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Abstract. Mobility enables agents to migrate among several hosts, becoming active entities of networks. Java is today one of the most exploited

languages to build mobile agent systems, thanks to its object-oriented support, portability and network facilities. Nevertheless, Java does not support

strong mobility, i. e. the possibility of relocating running threads along with their execution state; challenges arising from implementing strong mobility

upon the JVM has led to the choice of a weaker form of agent mobility (i. e. weak mobility): although in many agent scenarios (e.g. in simple reactive

agents) weak mobility could be enough, it usually complicates programming parallel and distributed applications, as it forces developers to structure

their agent-based programs as sort of FSMs (Finite State Machine). In this paper, we present our Mobile JikesRVM framework to enable strong Java

thread migration, based on the IBM Jikes Research Virtual Machine. Moreover, we show how it is possible (and often desirable) to exploit such a

framework to enrich a Mobile Agent Platform, like the IBM Aglets, with strong agent mobility and to leverage software agents potential in parallel and

distributed computing.
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1. Introduction. Agents are autonomous, proactive, active and social entities able to perform their task without

requiring a continue user interaction [22]; thanks to the above features, the agent-oriented paradigm is emerging as a

feasible approach to the development of today’s complex software systems [16].

Moreover, agents can be mobile. The concept is simple and elegant: an agent that resides in one node migrates to

another node where execution is continued. Code mobility [13] is reshaping the logical structure of modern distributed

systems as it enriches software components (in particular, agents) with the capability to dynamically reconfigure their

bindings with the underlying execution environment. The main advantages of mobile computations, be they agent-based

or not, are as follows:

1. Load balancing: distributing agent-based computations among many processors as opposed to one processor

gives faster performance for those tasks that can be fragmented.

2. Communication performance:agents which interact intensively can be moved to the same node to reduce the

communication cost for the duration of their interaction.

3. Availability: agents can be moved to different nodes to improve the service and provide better failure coverage

or to mitigate against lost or broken connections.

4. Reconfiguration: migrating agents permits continued service during upgrade or node failure.

5. Location independence: an agent visiting a node can rebind to generic services without needing to specifically

locate them. Agents can also move to take advantage of services or capabilities of particular nodes.

With regard to mobility, we have to distinguish between strong mobility, which enables the migration of code, data and

execution state of execution units (for instance, threads), from weak mobility, which migrates only code and data [13].

From the complexity point of view, weak mobility is quite simple to implement using well-established techniques like

network class loading or object serialization [29]. However, weakly mobile systems, by definition, discard the execution

state across migration and hence, if the application requires the ability to retain the thread of control, extra programming

effort is required in order to manually save the execution state. The migration transparency offered by strong mobility

systems has instead a twofold advantage: it allows a more natural sequential programming style, without the need to

awkwardly structure the code with recovery points or flags; moreover, it is more suited to the requirements of many

distributed and parallel applications, in which complex computations (e.g. scientific calculations) make manual state

capturing (and recovering) somehow unfeasible or, at least, tedious.

Thanks to its portability and network facilities, Java is today the most exploited language to develop mobile agents,

and in fact several Java-based Mobile Agent Platforms (MAP) exist [15, 2, 30]. Unfortunately, current standard Java

Virtual Machines (JVMs) do not support strong thread migration natively. Thus, despite the advantages above, most

mobile agent systems support only weak mobility and the reason lies mainly in the complexity issues of strong mobility

and in the insufficient support of existing JVMs to deal with the execution state. Therefore, in order to concretely touch

the advantages of strong mobility in mobile agent applications, a suitable framework or “JVM enhancement” is advisable.

In this paper, after introducing the motivations for this research work and surveying the related work on this topic (Section

2), we introduce our Java framework (calledMobile JikesRVM [23]) to enable thread migration (Section 3), based on the
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IBM JikesRVM [4]. We found that this JVM offers great support for hosting a strongly mobile agent platform, and we

prove this by showing (in Section 4) how the IBM Aglets platform has been successfully adapted to run on top of our

mobility framework. Finally, (in Section 5) some first performance evaluation tests are reported. Section 6 concludes the

paper and illustrates future research to be done on this framework.

2. Motivations and related work. This section introduces some motivations for our research on strong thread

migration and its adoption in some mobile agent scenarios. It sketches some real applications that would benefit from the

work explained later and provides a brief overview of proposed approaches in literature.

2.1. Motivations. The choice of strong thread mobility, when designing distributed Java applications, has to be

carefully motivated, since it is not always the best one in most simple cases. Distributed and parallel computations can be

considered perhaps the “killer application” of such technique.

For instance, complex elaborations, possibly with a high degree of parallelism, carried out on a cluster of servers

would certainly benefit from a strong thread migration facility in the JVM. Well-know cases of such applications are

mathematical computations, which are often recursive by their own nature (e.g. fractal calculations) and can be paral-

lelized to achieve better elaboration times.

Another field of application for strong mobile threads is load balancing in distributed systems (e.g. in the Grid Com-

puting field), where a number of worker nodes have several tasks appointed to them. In order to avoid overloading some

nodes while leaving some others idle (for a better exploitation of the available resources and an increased throughput),

these systems need to constantly monitor the execution of their tasks and possibly re-assign them, according to an es-

tablished load-balancing algorithm. As we will see later, a particular kind of strong thread migration (called reactive

migration), that we provide in our framework, fits very well the requirements of these systems.

