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RESEARCH ON AUTONOMOUS NAVIGATION AND CONTROL ALGORITHM OF
INTELLIGENT ROBOT BASED ON REINFORCEMENT LEARNING

YUNLONG YI∗AND YING GUAN†

Abstract. The last few decades have seen impressive developments in the field of robotics, especially in the areas of autonomous
navigation and control. Robust algorithms that can facilitate effective decision-making in real-time settings are needed as the need
for intelligent robots that can function in complex and dynamic contexts grows. Through trial-and-error interactions with their
surroundings, reinforcement learning (RL) has become a promising method for teaching intelligent agents to navigate and control
robots independently. The purpose of this study is to look at the creation and use of reinforcement learning algorithms for intelligent
robot control and autonomous navigation. With an emphasis on methods like deep Q-learning, policy gradients, and actor-critic
approaches, the research delves into the theoretical underpinnings of reinforcement learning and how it has been applied to the field
of robotics. This study assesses how well RL algorithms work to help robots acquire the best navigational strategies in challenging
surroundings through an extensive literature review and empirical investigation. In addition, the study suggests new improvements
and optimizations for current reinforcement learning algorithms to tackle problems unique to robot navigation, such as avoiding
obstacles, routing, and interactions with dynamic environments. These improvements increase the effectiveness, flexibility, and
security of independent robot navigation systems by utilizing knowledge from cognitive science and neuroscience. The suggested
methods are experimentally evaluated through both real-world applications on physical robotic platforms and simulation-based
research. Performance measures including navigation speed, success rate, and collision avoidance ability are used to evaluate how
well the suggested algorithms operate in different scenarios and circumstances.
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1. Introduction. The demands of the modern logistics and warehousing industries can no longer be met
by traditional manual sorting and transit efficiency due to the quick development of intelligent manufacturing
and e-commerce [9]. In an assembly shop, front-line personnel can be replaced with indoor robots, enabling
automation and intelligent delivery. Their automated transportation system is safer and more dependable,
and their independent transit is more effective. The fast expansion of modern industry has led to increasingly
complex application situations for robots [11], making the research of autonomous intelligent navigation decision-
making algorithms crucial.

Several techniques and technologies must be combined to create a drone navigation system based on rein-
forcement learning. Sensing and understanding its surroundings: Using sensors to give the drone situational
awareness is essential [5]. Drones may gather information about their environment through sensors including
proximity detectors, GPS, LIDAR, and cameras. This information can be utilized to guide the aircraft and
avoid obstacles. To enable continuous tracking and emergency intervention, swift and dependable connectivity
is also necessary for remote control from the ground [6]. To allow the drone to make judgments depending on
how it perceives its surroundings and its current condition, an effective autonomous navigation algorithm is
also required.

The path planning issue has steadily grown in importance as a study topic in recent years. Conventional
path planning techniques consist of the rapidly expanding random tree method [12], the artificial potential field
method [2], the Dijkstra algorithm [12], the A∗algorithm, and the D∗ algorithm. But even in path planning, the
conventional path planning algorithm is unable to completely comprehend the ever-more-complex and unknown
external environment data. The environment’s complexity makes it challenging to represent, and the prior
algorithm was prone to an unstable condition of convergence. In addition, it struggles with inadequate data
processing capability in large-scale areas [13]. One new sophisticated learning algorithm is called reinforcement
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learning.
Robotics is a field that is always changing, and autonomous navigation and control in particular has in-

creased the need for reliable algorithms that can make decisions quickly and effectively in complex, dynamic
settings. Reinforcement learning (RL) has become a powerful technique that allows intelligent agents to au-
tonomously move and manipulate robots by means of trial-and-error interactions with their surroundings. The
goal of this research is to improve reinforcement learning algorithms in order to improve their safety, flexibility,
and efficiency when guiding robots through challenging situations. It seeks to investigate the integration of
advanced methodologies that are essential to creating self-governing systems that are capable of learning and
adapting on their own without human assistance, such as policy gradients, deep Q-learning, and actor-critic
approaches.

Mobile robots’ capacity to navigate autonomously is crucial because it can guarantee that the platform
will get at the destination from the starting point without running into any of the many impediments in its
path. Trajectory planning [7], tracking control [19], and simultaneous localization and mapping (SLAM) [1] are
common steps in classical navigation techniques. But SLAM takes a long time and needs a lot of LIDAR density
and precision. For mobile robots, autonomous navigation remains difficult in the absence of an obstacle map
and poor range information. Consequently, scholarly interest in the unique navigation approach of end-to-end
online learning based on deep reinforcement learning (DRL) has been substantial. The main contribution of
the proposed method is given below:

1. We provide a novel DRL algorithm that combines the most recent methods for reward structuring,
exploitation, and exploration to improve autonomous robots’ decision-making and learning capabilities.

