data hasn’t been utilized during any kind of system validation.

In [17] the authors put forward a two-stream classification strategy using Inception V3 and inference with
recognition using ”CNN-softmax”. It is observed that the system is not fully automated and precision is low.

Research in [19] indicates utilizing OPNN-based plant disease diagnosis to identify brinjal leaf problems
early on. RGB transformation, pre-processing with a median filter, feature extraction with ideal weight values,
and ARMKFCM segmentation of impacted areas are all-encompassed. The main flaw of the prevailing approach
is its inadequate datasets.

In the article [21], an apparatus is utilized to grab an image and transmit it to a neural network for
categorization. Considering brinjal plant of sixteen classes, they adopted CNN transfer learning (”DenseNet201,
Xception, ResNet152V2”). DenseNet 201’s effectiveness reached 99.06%. The suggested approach has a few
limitations, such as skipping the dataset scale constraint. Transfer learning causes an overfitting problem during
validation.

Tomato plants are allowed to acquire environmental data with the assistance of an IoT module in [20].
Models like Random Forest, SVM, and K-means are used for assessing the health of plants for three sickness
classes and one healthy class. Vanilla Architecture, VGG16, and VGG19 were used to gauge how well the
suggested models performed. VGG16 obtained a 92.08% accuracy rate. The outcomes can be upgraded by
collaborative prediction, and the efficacy of the model is not validated.

Incorporating IoT and machine learning strategies in [22], IQWO-PCA is an enhanced quantum whale
optimization practice that foresees plant epidemics in farming. The system has a few limitations, such as a lack
of information on the type of IoT devices used to set up the experiment testbed. This model cannot classify
many types of tomato diseases because the system has been tested on a single disease type.

In [23], a CNN-modified imitation has been conceived to predict tomato leaf diseases from a 50k dataset of
14 crops with a performance at 91.2%. In its entirety, CNN triumphed over other pre-trained models, notably
VGG16, InceptionV3, and MobileNet, in contrast to their contributions. A few limitations are the inadequate
performance and deficient adaptability of the suggested model.

The aforementioned survey emphasizes the ongoing research gap concerning the performance involving var-
ious computer vision-based illness detection methods, gradient vanishing, system responsiveness, recognizing
between healthy and damaged plants, adoption of IoT devices for real time system, Long range data transmis-
sion, sensor data processing, and automated computational tasks.
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Table 3.1: Unprocessed sensor data

Time Temp Hum SM pH N P K Light
14/12/2023 10:30:00 AM 20.23 74 62 6.05 120 61 92 278
08/02/2024 7:30:00 PM 15.23 73 81 4.23 112 56 87 112
13/03/2024 12:45:00 PM 30.8 69 52 5.62 117 47 67 338
13/03/2024 01:30:00 PM 30.01 72 57 4.02 117 47 67 356

3. Methodology. Considering the research gaps which are addressed in Sect. 2, a hybrid IoT edge-
enabled disease diagnosis approach is put forward in this current work. The two methods compose the overall
testbed of the system. The first predicts disease using the Optimum Environmental Traversing Alert (OETA)
method based on IoT edge and ML, and the second classifies types of diseases using image processing and
DCNN named as optimal diagnosis of Solanaceae leaf diseases (ODSLD). The comprehensive architecture for
automated disease detection in tomatoes and brinjal plant is portrayed in Fig. 3.1.