2.2. Related work. Several approaches have been proposed so far to overcome the limitations of the JVM as con-

cerns the execution state management. The main decision that each approach has to take into account is how to capture

the internal state of threads, providing a fair trade-off between performances and portability. In literature, we can typically

find two categories of approaches:

• modifying or extending the source code of existing JVMs to introduce APIs for enabling migration (JVM-level

approach);

• translating somehow the application’s source code in order to trace constantly the state of each thread and using

the gathered information to rebuild the state remotely (application-level approach).

JVM-level approach. The former approach is, with no doubt, more intuitive because it provides the user with an

advanced version of the JVM, which can completely externalize the state of Java threads (for thread serialization) and

can, furthermore, initialize a thread with a particular state (for thread de-serialization). The kind of manipulations made

upon the JVM can be several. The first proposed projects following the JVM-level approach like Sumatra [1], Merpati

[32], JavaThread [7] and NOMADS [33], extend the Java interpreter to precisely monitor the execution state evolution.

They, usually, face the problem of stack references collection modifying the interpreter in such a way that each time a

bytecode instruction pushes a value on the stack, the type of this value is determined and stored “somewhere” (e.g., in a

parallel stack). The drawback of this solution is that it introduces a significant performance overhead on thread execution,

since additional computation has to be performed in parallel with bytecode interpretation. Other projects tried to reduce

this penalization avoiding interpreter extension, but rather using JIT (Just In Time) re-compilation (such as Jessica2 [38])

or performing type inference only at serialization time (and not during thread normal execution). In ITS [8], the bytecode

of each method in the call stack is analyzed with one pass at serialization time: the type of stacked data is retrieved and

used to build a portable data structure representing the state. The main drawback of every JVM-level solution is that

they implement special modified JVM versions that users have often to download; therefore they are forced to run their

applications on a prototypal and possibly unreliable JVM.

Application-level approach. In order to address the issue of non-portability on multiple Java environments, some

projects propose a solution at the application level. In these approaches, the application code is filtered by a pre-processor,

prior to execution, and new statements are inserted, with the purpose of managing state capturing and restoration. In fact,

the idea of these approaches is to transparently place a few control instructions, similar to recovery-points, that allow a

thread to deactivate itself once it has reached one of them. Recovery-points are quite similar to entry points used in most

Java MAPs (i. e., methods that are executed when an agent is reactivated at the destination host), even if the former ones

enable a finer grain control than entry points. Unluckily, a thread cannot deactivate (or reactivate) itself outside of these

recovery-points, which are also not customizable, thus a thread cannot really suspend itself in an arbitrary point of the

computation. Some of these solutions rely on a bytecode pre-processor (e.g. JavaGoX [27] or Brakes [36]), while others

provide source code translation (e.g. Wasp [12], JavaGo [28], Wang’s proposal [37]). Two of them [28, 37] hide a weak
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FIG. 3.1. A layered view of Mobile JikesRVM

mobility system behind the appearance of a strong mobility one: they, in fact, re-organize “strongly-mobile” written code

into a “weakly-mobile” style, so that weak mobility can be used instead. Portability is achieved at the price of a slowdown,

due to the many added statements.

Discussion. Starting from the above considerations, we have decided to design and implement a strong thread migra-

tion system able to overcome many of the problems of the above-explained approaches. In particular, our framework is

written entirely in Java and it does neither suffer performance overheads, due to bytecode instrumentations, nor reliability

problems, because the user does not have to download a new, possibly untrustworthy, version of JikesRVM. The frame-

work is capable of dynamically installing itself on several recent versions of JikesRVM (we carried out successful tests

starting from release 2.3.2). In fact, every single component of the migration system has been designed and developed to

be used as a normal Java library, without requiring rebuilding or changing the VM source code. Therefore, our JikesRVM-

based approach can be classified as a midway approach between the above-mentioned JVM-level and Application-level

approaches. Other midway approaches [14] exploit the JPDA (Java Platform Debugger Architecture) that allows debug-

gers to access and modify runtime information of running Java applications. The JPDA can be used to capture and restore

the state of a running program, obtaining a transparent migration of mobile agents in Java, although it suffers from some

performance degradation due to the debugger intrusion.

3. A Layered View of our Framework. As already stated, in order to successfully exploit the benefits of mobile

agents, an efficient and well-designed software support is needed on top of the bare JVM. Such a middleware should pro-

vide a precise, though flexible and customizable, answer to the questions of mobile applications developers. Following the

seminal work of Fuggetta et al. [13], we can identify three main parts conceptually comprising a mobile code application:

• the code segment (i. e. the set of compiled methods of the application);

• the data space, a collection of all the resources accessed by the execution unit. In an object-oriented system,

these resources are represented by objects in the heap;

• an execution state, containing private data as well as control information, such as the call stack and the instruction

pointer.

From a mere technological standpoint, the capability to move code and regular objects is already a consolidated

matter: the Java language provides very powerful tools to this purpose, like object serialization (used to migrate data

in the heap) and bytecode and dynamic class-loaders (which facilitate the task of moving the code across distant JVMs,

hosted by heterogeneous hardware platforms and operating systems). The main problem to tackle here is how to detach the

execution state of a Java thread from its native environment and then re-install it at some other site. This requires diving

into the internals of the JVM core and externalizing a complete representation of the running thread. Such functionality

is provided in our framework by the mobility layer in Figure 3.1, which is built just upon JikesRVM. As we stressed

earlier, this layer is installed dynamically into the runtime simply importing the mobility package, without requiring a
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dedicated version of JikesRVM. Further details on this layer and its interactions with JikesRVM are the subject of the next

subsection. Shifting to a more application-level point of view, every mobility system (both weak and strong) will sooner or

later run across the non-negligible issue of data space management [13]: every thread has a set of referenced objects into

the heap (i. e. the data space) and, when it migrates to the destination site, the set of bindings to passive (i. e. resources)

and active objects (i. e. other threads) has to be rearranged. The way this set is rearranged depends on the nature of the

resources (whether they can be migrated or not over the network), the type of the binding to such resources, as well as

requirements posed by the application. The very fact that it eventually depends on application specific requirementsmakes

it impossible to fully automate the choice of the adequate strategy, entailing the need for its programmatic specification.