2. Our study offers a hybrid architecture that combines the best features of deliberative and reactive
architectures to ensure strategic planning and real-time response in dynamic contexts.

3. We illustrate our approach’s scalability by implementing it on several robotic platforms and situations.
Furthermore, the learnt rules’ transferability is assessed, demonstrating the algorithm’s flexibility to
new workloads without requiring a significant amount of retraining.

4. A thorough examination of the DRL algorithm’s constituent parts is part of the study, and ablation
tests are used to determine how each part contributes to overall performance, guaranteeing the results’
consistency and openness.

The main research question relies on,
1. What are some ways to improve the effectiveness and adaptability of reinforcement learning algorithms

in the dynamic environment of autonomous robot navigation?
2. What specific roles can cutting-edge methods like policy gradients, actor-critic methods, and deep

Q-learning play in improving robot decision-making in real-time scenarios?
3. How can RL algorithms be made more contextually adaptive and efficient at learning by the integration

of insights from cognitive science and neuroscience?
4. What are the shortcomings of existing reinforcement learning models when it comes to addressing the

intricacies of robotic navigation in the real world, like avoiding obstacles, interacting dynamically with
the surroundings, and ensuring safety?

The rest of our research article is written as follows: Section 2 discusses the related work on various au-
tonomous navigation, control algorithm of intelligent robot,and Deep Learning Algorithms. Section 3 shows the
algorithm process and general working methodology of proposed work. Section 4 evaluates the implementation
and results of the proposed method. Section 5 concludes the work and discusses the result evaluation.

2. Related Works. Numerous fields, including home services, space exploration, automated industrial
environments, and rescues, have made extensive use of robots. The main need for these applications is collision-
free path planning. Consequently, path planning skills are critical to the completion of robot navigation
tasks. A∗ (A-start), RRT (rapidly explored random tree), and Dijkstra are examples of traditional path
planning algorithms. To achieve the planned path, they must first comprehend all available environmental data,
construct an environment model [20], and use the path-searching algorithm in accordance with predetermined
optimization criteria. Since environment modeling, the basis of traditional path planning approaches, is weak
and only provides local optimal solutions, it is very inaccurate when handling complicated situations.

Planning a route and identifying objects and mitigation are the two main subtasks involved in the difficult
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task of drone navigation. The work must be divided into smaller, optimally solved tasks because it is not
always feasible to plan the entire approach ahead of time in a foreign setting [3, 10]. In unrestricted contexts
where landmark placements frequently vary, simultaneous localization and mapping (SLAM) based methods
are perfect. These techniques draw data from sensors such as LiDAR and IMU, although they typically add to
the computing load [4]. When operating in dynamic situations, the drone’s path plan needs to be revised on a
regular basis to account for impediments that are identified while in flight and come into its path.

Afterwards, intelligent bionic path planning techniques with some autonomies were developed; these mostly
consisted of particle swarm optimization [14], optimizing ant colonies [18], and genetic algorithms [21]. The
intelligent bionic algorithm can perform planning path tasks in a dynamic space; however, when the compu-
tational load is high, path planning efficiency is low and real-time path planning efficiency is not ensured [8].
Furthermore, the intended path is not the best option when the robot does not know enough about its working
surroundings. These conventional path planning methods typically have trouble digesting highly dimensional,
complex data on the environment in challenging situations, or they are prone to local optimal performance.

Tasks involving path planning are often solved by adapting artificial intelligence techniques. It is simple
to use brute-force or exhaustive search methods for UAV path planning jobs [15]. Although they can be quite
slow, the breadth-first and depth-first search for space techniques are thorough and always locate a path if one
is available, or the shortest of all accessible paths. To prevent dead ends, they can also be used in conjunction
with backtracking [16]. Although they can also be used to speed up search, greedy techniques always run the
danger of piling into neighbourhood minima. Because more than 50 targets make brute-force search impractical,
these approaches begin with one or more quick fixes and work their way up to the best answer by applying
local modifications and, if necessary, random restarts [17].

Although reinforcement learning (RL) has shown great promise for robotic control, current algorithms
frequently encounter difficulties related to the dynamic and unpredictable nature of real-world situations. Man-
aging high-dimensional sensory inputs, learning optimal policies quickly, and reacting in real time to environ-
mental changes are some of these issues. Moreover, a lot of training data and computer power are needed for
most RL techniques, and they could not scale well in real-world applications or generalize well in other contexts.
The development of RL algorithms that can dependably function in a variety of operational contexts without
sacrificing performance or safety, interpret complex sensory data fast, and adapt to new situations are still far
from being fully developed.