The disease recognition framework in Fig. 3.1 is an Internet of Things (IoT) edge-based architecture com-
posed of sensing layer unit (SLU), IoT edge gateway unit (IGU), cloud and application layer unit (ALU). The
SLU processes real-time sensor data on temperature (Temp), humidity (Hum), soil moisture (SM), pH, nitrogen
(N), phosphorus (P), potassium (K), and light through Raspberry Pi Pico WH microcontroller from an open
tomato and brinjal field. Sensor data is transmitted in real-time via the LoRa SX1278 433Mhz module to
an IGU. Real-time transmission over a low power wide area network (LPWAN) at long range establishes a
point-to-point (P2P) connection between SLU and IGU. The Raspberry Pi 4 module is used as an IoT edge
gateway (IGU) for entire system testing. The accumulated data from SLU is processed under IGU. The data
are preprocessed and then trained using the OETA classification method, which is a modified hybrid machine
learning (ML) ensemble classifier. Hybrid ensemble approaches assess the abilities of more than one robust
ML model in a classification task. It reduces overfitting, maximizes true positives, and contributes to an im-
balanced dataset. An ”OV7670” camera module is deployed under the SLU. If the OETA method predicts
that the tomato or brinjal crop has a disease based on the current state of the real-time sensor data, IGU will
instruct SLU to activate the camera to take a picture of the leaf. SLU will transmit the captured image to
IGU via LoRa SX1278 to recognize the type of disease. The transmission of image data through the LoRa
module is accomplished based on the existing multi-packet LoRa transmission protocol [24] using a lightweight
Joint Photographic Experts Group (JPEG) coder [25]. The accumulated captured leaf images are stored in the
local storage of the Raspberry Pi 4 to recognize the type of leaf disease that occurred. The stored leaf images
are preprocessed to remove outliers through image processing. Following preprocessing, these leaf image data
are trained using a hybrid deep convolutional neural networks (DCNN) model named ODSLD for tomato and
brinjal disease classification under IGU. Once the ODSLD model has been learned, it is tested and validated.
Validation involves evaluating the predicted disease classification, which recognizes the particular tomato or
brinjal leaf disease name. Farmers Solanaceae disease dashboard provides daily, next-day, and disease prediction
alerts which can be accessed through mobile or laptop.

3.1. IoT edge based disease detection system. As shown in Fig. 3.2 (a), a LoRa enabled SLU
prototype setup is placed near tomato and brinjal plants to accumulate real-time sensor data, capture images,
and process them. Fig. 3.2 (b) shows the LoRa-enabled IoT edge gateway (IGU) setup which is used to receive
the tomato and brinjal crop sensor data for further processing.

The sensors are mounted in an array to grab the data. For the day, the sensor reveals the data values at
three-minute intervals. Eight traits have been acquired for tomatoes: Temperature (Ft1), Humidity (Ft2), Soil
moisture (Ft3), pH (Ft4), N (Ft5), P (Ft6), K (Ft7), and light (Ft8). Regarding brinjal, the eight amenities
that are collected are Temperature (Fb1), Humidity (Fb2), soil moisture (Fb3), pH (Fb4), N (Fb5), P (Fb6), K
(Fb7); and light (Fb8). The sensor data in .csv format are extracted to create the dataset for IoT edge-based
illness training and prediction. It is a three-minute-long real-time dataset with various attributes. A total of
20532 entries of data accumulated for tomato and 10236 for brinjal plant between 20-11-2023 to 25-03-2024.
Table. 3.1 shows raw data of both crops based on sensor readings.
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Fig. 3.2: Prototype setup of IoT Edge based disease detection module

The unprocessed data are first filtered by labeling, normalizing, and wiping missing and negative values.
The data have been normalized by incorporating five minutes for all features. As discussed in Sect. 1, the
optimal value range for each feature has been considered to set the label data tresponse as 0 or 1. A label data
row with ’1’ indicates that any of the features is outside the range (diseased), while ’0’ indicates that it is in
between or equal the range (Non disease). OETA ML is a converged method of Random Forests (RF), gradient
boosting (GB), and stacked classifiers. It is used as a base model for training OETA. This hybrid method aims
at filling the shortcomings of individual ML methods. As a result, overfitting is reduced and large and small
datasets are handled efficiently. In this necessary features are selected based on predicted RF feature scores
and make predictions through grid search and parameter optimization of each model. As part of the process
of building the OETA method, the following steps are listed with mathematical representations.