The resource management layer in Figure 3.1 is responsible for handling references to resources and relocating them

according to such programmatic specifications. Some ongoing research ideas on this topic are outlined later in subsection

3.2. On top of the Mobile JikesRVM framework, it is possible to develop different distributed applications, which can

benefit from the provided strong mobility and data space management support. IBM Aglets [2] is a well-known MAP,

completely written in Java and open-source project. In Section 4 of this paper, we report on our effort to port this platform

on Mobile JikesRVM, so that agents (i. e. aglets) are able to strongly migrate among network nodes: in our opinion, the

possibility for agents to exploit the benefits of strong mobility, without many of its well-known drawbacks, can open new

applicative scenarios for this paradigm.

3.1. The Mobility Layer. This layer contains a package of classes required to extend the runtime of JikesRVM

and enable thread migration on top of it. JikesRVM [4] is now an open-source project, whose innovative and ambitious

features are drawing researchers interest from all over the world. JikesRVM began life in 1997 at IBM T. J. Watson Re-

search Center as a project with two main design goals: supporting high performance Java servers and providing a flexible

research platform where novel VM ideas can be explored, tested and evaluated [3]. JikesRVM is almost totally written in

the Java language, but with great care to achieving maximum performance and scalability exploiting as much as possible

the target architectures peculiarities. The all-in-Java philosophy of this VM makes it very easy for researchers to manip-

ulate or extend its functionalities. Furthermore, JikesRVM source code can be built, with a prior custom compilation,

both on IA32 and on PPC platforms [17], but the bulk of the runtime is made up of Java objects portable across different

architectures. For the sake of brevity, we will focus on those aspects that make JikesRVM an ideal execution environment

for strongly mobile agents, overcoming the drawbacks and the limitations of many existing solutions. Further details can

be obtained from its users guide [17].

As depicted in the UML excerpt diagram of Figure 3.2, the MobileThread class is the basic abstract class, through

which thread migration services could be accessed. Users threads have just to subclass MobileThread and use some of

the inherited methods to extract the execution state (i. e. collectFrames()) or to re-install it (i. e. installFrames())

at the destination site/host. It must be pointed out that in JikesRVM threads are full-fledged Java objects and are designed

explicitly to be as lightweight as possible [3]. As well as many server applications need to create new threads for each

incoming request, a Mobile Agent Platform has similar requirements since thousands of agents may request to execute

within it.

While some JVMs adopted the so-called native-thread model (i. e. the threads are scheduled by the operating system

that is hosting the virtual machine), JikesRVM designers chose the green-thread model [25]: Java threads are hosted

by the same operating-system POSIX thread, implemented by a so-called virtual processor, through an object of class

VM Processor [5]. Each virtual processor manages the scheduling of its virtual threads (i. e., Java threads), represented

by internal objects of the class VM Thread. Moreover, each java.lang.Threadhas a protected vmdata field, pointing to

the corresponding instance of VM Thread. When a MobileThread is instantiated by the application, it initially points to

a standard internal VM Thread object (see the dashed UML composition link between Thread and VM Thread in Figure

3.2). This thread becomes truly mobile only when its enableMobileThread() method is invoked, since this method

changes the reference to the original VM Thread object to an instance of our special VM MobileThread (see the UML

composition link between MobileThread and VM MobileThread in Figure 3.2).

Before going deeper into the details of the mobility layer, we report in Figure 3.3 a possible migrate() method,

implemented by the user to perform migration of her threads. This method simply opens a socket towards a destination

host, captures the execution state of that thread (in a chain of frames, as explained later) and serializes it through the

socket stream. Please note that a migration/serialization unit in the example is composed of the thread instance and the

chain of frames of its execution state, packed into a dedicated Transport object.

Let us suppose we have at destination another service thread, listening on a certain TCP port, whose task is to read

incoming threads from the network and resume them locally. A possible method to perform this has been depicted in

the excerpt of Figure 3.4. Deserializing the Transport object into memory implicitly creates a local instance of the
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FIG. 3.2. A simplified view of the mobility package and its dependencies (excerpt)

private void migrate(String hostname, int port)

{

try {

Socket s = new Socket(hostname, port);

TransportObject t = new TransportObject();

t.thread=this;

t.framesChain=collectFrames(...);

ObjectOutputStream oos =

new ObjectOutputStream(s.getOutputStream());

oos.writeObject(t);

oos.flush();

s.close();

} catch (Exception e) {

...

}

}

FIG. 3.3. Building a mobile thread application with mobility (source machine)

MobileThread object, which has to be manipulated in order to accept the received execution state. The task simply boils

down to

• starting the deserialized thread and waiting for its auto suspension,

• installing the received frames in the chain into the suspended thread,

• resuming the thread locally.