3. Proposed Methodology. The proposed methodology for autonomous navigation and control algo-
rithm of intelligent robot is evaluated by using Deep Reinforcement Method (DRL). At first, build a virtual
world in which the robot can function. This could be a fully virtual environment created to test scenarios, or
it could be a digital duplicate of an actual location. Next, based on the specifications of the problem, select
an appropriate Deep Reinforcement Learning (DRL) algorithm, such as Deep Q-Networks (DQN). To better
meet the navigation and control problems unique to the intelligent robot, train the selected DRL algorithm.
Create a system of rewards that incentivizes the desired behavior. Assessing the robot’s ability to navigate
and control itself in real-world settings and gathering performance statistics. Return the design, adjusting the
robot control systems and DRL model in response to evaluation results. In figure 3.1 shows the architecture of
proposed method.

The indoor robot’s autonomous navigation system is a noteworthy technological development in robotic
control, providing several technical advantages essential for dependable and effective operations in changing
interior environments. The robot can navigate difficult spaces with great accuracy thanks to the integration
of GPS-INS (Global Positioning System-Inertial Navigation System) assistance, AHRS (Attitude and Heading
Reference Systems), and high-precision dynamic 3D processing. This degree of accuracy is necessary for oper-
ations like material handling and distribution in warehouses and manufacturing plants, which call for precise
movement and placement.

Perpetual motion formulas, which take into account ongoing changes in position and velocity, provide the
foundation for the robot’s sophisticated navigational abilities. This allows the robot to move smoothly and
respond quickly to changes in its surroundings. The robot’s radar system, which gathers vital information such
as target spectrum, bearings, and velocity to enable reliable collision avoidance and accurate docking procedures,
significantly improves these capabilities. In addition to helping with navigation, this radar technology enables
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Fig. 3.1: Architecture of Proposed Method

the robot to keep an eye on its surroundings and take proactive measures to avoid potential obstructions or
modify its course as needed.

Moreover, the robot’s intelligent control mechanism heavily relies on its array of distance sensors. These
sensors continuously scan the surroundings to offer real-time information on the location and size of impediments,
allowing the robot to quickly alter its course. In highly populated or unpredictable areas, this sensor-based
method to obstacle identification is essential for protecting the robot’s operational integrity and guaranteeing
safety.

3.1. Indoor Robot for Intelligent Control Mechanism. The indoor robot has sophisticated auto-
mated navigational capabilities, including high-precision dynamic 3D processing data, AHRS, and GPS-INS
inertial navigation support systems, to fulfill the distribution duty. The robot’s perpetual motion formulas are
determined using the following equations to guarantee brevity and universality in the 2D plane:

ẋ (t)
ẏ (t)
φ̇ (t)
v̇ (t)

 =


v(t) cosϕ(t)
v(t) sinϕ(t)

ω (t)
a(t)

 (3.1)

If ϕ denotes the robot’s motion guidance, v is its velocity, and x and y stand for the robot’s 2D coordinates
in relation to its surroundings. The equations that follow can be used to characterize the status report of time
t during the interval: 

x (t) = x (t− 1) + v (t− 1)∆t cosϕ (t− 1)
y (t) = y (t− 1) + v (t− 1)∆t sinϕ (t− 1)

v (t) = v (t− 1) + a (t− 1)∆t
ϕ (t) = ϕ (t− 1) + ω(t− 1)∆t

(3.2)

The indoor robot has a radar attached to pick up signals. Target spectrum, bearings, velocity, and other
data can be obtained by comparing the broadcast signal with the received target echo. This gives fundamental
information for navigating, avoiding collisions, parking spaces, and other tasks. The relative azimuth angle φ
and the distance in relation D among the indoor robots and the point of interest can be determined at any time
t. Furthermore, assume that the goal position vector Sd and the robot position vector Suav are

Suav = [xt, yt, zt]
T Sd = [xt, yt, zt]

T (3.3)

Furthermore, the robot’s observation equation to the target point in a two-dimensional coordinate system at a
specific time is defined as

z =

[
D
φ

]
=

[
|| (xt, yt)− (xd, yd) ||2

actan yt−yd

xt−xd

]
(3.4)
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Fig. 3.2: Structure of Agent Sensor