• A Z-score normalization is achieved using Eq. (3.1). This method standardizes data by scaling fxi

features.

Zxi →
fxi −Mµi

Sσi
(3.1)

In the Eq. (3.1), Zxi is the normalized feature, Mµi is the intermediary, and Sσi is the standard error
of the fxi feature.

• An RF classifier is used to estimate important features score for the feature fxi in Eq. (3.2).

pivotal(fxi) ≥ threshold (3.2)

In Eq. (3.2), the threshold is the average of all features’ importance scores, and pivotal (fxi) is expressed
as importance. Table. 3.2 summarizes the statistical evaluation of the real-time sensor data after
normalization and feature extraction.

• The base RF and GB model is converged by assembling to build and train the OETA model.

Ômf → 1

K

K∑
l=1

Hl(fx) (3.3)

In the Eq. (3.3), a random decision tree is concatenated to enhance predictive performance. Where
prediction Ômf is the mean prediction of K trees, and Hl(fx) is the prediction of lth tree.

Ôgb →
K∑

k=1

n ∗ wk(fx) (3.4)
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Table 3.2: Statistical summary of feature variable

Feature variable Mean Standard Deviation
Temperature 28.60 1.76
Humidity 85.29 12.30
Soil moisture 314.24 74.58
pH 3.34 0.40
N 117.70 37.24
P 42.86 25.44
K 60.0 27.72

A tree is formed iteratively using GB classifier to optimize prediction performance and minimize error.
In Eq. (3.4), Ôgb describes the final prediction of the model, n depicts the learning rate, wk(fx) defines
the prediction of the kth iteration, and K expresses frequency of boasting loops.

Ôconverge → Uultimate([Ômf , Ôgb]) (3.5)

Eq. (3.5) shows base model is converged after evaluating and its prediction is used as a feature to
build and train the OETA classifier model, where OETA ultimate prediction output as Ôconverge, and
Uultimate is the OETA classifier which incorporates all of the predictions.

• Each parameter in the base model and OETA classifier is optimized by grid search cross-validation
using Eq. (3.6).

scorehyperparameter → crossV alscore(Uconverge, Sfeature, tresponse) (3.6)

In Eq. (3.6), Sfeature is the selected features evaluated using Eq. (3.2) can contain the arrays of feature
as Ft1, Ft2,...,Ft8 for tomatoes and Fb1, Fb2,...,Ft8 for brinjal plant, tresponse denotes the target data
which contains two classes, and Uconverge denotes the ultimate ensemble classifier.

• The soil nutrient recommendation is based on current nutrient levels and specified thresholds.

If fxi < limitlow, then Increase fxi

If fxi > limithigh, then Decrease fxi

Several evaluation metrics, namely mean squared error (MSE), mean absolute error (MAE), and root mean
square error (RMSE), seemed applied to assess the efficiency of the OETA model. Furthermore, the efficiency
of the suggested approach was also validated using additional ML classifiers, notably Support vector machine
(SVM), Logistic regression (LR), Decision tree (DT), and RF.

3.2. Disease classification and recognition system. The plant leaf diseases are recognised using the
hybrid computer vision deep convolutional neural networks (DCNN) approach named as Optimum diagnosis of
Solanaceae leaf diseases (ODSLD) for tomato and brinjal plants. Existing CNN-based models for tomato and
leaf disease classification have various challenges and shortcomings. These include Precise feature extraction,
effectiveness of model learning, diminishing gradients, intricate datasets, reliability of the model, overfitting
challenges, dense connectivity, and maximal illness classification. To overcome these challenges, the ODSLD
model improves in-depth and reusable feature extraction from images. It strengthens gradient flow, which means
there is less chance of vanishing gradients, and efficiently manages small and complex datasets. Overfitting
is less probable as features are reused with fewer parameters, maximizing the prediction performance and
model learning efficiency using multiple optimizers. The ODSLD DCNN model is a hybrid convolutional neural
network (CNN) derived from VGG19 [27] and DenseNet121 [28]. The ODSLD model architecture is depicted
in Fig. 3.1 for categorizing tomato and brinjal disease types. The model consists of 137 convolutional layers, 9
pooling layers, global pooling layer, 4 fully connected dense layers, and 1 output softmax layer. Data processing
and training of ODSLD models are explained in the following steps.
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• Kaggle - Tomato Leaves Dataset [29] is the origin of the dataset for the tomato plant, whereas Kaggle
- Brinjal Diseases Detection [30] is the origin of the dataset for the brinjal plant.