If such phases are successfully carried out, the outcome will be that the thread will continue its execution from the

next instruction following the migrate()method call of Figure 3.3.
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void handleTransportObject(ObjectInputStream ois, ObjectOutputStream oos)

{

/* Read the object from the socket */

Object o = ois.readObject();

/* Cast the deserialized object to a Transport object */

TransportObject t = (TransportObject) o;

/* Create a new autosuspending MobileThread */

MobileThread newThread = t.thread;

/* Make this thread autosuspended... */

newThread.enableMobileThread(true);

newThread.start();

/*... and wait for its suspension */

while(!newThread.isAutoSuspended())

Thread.yield();

/* Install frames into the new thread */

newThread.installFrames(t.framesChain);

/* Resume the thread locally */

newThread.resume();

}

FIG. 3.4. Building a mobile thread application with mobility (destination machine)

Capturing the execution state of a thread. When the above collectFrames()method is called on a MobileThread

object, the framework starts a walk back through its call stack, from the last frame to the run() method of the thread.

This jumping is shown schematically in Figure 3.5, where the stack is logically partitioned into three areas: (i) internal

preamble frames, which are always present and do not need to be migrated; (ii) user-pushed frames, to be fully captured as

explained later; (iii) thread-switch internal frames, which can be safely replaced at the destination and, thus, not captured

at all. A special utility class, called FrameExtractor, has been implemented in the mobility framework, with the precise

goal of capturing all the frames in the user area in a portable bytecode-level form. This class uses an OSR extractor to

capture the frame state representation and returns it to the caller, ready to be serialized and sent to destination or to be

check-pointed on disk.

The JikesRVM OSR Extractor. The OSR (On-Stack Replacement) extractor is another fundamental component of

the framework: it draws inspiration from the OSR extractors provided by JikesRVM [11], though it has been re-written

for the purposes of our project. The OSR technique was introduced in JikesRVM, with a completely different objective:

enabling adaptive re-compilation of hot methods. In fact, JikesRVM can rely not only on a baseline compiler but also

on an optimized one [9]. Every bytecode method is initially compiled with the baseline compiler, but when the Adaptive

Optimization System (AOS) [6] decides that the current executing method is worth being optimized, the thread is drawn

from the ready queue and the previous less-optimized frame is replaced by a new more-optimized frame. The thread is

then rescheduled and continues its execution in that method. This technique was first pioneered by the Self programming

language [10]. An innovative implementation of the OSR was integrated into the JikesRVM [11], which uses source code

specialization to set up the new stack frame and continue execution at the desired program counter. The transition between

different kinds of frames required the definition of the so-called JVM scope descriptor that is the compiler-independent

state of a running activation of a method based on the stack model of the JVM [21]. When an OSR is triggered by

JikesRVM, the scope descriptor for the current method is retrieved and is used to construct a method, in bytecode, that

sets up the new stack frame and continues execution, preserving semantics.

Our modified OSR Extractor. The JikesRVM OSR frame extractor has been rewritten for the purpose of our mobility

framework (i. e. the OSR MobilityExtractor) to produce a frame representation, suitable for a thread migration context.
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FIG. 3.5. The stack walk-back of a suspended MobileThread

The scenario we are talking about is a wide-opened one, where different machines running JikesRVM mutually exchange

their MobileThread objects without sharing the main memory. We introduced, therefore, a portable version of the

scope descriptor, called MobileFrame, whose structure is reported in Figure 3.6. While the OSR implementation in

JikesRVM uses an internal object of class VM NormalMethod to identify the method of the frame, we cannot make

such an assumption; the only way to identify that method is through the triplet [method name, method descriptor, full

class name] that is universally valid. This triplet (represented by the three fields methodName, methodDescriptor and

methodClass in Figure 3.6) is used to refer the method at the destination (e.g. its bytecode must be downloaded if

not locally available yet), maybe after a local compilation. The bytecode index (i. e. the bcIndex field) is the most

portable form to represent the return address of each method body and it is already provided in JikesRVM by default

OSR. Finally, we have two arrays (i. e. the locals and stack operands fields) that, respectively, contain the values

of local variables (including parameters) and stack operands in that frame. These values are extracted from the physical

frame at the specified bytecode index and converted into their corresponding Java types (int, float, Object references

and so on). In addition, it must be pointed out that the OSR MobilityExtractor class fixes up some problems that

we run across during our implementation: here, we think it is worthwhile mentioning the problem of uninitialized local
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class MobileFrame {

/** Name of the method which adds this frame*/

public String methodName;

/** Method descriptor

e.g. (I)V for a method

getting an integer and returning void */

public String methodDescriptor;

/** Fully qualified method class

(e.g.mypackage.myClass)*/

public String methodClass;

/** The bytecode index (i.~e. return address)

within this method*/

public int bcIndex;

/** The local bytecode-level local variable

including parameters */

public MobileFrameElement[] locals;

/** The value of the stack operands at the

specified bytecode index */

public MobileFrameElement[] stack_operands;

// methods and static fields omitted

}

FIG. 3.6. The main fields of the MobileFrame class

variables. Default OSR extractor does not consider, in the JVM scope descriptor, those variables that are not active at the

specified bytecode index. Nevertheless, these local variables have their space allocated in the stack and this fact should be

taken into account when that frame is re-established at the destination.

To summarize, in our mobility framework, threads are serialized in a strong fashion: the MobileThread object is

serialized as a regular object, while the execution state is transferred as a chain of fully serializable MobileFrame objects.