The primary obstacle to autonomous navigation and intelligent control of the robot is a complex and
dynamic environment. The robot must identify environmental hazards to navigate autonomously. Therefore,
the robot is equipped with a dozen distance sensors to aid in its detection of any obstructions that may be
within its detectable range across the front. The robot’s ability to detect obstacles at any given time is defined
as follows:

Oo = [d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12] (3.5)

wherein the data sent by the respective sensor is represented by the numbers d1, d2, . . . , d3. The sensor infor-
mation in front of the agent is represented by the red line in Figure 3.2, the sensor signal in advance of the
agent (which includes the robot’s right and left sides) is represented by the orange-colored lines, and the sensor
signal coming from behind the agent is represented by the yellow lines. If the sensor finds no obstacles, its
maximum detectable range is set to L; if it detects obstacles, the distance between the agent and the obstacle
is represented by dn∈[0, L].

3.2. Autonomous Navigation for Indoor Robot using DRL. Large-scale and complicated situations
are challenging to handle using the classic path planning algorithm due to its poor convergence speed and high
processing requirements. Deep reinforcement learning can be implemented in an end-to-end observation and
management systems with strong flexibility through the combination of the perceptual capacity of deep learning
with the decision-making power of reinforcement learning. This can significantly increase the effectiveness of
path planning.

The agent engages with the surroundings at each instant to acquire a high-dimensional observation, and
the deep learning approach may be used to perceive the state attributes. The action’s value function is assessed
by considering the anticipated return, and the action that corresponds to the current state is mapped to it.
By repeatedly performing the procedures, the environment reacts to this action and receives the subsequent
observation, allowing the best possible approach to be determined.

In particular, the Markov decision process, symbolized by a quadruple (S, A, R, c), can be used to show
the entire process of learning of an agent. The agent’s observations and state are represented by the quad
S; the tasks that the agent can perform are represented by A; the reward function, R, represents the agent’s
rewards upon completion of an action in a particular state; and the discount coefficient, c, balances immediate
and accumulative rewards during the learning process. In figure 3.3 shows the structure of DRL.

4. Result Analysis. Simulation tests are put up to confirm the efficacy of the DRL algorithm in smart
navigation and autonomous control of indoor robots. The Gym-agent-master system, Python 3.6, TensorFlow
1.14.0, and PyCharm are used to execute the environment that has been simulated. The cylinder in the
simulated environment is a barrier, and it is generated in the Northeast geodetic coordinate system using the
VTK third-party software. The barriers in the scenario being simulated have a radius of one meter and a centre-
to-centre distance of three meters. The robot’s maximum running speed is set at 2.0 m/s. To guarantee the
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Fig. 3.3: Structure of DRL

efficacy of the navigational task, the robot and destination must be at least 50 meters apart at the beginning,
and the simulated phase should last for one second.

In the test of simulation, a simulator is built to enable the robot to handle itself intelligently and au-
tonomously in expansive, complicated settings. The robot’s dynamical physical restrictions are disregarded,
and its shape is abstracted as a sphere to facilitate the experiment of simulation. To guarantee scarce prizes,
there must be a minimum separation of more than 30 meters between the starting point and the destination.
The robot has a rangefinder attached so it can be observed. The goals of self-navigating and intelligent opera-
tion are considered accomplished when the robot approaches the destination and the distance between it and
its intended location is less than one meter.

The AGV’s training process begins after the pertinent parameters are specified. This round will be con-
sidered ended if the robot cannot finish the training assignment or encounters a barrier within the allotted
time. After ten, the experiment will restart, and the subsequent round will start. Simulating the real world,
the situation’s update rules are established as follows: the robot’s setting, its destination, and the number of
barriers in every round are all randomly determined.

The AGV’s training process begins after the pertinent parameters are specified. This round will be consid-
ered ended if the robot cannot finish the training task or collides with an obstacle within the allotted time. At
ten, the game will restart and the subsequent round will start. Simulating the real world, the scenario’s update
rules are established as follows: the robot’s setting, its final destination, and the amount of obstacles in every
round are all arbitrarily determined.

In the simulation experiment, the robot is trained using the DRL, DDPG, and TD3 algorithms, respectively,
to confirm the effectiveness of the proposed DRL algorithm in automatic navigation and intelligent control. As
seen in Figure 4.1, the robot’s reward value at the end of each training round is recorded.

The DRL algorithm exhibits the most pronounced increasing trend, as seen in Figure 4.2, and it takes the
lead to reach the high of 240 after roughly 4000 rounds. The TD3 algorithm exhibits severe fluctuations and
the lowest return performance. With a high fluctuation, the classic DDPG method does not begin to rise until
around 2000 rounds, and it peaks later than the optimized DRL algorithm. However, the DRL algorithm’s
reward value declined erratically after about 6600 training episodes. However, after about 7100 rounds, it swiftly
recovered to a higher, steady level. This demonstrates how the DRL algorithm suggested in this research might
enhance training effects by assisting the robot in adapting to the noisy training environment.