• The tomato plant dataset contains 12 classes of images, with 5024 images and 95 megabyte (MB) data
size, representing 11 types of diseases. The diseases are Early Blight, Late Blight, Septoria Leaf Spot,
Tomato Yellow Leaf Curl Virus, Bacterial Spot, Target Spot, Leaf Mold, Tomato Mosaic Virus, Spider
mites Two-spotted, Powdery Mildew and a new disease class, Leaf Mines along with a healthy class.
This Leaf Mines disease is caused by the larvae of Tuta absoluta [31] that causes white splotches on
the tomato leaves.

• The brinjal plant dataset contains 1235 images of 115 MB data size consisting of six classes. Among
the six classes, one is healthy, and the other five are diseased: Epilachna Beetle and Mites, Flea Beetle,
Jassid, Potassium, and Nitrogen Deficiency, and one new species is included known as Ladybugs.

• In furtherance of pre-existing datasets, real-time datasets were additionally gathered through visits to
outdoor tomato and brinjal agricultural fields in Assam, India, to test and validate the system.

• Preliminary processing entails working on the gathered image data to eradicate undesired images
(blurred and out-of-frame images). It entails scaling the photos of the brinjal and tomato leaves to
256x256. Flip and rotation at 90, 180, and 270 degrees were additionally applied to raise the amount
of images and zooming in or out is a possibility up to 20%. 10% of the dataset has been split for the
validation set. Once the data is adequately collected and preprocessed, it is fed into the ODSLD model
for training.

• We used two dense layer hyperparameters. First, dense layer hyperparameters have a minimum value
of 128 and a maximum value of 512, the second has a minimum value of 64 and a maximum value of
256 with a RELU activation function.

The custom random search method configures the Keras tuner and optimizes the model hyperparameter using
training and validation data. Data have been encapsulated in a custom method to assemble images and labels.
In the ODSLD model tuner search, an optimizer is automatically selected during training between ADAM and
SGD, and the learning rate is altered correspondingly. In this way, it diminishes the catastrophic over-fitting
issue in image-driven plant diagnosis tasks and improve the ODSLD model accuracy. A hyperparameter tuning
process determines the best model and evaluates its performance. The reliability of the ODSLD model has
been validated using metric factors, which include reliability using Eq. (3.7), true positive rate (TPR) using
Eq. (3.8), precision using Eq. (3.9), and F1-score is measured using Eq. (3.10) [32]. Were AO is the actual
optimistic, AU is actual unfavourable, DO is deceptive optimistic, and DU is deceptive unfavourable.

reliability → AO +AU

AO +AU +DO +DU
(3.7)

TPR → AO

AO +DO
(3.8)

precision → AO

AO +DU
(3.9)

F1score → 2 ∗ TPR ∗ precision
TPR ∗ precision

(3.10)

A Raspberry Pi pico camera captures the image of the tomato or brinjal plant leaf and transmits it to the IoT
edge gateway in real-time for further processing. The received leaf images are preprocessed into 224x224 size
and entered into the ODSLD model to predict the disease class. The predicted disease class will be stored in the
real-time rethinkDB database to access. IoT edge-based diagnosis system uses a lightweight message-queued
telemetry transport protocol (MQTT) to transmit data. When the real-time disease system receives subscribed
disease notifications, it will publish them to ALU through the MQTT broker. Overall, the system is automated
and runs computations in real time. The proposed intelligence disease framework assists farmers in preventing
infections in tomato and brinjal farms, hence increasing the production of brinjal and tomatoes.
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Fig. 4.1: Tomato and brinjal field transmission measurement between SLU to IGU