Resuming a migrated thread. The symmetrical part of the migration process is the creation, at the destination host, of

a local instance of the migrated thread. This task should be appointed to some user listener thread like the one mentioned

above, while in this section we are going to see how the thread is rebuilt in the mobility layer. This phase assumes that the

target thread is suspended: this allows the infrastructure to safely reshape the current stack object of this thread, injecting

one by one all the frames, belonging to the arrived thread. In more details, a new stack is allocated and it is filled in with

the thread-switch internal frames, taken from the auto-suspended thread. Then, every MobileFrame object is installed,

in the same order as they were read from the socket stream (i. e. from the Methodn() to run(), looking at Figure 3.5).

The brand-new stack is closed with the remaining preamble frames, again borrowed from the auto-suspended thread.

Now, the new stack has been prepared and the context registers are properly adjusted (pointers are updated to refer to the

new stack memory). This stack takes the place of the old stack belonging to the auto-suspended thread (the old one is

discarded and becomes garbage). The new MobileThread object, with its execution state completely re-established, can

be transparently resumed and continues from the next instruction.

Proactive migration vs. reactive migration. In the previous code example, we have shown a kind of migration that

has been defined [13] as proactive migration: i. e. the mobile thread autonomously determines the time and destination for

its migration, explicitly calling a migrate(URL destination)method; another interesting, though quite tricky, kind of

thread migration is reactive migration, where the threads movement is triggered by a different thread that can have some

kind of relationship with the thread to be migrated, e.g. acting as a manager of roaming threads. Exploiting JikesRVM

features, we successfully implemented both migration types, in particular the reactive migration. As anticipated in Sub-

section 2, an application, in which reactive migration can be essential, is a load-balancing facility in a distributed system.
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If the virtual machine provides such functionality to authorized threads, a load monitor thread may want to suspend the ex-

ecution of a worker thread A, assign it to the least overloaded machine and resume its execution from the next instruction

in As code. This form of transparent externally-requested migration is harder to implement with respect to the proactive

case, mainly because of its asynchronous nature. Proactive migration raises, in fact, less semantic issues than the reactive

one, though identical to the latter from the technological/implementation point of view: in both cases we have to walk

back the call stack of the thread, extract the meaningful frames and send the entire thread data to destination (as explained

earlier). The fundamental difference is that proactive migration is synchronized by its own very nature (the thread in-

vokes migrate() when it means to migrate), while for reactive migration the time when the thread has to be interrupted

could be unpredictable (the requester thread notifies the migration request to the destination thread, but the operation is

not supposed to be instantaneous). Therefore, in the latter case, the critical design-level decision is about the degree of

asynchronism to provide. In a few words, the question is: should the designated thread be interruptible anywhere in its

code or just in specific safe migration points? We chose to provide a coarse-grained migration in the reactive case. Our

choice has a twofold motivation: (i) designing the migration facility is simpler; (ii) decreasing migration granularity re-

duces inconsistency risks. Although these motivations can be considered general rules-of-thumb, they are indeed related

to the VM we adopted. In fact, the scheduling of the threads in JikesRVM has been defined as quasi-preemptive [5],

since it is driven by JikesRVM compilers. As mentioned, JikesRVM threads are objects that can be executed and sched-

uled by several kernel-level threads, called virtual processors, each one running on a physical processor. What happens

is that the compiler introduces, within each compiled method body, special code (yieldpoints) that causes the thread to

request its virtual processor if it can continue the execution or not. If the virtual processor grants the execution, the virtual

thread continues until a new yieldpoint is reached, otherwise it suspends itself so that the virtual processor can execute

another virtual thread. In particular, when the thread reaches a certain yieldpoint (e.g. because its time slice is expired),

it prepares itself to dismiss the scheduler and let a context switch occur. If we allow a reactive migration with a too fine

granularity (i. e. potentially at any yieldpoint in threads life), inconsistency problems will almost surely occur. The thread

can potentially lose control in any methods, from its own user-implemented methods to internal Java library methods

(e.g. System.out.println(), Object.wait() and so forth). It may occur that a critical I/O operation is being carried

out and a blind thread migration would result in possible inconsistency errors. We are currently tackling the reactive

migration issues thanks to JikesRVM yieldpoints and the JIT compiler. In order to make mobile threads interruptible

with the mentioned coarse granularity, we introduced the migration point concept: migration points are always a subset

of yieldpoints, because they are reached only if a yieldpoint is taken. The only difference is that migration points are

inserted only:

1. in the methods of the MobileThread class (by default);

2. in all user-defined class implementing the special Dispatchable interface (class-level granularity);

3. in those user-methods throwing DispatchablePragmaException (method-level granularity).

The introduction of a migration point forces the thread to check also for a possibly pending migration request. If the

mobile thread takes the migration point, it invokes a special abstract handler method (i. e. the onMigrationPoint()

of Figure 3.2) of the MobileThread class and this method is responsible for carrying out user-specific migration, as

we exemplified in Figure 3.3 and Figure 3.4. This approach has several advantages: firstly, it rids us of the problem of

unpredictable interruptions in internal Java library methods (not interested by migration points at all); then, it also gives

the programmer more control over the migration, by letting her select those safely interruptible methods; last but not least,

it leaves the stack of the suspended thread in a well-defined state, making the state capturing phase simpler. We achieved

the insertion of migration points, simply substituting at runtime the method of the JIT compiler object, responsible for

inserting yield points, with our migration points insertion method (the source code of the VM is left untouched and

one can use every OSR-enabled version of the JikesRVM). We must point out that JikesRVMs compiler does not allow

unauthorized users code to access and patch internal runtime structures. Users code, compiled with a standard JDK

implementation, will not have any visibility of such low-level JikesRVM-specific details.