The achievement rate for 0–10000 rounds during the training of the suggested DRL, DDPG, and TD3
algorithms is displayed in Figure 4.2. It is evident that under the DDPG and TD3 computations, the robot’s
job completion rate is less than 80%, and its learnt methods perform poorly. The DRL algorithm training
success rate has the highest growing trend in comparing. The success rate is consistently above 80% after 3000
rounds, with a peak value approaching 90%. When compared to the other two algorithms, the DRL algorithm
offers the best learning method and the highest success rate.

We conducted 1000 rounds of comparative tests in each of the three scenarios mentioned above to confirm
the effectiveness of the robot autonomous navigation strategy under the DRL algorithm. The success rates of
indoor robot navigation are displayed in Table 4.1.

In the testing procedure, we simultaneously logged the data of every successful round and calculated the
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Fig. 4.1: Evaluation of Success rate

Fig. 4.2: Success rate of Completion of Robots

Table 4.1: Success Rate of Robot capturing autonomous navigation

Methods Used 100 obstacles 150 obstacles 200 obstacles
Proposed DRL 92.35% 83.905% 77%
DDPG 80% 65% 61.32%
TD3 85% 72% 65%

average job completion time under each of the three algorithms, as indicated in Table 4.1. The three algorithms
do not significantly differ in how long navigation tasks take in simple settings.

Following training, the intelligent system of control will be evaluated in three different contexts to confirm
the efficacy of the indoor robot system navigation approach. The environmental barriers are numbered 100, 150,
and 200, in that order. Figure 4.3 displays the outcomes of the simulation. Based on the simulation experiment
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Fig. 4.3: Evaluation of Training steps and Velocity of Robot

results, it may be inferred that an experienced robot is capable of intelligent self-navigating in an environment
with varying numbers of obstacles, allowing it to avoid obstacles and reach its target. Additionally, the robot
can raise its speed gradually and keep it inside the limit of maximum speed until it reaches its destination,
based on the trend of robot speed change.

From the first step to about step 10, the velocity climbs rapidly until it reaches a plateau. From step 10
until about step 40, the plateau has a constant speed just over 1.4 m/s. The velocity gradually decreases after
step 40 and stays that way until step 60, the last step shown. This kind of graph could be used to illustrate a
simulation or experiment in which the velocity of a vehicle or robot is tracked over time or via repeated training
phases. The plateau is a time when the velocity is sustained at its highest level. There are several possible
explanations for the decrease: the introduction of a deceleration protocol, the commencement of a limiting
factor (such as energy depletion), or changes in the surroundings that could impact velocity.

5. Conclusion. In summary, the study of reinforcement learning-based autonomous navigation and con-
trol algorithms for intelligent robots marks a substantial breakthrough in the discipline of robotics. Intelligent
robots may learn and change their navigation and control methods in changing circumstances with explic-
itly programming them by utilizing reinforcement learning methods. The effectiveness and adaptability of
algorithms that use reinforcement learning in empowering robots to move around and carry out activities in
complex and unexpected environments have been proven by this study. Robots can effectively investigate their
surroundings, pick up knowledge from encounters, and gradually improve their decision-making abilities by
using reward signals to direct learning. Additionally, the research’s conclusions have ramifications for several
practical uses, such as automation in industries, service robotics, and driverless cars. Intelligent robots’ ca-
pacity to navigate and adjust to shifting conditions on their own offers the potential to improve production,
safety, and efficiency in a variety of settings. To fully realize the potential for intelligent machines in ever-more
complex and dynamic environments, further study and development in this field will be necessary to enhance
and maximize self-navigating and control computations, solve issues with adaptability and generalizations, and
more.

Subsequent investigations could concentrate on creating increasingly complex sensor fusion algorithms that
more successfully combine data from diverse sources including radar, LiDAR, and visual cameras. The robot’s
ability to see and make decisions in congested or dynamically changing settings may be enhanced by this
integration. Navigational judgments could be greatly improved by incorporating machine learning algorithms
that use historical data to forecast future environmental situations. Deep learning techniques for predicting
possible impediments and human movement patterns in indoor environments could be investigated further.

6. Project information. Basic research project of Liaoning Provincial Department of Education in 2023:
Design and research of intelligent positioning and control system for quadruped robots based on big data
clustering (JYTMS20230321).
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