4. Experiment Results and Discussion. In the Raspberry Pi IoT edge environment, overall system
frameworks have been built in Arduino, C++ and Python. Fig. 4.1 (a) and (b) shows the long range wide area
network (LoRaWAN) transmission duty cycle of tomato and brinjal crop sensor data. Fig. 4.1 (a) shows the
sensor data transmission analysis between SLU and IGU based on payload size (KB) and transmission time
(seconds). Fig. 4.1 (b) shows the analysis of data loss percentage based on transmission range. It can be seen
from Fig. 4.1 that LoRaWAN transmission between SLU and IGU performs better in terms of payload size,
long-range transmission, and lower loss rate. The average transmission time takes up to 61 seconds to transmit
the sensor data with a 0.17% loss rate from SLU to IGU.

4.1. Disease detection performance analysis. Real-time tomato and brinjal crop data collected from
the open field are normalized as discussed in 3.1. A random forest (RF) ML method was applied to identify
essential feature variables. A heatmap matrix shown in Fig. 4.2 depicts the correlation between the feature
variables. Fig. 4.2 correlation matrix demonstrates how favorably all feature variables correlate with each
other. There is a strong correlation between the variables temperature, humidity, soil moisture, and potassium.
There is a positive correlation among the variables potassium, phosphorus, nitrogen, and pH. The strongest
correlation is between nitrogen and phosphorus variables.

OETA ML model was trained on 70% training data and 30% testing data. Across the training phase of
OETA models of tomato and brinjal crops, a K-split cross-validation at a 5-fold cross is used from which it opti-
mized the mean value, alleviated bias and inconsistency, balanced the data and enhanced data utilization owing
to every data point utilized to assess its model’s efficiency. The OETA model parameters are the gradient boost-
ing (GB) and random forest (RF) convergence hyperparameters, configured as OETA model-tuning hyperpa-
rameters. The optimal hyperparameters on which OETA model performance improves are gb__learning_rate
0.1, gb__max_depth 3, gb__n_estimators 100, rf__min_samples_leaf 1, rf__min_samples_split 2, and
rf__n_estimators 100. Using the best hyperparameters, the OETA model achieved 98.86% testing accuracy
for brinjal plant and 99.23% accuracy for tomato plant. The ROC of the OETA model has been evaluated as
0.97 for the brinjal plant and 0.99 for the tomato plant. Fig. 4.3 (a) and (b) show a plotted graph of the ROC
curve based on the X-axis as the False positive rate and the Y-axis as the True positive rate.

To validate the OETA ML model using real-time sensor data, the model has been dumped using Joblib.
Table. 4.1 and 4.2 display the overall validation classification report of both crop from various ML and OETA
method for disease detection using real time sensor data.

The classification score analysis revealed in Table. 4.1 and 4.2 that the OETA ML model edges out another
ML model in terms of disease prediction for tomato and brinjal plants. The estimations show that tomato
plants had an RMSE of 0.08 and brinjal plants had an RMSE of 0.12 in disease prediction. Table. 4.3 shows
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Fig. 4.2: Correlation coefficients matrices between the set of selected features variable
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Fig. 4.3: OETA model ROC curve analysis for Tomato and Brinjal plant disease detection

Table 4.1: OETA and other ML model performance report for brinjal plant disease detection

ML Model Accuracy F1-score Precision Recall MSE MAE
OETA 98.56 98.90 98.50 97.90 0.09 0.08
SVM 88.12 89.61 90.13 89.11 3.78 3.23
RF 95.21 95.55 95.16 95.97 3.56 3.65
DT 94.07 94.55 95.16 94.97 2.88 2.53
LR 88.75 89.18 90.12 88.26 4.34 3.67

the disease prediction performance of the OETA method with other existing ML methods through real-time
data.