3.2. The resource management layer. The set of all referenced objects of a thread has been previously defined

as its data space [13] and, at any point during the execution, is composed of all the objects that can be reached by the

thread through the call stack or its fields. As concerns the stack, the space that the thread is supposed to bring with itself

comprises all the objects pointed by the parameters and local variables of methods, together with those objects pushed

on the operand stack of each frame in the stack. In the previous section, it was explained how the problem of collecting

object references in stack frames has been easily tackled by means of the JikesRVM OSR extractor. The next step, as

concerns the data space, will be dealing with objects relocation and reference rebinding. Although such issue pertains

more to the application than to the thread migration middleware, we claim that its importance demands some kind of tool
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FIG. 3.7. A conceptual view of resources and threads

or support from a framework layer, in order to present a coherent set of mobile computing abstractions. In this section,

we briefly sketch our vision of the problem and propose some ideas that are nonetheless part of our future research work.

Our conceptual view of resources is depicted in Figure 3.7: Java threads can have references to either active (i. e. other

threads) or passive resources (i. e. regular Java objects in the heap). The bindings to needed resources must be properly

rearranged to maintain accessibility and consistency when the computation migrates to new locations. This poses two

kinds of problems:

1. handling the bindings of resources to their underlying execution environment. This is not a problem if we

consider only resources, like pure Java objects, which are not bound to any OS physical entity; on the contrary,

resources, such as files, sockets or database objects, cannot be barely serialized without carefully managing their

binding to the underlying environment.

2. handling the binding of resources to migratory threads. Fuggetta et al. [13] identified three typologies for this

bindings (by identifier, by value or by type) and proposed some relocation strategies for each of them (by move,

by copy, network reference, rebinding).

As for the first point, it must be pointed out that moving some resources (e.g. a centralized database) may not be

technically (e.g. the bandwidth is not enough for its size) or semantically (e.g. it is already in use for queries by other

threads) possible. We think that such issues should be coped with by explicitly introducing the Resource concept in our

programming model and letting the programmer specify the right policy for her resources. Introducing the Resource

entity as an interface, the programmer will be asked to make its resource objects implement such interface, together with

a set of useful methods for:

• extracting the resource from its environment in a portable/serializable format (if the resource is fixed an exception

will be raised and caught by the framework);

• attaching the resource to the destination environment;

• performing a correct cleanup of the resource, if it is detached from the source JVM (see the proposal by Park and

Rice [26]).

A simple example of a resource can be a java.io.File object. A mere serialization of such an object will not pro-

duce the actual movement of the underlying file system object. To accomplish this task, the programmer has to introduce

its MovableFile object, inheriting from File and implementing the Resource interface, with some of the methods listed

above: in particular, calling the extraction method will likely return a byte[] filled in with the file content; calling the

attach method will recreate that file in the file system at destination, with its previous content. Moreover, this part of the

resource management layer is responsible for properly handling other non negligible issues, pertaining to dependencies

among resources, protection and concurrency (e.g. the resource is shared among threads, it is synchronized with a lock

and so forth), inter-thread references. Focusing on the second point above, the problem of the bindings between resources
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public class MyAgent extends Aglet{

protected boolean migrated = false; //indicates if the agent has moved yet

public void run(){

if( ! migrated ){

// things to do before the migration

migrated = true;

try{ dispatch(new URL(atp://nexthost.unimore.it);}

catch(Exception e){ migrated = false; }

}

else{ // things to do on the destination host }

}

}

FIG. 4.1. An example of Aglet with a single migration

and migratory threads should be addressed [34]. The choice of the right re-binding strategy depends on several factors,

from runtime conditions and access-device properties to management requirements and user properties. For instance, a

fixed server with no strict constraints on network bandwidth or memory could copy or move the needed resources and

work on them locally, whereas a wireless-enabled laptop might want to access that resource remotely without moving

it. However, the programming language adopted usually determines the binding strategy (apart from heavily restricted

cases, like in Java RMI). Moreover, the strategy is typically embedded within the mobile application code, thus limit-

ing binding-management flexibility. We envision that the resource management layer ought to give the programmers the

means to specify which reference management policy [24] to use, on a per-instance basis. Furthermore, since the seman-

tics of a given strategy is the same whatever the resource is (e.g. network reference, rebinding, etc.), strategies should

be implemented as basic blocks that can be reused and programmatically attached to any object, thus achieving a clear

and beneficial separation of concerns [18] (i. e. between application/functional and non functional/rebinding concerns).

Providing an effective and clear support for such abstractions on top of the JikesRVM is part of our future work on this

topic.

4. Strong Mobility in Aglets. This section offers an example of a testbed application that we have implemented

on top of the Mobile JikesRVM framework. It consists of the well-known IBM Aglets MAP, which provides only weak

mobility support to mobile agent applications. Simply modifying some parts of its Java source code, we succeeded in

implementing a porting of this MAP endowed with strong agent mobility.

4.1. Overview of the Aglets Workbench. The Aglets Workbench [2] is a project originally developed by the IBM

Tokyo Research Laboratory with the aim of producing a platform for the development of mobile agent based applications

by means of a 100% Java library. The Aglets Workbench provides developer with applet-like APIs [19], thus creating a

mobile agent (called aglet) is a quite straightforward task. It suffices to inherit from the base class Aglet and to override

some methods transparently invoked by the platform during the agent life. Weak mobility is provided through the Java

serialization mechanism, and a specific agent transfer protocol (ATP) has been built on top of such mechanism [20]. Each

Aglet can exploit the special method dispatch() to move to another host.