Table. 4.3 shows that whenever the climate conditions, soil moisture, and nutrients are in the range of
disease (1) or not disease (0), the proposed OETA method performs better prediction than the other existing
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Table 4.2: OETA and other ML model performance report for tomato plant disease detection

ML Model Accuracy F1-score Precision Recall MSE MAE
OETA 99.07 99.16 99.32 99.11 0.07 0.08
SVM 87.15 86.17 86.71 86.59 4.12 3.43
RF 94.26 95.49 95.56 95.18 2.78 2.59
DT 93.15 94.21 95.11 94.35 3.14 3.08
LR 85.47 88.13 85.62 89.16 5.21 5.28

Table 4.3: Comparative prediction performance analysis of OETA with existing ML technique

ML Model Temp Hum SM N P K Actual Predicted
OETA 29.80 61.70 113 134 97 76 1 1
SVM 31.32 86.17 634 124 66 83 1 0
RF 30.04 78.17 546 115 123 118 1 0
DT 20.04 85.17 213 103 90 95 0 1
LR 21.14 67.17 278 111 91 94 0 1

Table 4.4: Summary of GPU processor used for training ODSLD method

Plant leaf Memory usage Average GPU usage Total training time
Tomato 70230 MB 48% 12 hours
Brinjal 65216 MB 36% 3 hours

Table 4.5: Comparative performance analysis of DCNN classification model for tomato plant

Method Test Loss Validation Loss Learning rate Optimizer
ODSLD 0.032 0.017 0.0098 SGD

ResNet-50 2.41 2.36 0.0045 Adam
Inception-V3 3.13 3.22 0.0098 Adam

VGG16 2.11 1.88 0.0034 Adam
CNN 5.26 5.38 0.0098 Adam

VGG19+ResNet-50 1.26 1.38 0.0076 Adam

machine learning methods. When analyzing the prediction performance of conventional RF methods, we observe
that the prediction value suggests no disease, and the actual value suggests a disease. The RF method accuracy
for tomato and brinjal plants is around 94%, as shown in Table. 4.1 and 4.2.

4.2. Disease classification method performance analysis. Optimum diagnosis of Solanaceae leaf
diseases (ODSLD) using deep neural networks model is trained using TensorFlow 2.17, Keras tuner random
search, and NUMPY. Data is split into 80% training, 10% testing and 10% validation using Keras’ preprocessing
module to introduce randomness and shuffle. The model has been trained at 50 epochs throughout each trial
using various combinations of hyperparameters for a maximum of 10 trials. This approach optimizes model
learning by training the model on each hyperparameter with batch sizes of 16 respectively. The ODSLD
model’s total parameter size is 176.87 megabytes (MB), the trainable parameter size is 176.55 MB, and the
non-trainable parameter is 326.75 kilobytes (KB). A summary of Graphics processing unit (GPU) resources
used for constructing and training the ODSLD DCNN model is shown in Table. 4.4. The implementation
has been done in a GPU with 81920 MB memory and 70350 MB processing capacity in 12.08 hours. The
performance of ODSLD models with existing DCNN models for the tomato plant is validated in Fig. 4.4 and
Table. 4.5.
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Fig. 4.4: Testing and validation performance curve for tomato plant using real time data
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Fig. 4.5: Consequence matrices of ODSLD and existing DCNN model for tomato plant disease

The statistical performance metrics presented in Table. 4.5, show that the validation and testing loss score
of the VGG19+ResNet-50 DCNN model is close to the ODSLD model compared to other DCNN models. The
ODSLD and existing DCNN model validation and testing preciseness graph leveraging real-time images are
portrayed in Fig. 4.4 (a) and (b) shows that the existing DCNN model learning accuracy is not improving
because of the large unbalanced dataset, overfitting issue, and hyperparameter not optimised. Despite this,
ODSLD model accuracy continues to improve with an increase in the number of testing and validation epochs.
The ODSLD method performance validation is justified with the existing DCNN model based on the confusion
matrix report depicted in Fig. 4.5.
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Table 4.6: Comparative performance analysis of DCNN classification model for brinjal plantbrinjal

Method Test Loss Validation Loss Learning rate Optimizer
ODSLD 0.028 0.028 0.00080 SGD

ResNet-50 2.09 1.98 0.00045 Adam
Inception-V3 1.13 1.67 0.00073 Adam

VGG16 1.67 1.88 0.0034 Adam
CNN 2.79 2.38 0.0098 Adam

VGG19+ResNet-50 1.06 1.18 0.0076 Adam
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Fig. 4.6: Testing and validation accuracy and loss for brinjal plant using real time data

Inception V3, VGG19+ResNet-50 works better with large datasets [33], whereas proposed ODSLD model
prediction is more accurate when tested and validated using large and small real-time image data. According to
the confusion matrix shown in Fig. 4.5, ODSLD model able to recognise disease better than other existing DCNN
models on real-time datasets. Despite this, ODSLD has the following advantages over other DCNN models.
First of all, ODSLD produces a model with a comparatively lighter weight of 160 MB, the model can learn
with customized large and small datasets than the other DCNN models while reducing the overfitting problem.
Based on the loss-lessening feature of the ODSLD model, it is possible to classify the images more accurately
with an average of 98.23% accuracy as shown in Fig. 4.4. The confusion matrices in Fig. 4.5 highlight that
although VGG19+ResNet-50 and other DCNN model efficiently classify only 5-6 classes, ODSLD accurately
classifies 12 classes, including novel illness classifications of Leaf Mines disease.

The ODSLD model for the brinjal plant has been established with analogous DCNN training and tuning
parameters discussed above, and the ODSLD model performs exceedingly well compared to preceding DCNN
classification models. Statistical evaluations of the ODSLD models for brinjal are presented in Table. 4.6.

The ODSLD model validation and testing loss are found to be better than the other DCNN models based
on Table. 4.6 evaluation metrics. Fig. 4.6 depicts the ODSLD model validation and testing precisions and loss
graph using real-time images, and Fig. 4.7 depict the prediction confusion matrix report of ODSLD and other
DCNN models for the brinjal plant.

In Fig. 4.6 (a) and (b), the ODSLD model has the highest validation and testing accuracy of 95.67% and
an average loss score of 0.028 shown in Table. 4.6 for the classification of six classes of brinjal plant diseases
using real-time data. Despite the brinjal plant dataset’s smaller size, the ODSLD model is more effective at
classifying disease types than VGG19+ResNet-50 or other DCNN models. The confusion matrices in Fig. 4.7
emphasize that existing DCNN model classifies only 2-3 classes, and ODSLD precisely classifies all 6 types of
disease classes, including novel illness classifications of Ladybugs caused diseases.

To recognize the disease in real-time, the ODSLD model has been dumped using the Keras API package.
On the edge gateway, the ODSLD model is loaded. As soon as the OETA predicts a disease, the ODSLD model
will recognize the disease type for both plant in real time and transmit the disease status to the cloud layer
application through MQTT publish / subscribe protocol for monitoring so that farmers can take appropriate
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Fig. 4.7: Consequence matrices of ODSLD and existing DCNN model for brinjal plant disease

action as shown in the Fig. 4.8. Fig. 4.9 demonstrates the both plant disease detection monitoring graph.
Date-wise disease detection status is displayed on the graph according to temperature, humidity, soil moisture,
pH, nitrogen, phosphorus, and potassium.