As many other Java MAPs, Aglets exploits weak mobility, that means, from a programming point of view, that each

time an agent is resumed at a destination machine, its execution restarts from a defined entry point, that is the run()

method call. Due to this, dealing with migrations is not always trivial, and developers have to adopt different techniques

to handle the fact an agent will execute several times the same code but on different machines. Even if the Aglets library

provides a set of classes that helps dealing with migrations, the code will appear like the one shown in the simple example

of Figure 4.1. There, in case of a single migration, the migrated flag is used to select a code branch for the execution

either on the source or on the destination machine. The code of Figure 4.1 is just a simple example, but more complex

agents follow the same programming style. In all such cases the point is that with weak mobility it is as the code routinely

performs rollbacks. In fact, looking at the code in Figure 4.1, it is clear how, after a successful dispatch(..) method

call that causes the agent migration, the code does not continue its execution in the run()method from that point. Instead,

the code restarts from the beginning of the run method (on the destination machine, of course), and thus there is a code

rollback. The fact that an agent restarts its execution always from a defined entry point, could produce awkward solutions,

forcing the developer to use flags and other indicators to take care of the host the agent is currently running on.
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public class MyAgent extends Aglet{

public void run(){

// things to do before the migration

try{

migrate(new URL(atp://nexthost.unimore.it);

}catch(Exception e){ }

// things to do after migration

}

}

FIG. 4.2. An example of Aglet code using Mobile JikesRVM

4.2. Implementing Strong Mobility. Our major aim here has been to realize the idea of an Aglet that is to be

executed by a strong migratory thread and this required some modifications to the underlying Aglets execution model.

In particular, instead of using one of the pre-created threads (i. e., thread pool) to execute the methods of the aglets,

JikesRVM makes feasible to have a single independent thread for each aglet. As already mentioned, this is possible

because of the lightweight implementation of Java threads in that JVM, being targeted to server architectures, where

scalability and performance are key requirements. Furthermore, having a separate thread for each aglet ensures a high

level of isolation between agents: consider, for example, the case where an agent wants to sleep for some time, without

being deactivated (i. e. serialized on the hard disk). Using the classical sleep() method on the java.lang.Thread

object will produce strange effects on the current Aglets implementation platform (such as locking the message passing

mechanism). These shortcomings are due to the thread sharing amongmultiple agents through the pool of threads. Instead,

potentially dangerous actions by malicious (or bugged) aglets do not affect the stability of our platform, allowing possibly

a clean removal of the dangerous agent without the need of a MAP reboot. In our prototypal implementation, there is only

one thread responsible for handling the messages posted to the aglet and this thread will invoke the appropriate handler

function to perform the necessary actions in response to the delivered message. In the official Aglets framework, the

thread running into the handler function cannot be interrupted asynchronously by a migration request, notified by another

thread by means of the dispatchmessage. In our prototype, the dispatch message has the effect of interrupting/preempting

the execution of the function (in particular, the handler of the run message, i. e. the run()method) and migrating the aglet

to the designated host. The OnDispatching() handler method is executed to allow preparatory actions to be done, but

the current execution stack is preserved, together with local variables, stack operands and method parameters. There is no

more need for saving intermediate results into serializable fields or structuring the code with entry points from which the

agent execution is restarted each time it arrives at a new host. Referring to the code example of Figure 4.1, the adoption

of strong thread mobility overtakes the mentioned drawbacks, since the code restarts at the destination machine from the

same point it has stopped at the source one. Thus the code shown in Figure 4.1 becomes the one of Figure 4.2. As readers

can see, the code is simpler (no flags and branches are required) and shorter than the previous one.

This kind of message-driven strong mobility is achieved serializing the aglet object and its fields but also appending

the sequence of stack frames (as we have explained in Section 3.1) representing the state of the execution at the time of

the suspension. Reactive migration has been achieved exploiting the migration point concept provided by the mobility

layer (see subsection 3.1) underneath. On the other hand, the de-serialization process involves

1. reading the aglet object from the network stream into the memory;

2. creating a new thread for this aglet or acquiring an existing one, if available;

3. notifying this thread of the arrival event and suspending its execution;

4. injecting on the fly all the migrated frames into its stack;

5. resuming the execution of the thread/aglet transparently.

The migrated aglet will be, by default, destroyed in the source JVM and its associated thread added back to the thread

pool, if available. Nevertheless, the disposemessage can be explicitly intercepted by the programmer so that the aglet can

continue executing, thus realizing a form of agent cloning. In summary, the new Aglets implementation tries to overcome

the drawbacks of weak agent mobility, using the thread migration facilities of the underlyingmobility layer and hopefully

the resource abstractions of the resource management layer.

5. Performance and discussions. At the current stage of our research, the mobility layer of our framework has been

successfully tested, focusing mainly on the state capturing and restoring of the threads executing the aglets. First of all, we

made some first performance tests (running some simple agent applications) to discover possible bottlenecks and evaluate
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the cost of each migration phase. The times measured are expressed in seconds and are average values computed across

multiple runs, on a Pentium IV 3.4Ghz with 1GB RAM on JikesRVM release 2.4.5. Thanks to a Fibonacci recursive

algorithm we were able to test thread serialization with increasing stack sizes (5, 15 and 25 frames) and found a very

graceful time degradation. These times are conceptually divided into two tables, where Table 5.1 refers to the thread

serialization process, while Table 5.2 refers to the symmetrical de-serialization process at the arrival host.