Based on the aforementioned test outcomes and analysis, it seems to be assessed that the lightweight IoT
edge-based hybrid (OETA + ODSLD) model is effective and efficient for detecting and diagnosing diseases
for both leaves by overcoming the problem of existing smart leaves diseases method. Traditional pre-trained
models, such as VGG16, ResNet50, and Inception v3, have many challenges in recognizing specific plant leaf
diseases. Specifically, it is ineffective at capturing fine-grained data on both plant pathologies. To identify
leaf disease, the DCNN model is hampered by its model size and inability to analyze comprehensive data. For
example, variation in light, image quality, angles, resolution, or background noise. OETA is the best fit for
disease prediction, considering data on soil nutrients and environmental conditions in Solanaceae plant fields
to make an optimal decision. Proposed hybrid ODSLD method for both plant are the most suitable models
for classifying disease type. The outcomes show that the most impoverished models for identifying illnesses
in tomatoes are VGG16, ResNet50, and Inception V3 and for brinjal are inceptionV3, CNN and VGG16. In
Table. 4.7, the overall proposed approach is compared with other existing approaches.

The comparison of the approaches shown in Table. 4.7 leads one to the finding that the suggested model
for finding illnesses and categorization is automated, adaptable, and capable of determining the best decisions.
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Fig. 4.8: Input captured image of detected disease with recognise output for Tomato and Brinjal plant

Brinjal plant disease system monitoring Tomato plant disease system monitoring

Fig. 4.9: Date wise disease detection status for both plant
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Table 4.7: Comparative analysis summary

Reference Method Model performance Customized system
[18] SE inception

DCNN based
Disease recog-
nition

Few number of disease are recognized Large model size and absence of auto-
mated image capture, and disease iden-
tification system.

[20] IoT ML Disease detection depends on soil mois-
ture content and climate only, and iden-
tifies fewer disease categories with lower
predictive accuracy.

For automating the operation, the
trained ML DCNN model is not
dumped and absence of long range
transmission.

[22] IoT enabled
with disease
recognition

Since absence of real-time envision test-
ing, the efficiency of the custom DCNN
model is inadequate and non-adaptive.

Not deployed to evaluate model size and
not fully automated and customized ap-
plication.

Proposed
framework

IoT Edge
(OETA +
ODSLD)

Detection of illness with 98.56% accu-
racy using various soil properties (SM,
N,P, and K) and validation of disease
recognition using real-time data, encom-
passing novel illnesses for both plant.
Predict the disease each day and next
days and wwek. Measure climate condi-
tion and soil health status.

To automate the system, the trained
model is dumped with a size of 160 MB
data for an brinjal and tomato plant.
The system is able to communicate at
long range wirelessly without any inter-
net connectivity between the SLU to
IGU.

5. Conclusion. This work presents models with implementation results for disease prediction, detection,
and classification in tomato and brinjal plants. OETA framework is proposed for disease detection and predic-
tion. ODSLD framework is proposed for classifying both plant leaf diseases. The LoRaWAN network transmits
the tomato and brinjal field sensor data to an edge gateway. The OETA model normalizes the sensor data and
detects and predicts disease. OETA’s framework performs better for detecting diseases with an RMSE of 0.08
for tomatoes and 0.12 for brinjal plants. Whenever a disease, a real-time camera module captures the image
of leaves and transmits it via LoRaWAN to the edge gateway. ODSLD pre-processes the captured image and
classifies the disease. ODSLD model validation accuracy for tomato plants is 98.23% and for brinjal plants,
it is 95.67%. The proposed method outperformed existing ML and DCNN models in a comparative analysis.
This complete system will immensely assist small farmers in predicting, detecting, and classifying tomato and
brinjal diseases. It will enable farmers to control diseases and alert them when to apply water, fertilizer, and
pesticides to improve their harvest. In the future, other diseases of tomato and brinjal plant may be included in
the proposed DCNN model to enhance model performance and provide assistance for automatically identifying
disease remedies.
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