TABLE 5.1

Evaluated times for thread serialization (sec.)

5 frames 10 frames 25 frames

OSR capturing 1.78E-5 1.89E-5 1.96E-5

State building 3.44E-5 3.75E-5 3.43E-5

Pure serialization 2.49E-3 7.32E-3 1.50E-2

Overall times 2.54E-3 7.38E-3 1.51E-2

Considering how these times are partitioned among the different phases of the thread serialization, we can see that

the bulk of the time is wasted in the pure Java serialization of the captured state, while the frame extraction mechanism

(i. e. the core of our entire facility, comprising OSR extraction and state building) has very short times instead. The same

bottleneck due the Java serialization may be observed in the de-serialization of the thread. In the latter case, however, we

have an additional overhead in the stack installation phase, since the system has often to create a new thread and compile

(if not yet compiled) the methods for the injected frames. These performance bottlenecks can be further minimized,

perhaps using externalization to speed up the serialization of the thread state [35]. Moreover, we had to modify the size

of JikesRVM LOS (Large Object Space) to allow the instantiation of a bigger number of thread objects into the runtime

image. Nevertheless, the developed prototype has some limitations that will be dealt with in the future: the first one is

about the kind of supported compilers. JikesRVM basically provides two compilers, designed to achieve different levels

of code optimization: a baseline and an optimizing compiler [5] (a third quick compiler is, at the time of writing, still

in a prototypal phase). Our prototype can actually migrate baseline compiled methods JikesRVM, mainly because of an

OSR mechanism limitation: it can actually capture method scope descriptors for those methods compiled by optimized

compilers, but this requires maintaining additional structures to cope with parameters allocated into registers, inlined

methods and other challenging optimization techniques [11]. Currently, JikesRVM designers allows OSR to occur only at

yield points (i. e. thread pre-emption points in the code) and this implies that not all the optimized frames in the stack have

their maps updated. Nonetheless, we are aware of a project by Krintz et al. [31] trying to present a more general-purpose

version of OSR that is more amenable to optimizations than the current one. The improvement descending from this work

will be exploited to perform a more complete thread state capturing, even in presence of code optimizations.

TABLE 5.2

Evaluated times for thread rebuilding (sec.)

5 frames 10 frames 25 frames

Pure de-serialization 4.46E-3 5.33E-3 7.06E-3

State rebuilding 5.45E-4 5.27E-4 5.06E-4

Stack installation 1.53E-3 1.60E-3 1.71E-3

Overall times 6.54E-3 7.46E-3 9.28E-3

6. Conclusions and Future Work. This paper has introduced our Mobile JikesRVM framework to support Java

thread strong mobility based on the IBM JikesRVM virtual machine, and has shown how its migration services can be

effectively exploited to build mobile computing applications, such as the presented Aglets Mobile Agent Platform. Thanks

to the support to thread serialization, agents will be simpler in terms of code, and, at the same time, the code will be easier

to read. Our approach represents an extension of JikesRVM, which is pluggable at runtime in any OSR-enabled version

of that JVM. It exploits, in fact, some interesting JikesRVM built-in facilities to avoid many of the drawbacks of past

solutions. In particular, OSR facility allowed us to capture the execution state (i. e. method frames) in a very portable

(i. e. bytecode-level) format. Thanks to the scheduling policy of the JikesRVM, which enables the support of thousands

of Java threads, our approach keeps the thread management more lightweight, experimenting the possibility of having

one thread for each agent, which is not possible in the current implementation of Aglets. Our JikesRVM-based migration

library enriches the Aglets framework with strong mobility benefits. Additional features will be, of course, implemented
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to extend our thread mobility framework in the future. Future work includes a comparison with other proposed thread

migration systems, to improve our performance evaluation understanding and identify possible undetected bottlenecks.

Finally we are currently working to port the implemented code also on PPC architectures (JikesRVM is available also for

this architecture), allowing the migration of a thread among heterogeneous platforms as well.
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[34] É. TANTER, M. VERNAILLEN AND J. PIQUER, Towards Transparent Adaptation of Migration Policies, in the 8th ECOOP Workshop on Mobile

Object Systems (EWMOS 2002), in conjunction with the 16th European Conference on Object-Oriented Programming (ECOOP 2002),

June 2001, Malaga, Spain.

[35] SUN MICROSYSTEMS, Improving Serialization Performance with Externalizable,

http://java.sun.com/developer/TechTips/txtarchive/2000/Apr00 StuH.txt

[36] E. TRUYEN, B. ROBBEN, B. VANHAUTE, T. CONINX, W. JOOSEN, P. VERBAETEN, Portable support for Transparent Thread Migration in

Java, in 4th International Symposium on Mobile Agents 2000 (MA’2000), Zurich, Switzerland, Sep. 2000.

[37] X. WANG, Translation from Strong Mobility to Weak Mobility for Java, Master’s thesis, The Ohio State University, 2001.

[38] W. ZHU, C. WANG, F. C. M. LAU, JESSICA2: A Distributed Java Virtual Machine with Transparent Thread Migration Support, in IEEE

Fourth International Conference on Cluster Computing, Chicago, USA, September 2002.

Edited by: Henry Hexmoor, Marcin Paprzycki, Niranjan Suri

Received: October 1, 2006

Accepted: December 14, 2006


