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THE PREDICTION AND EVALUATION OF MANUFACTURING TECHNOLOGY
INNOVATION BASED ON MACHINE LEARNING AND BIG DATA ANALYSIS

FANG YANG∗

Abstract. A data anomaly detection method was designed based on chemical manufacturing and oil refining units. Massive
data storage and calculation are used in the cloud computing framework for petrochemical enterprises, refineries, and other large
enterprises. The massive data is segmented based on the modified time series method, and the anomaly analysis is carried out.
Thus, the abnormal data of the chemical manufacturing and oil refining units can be monitored. The practice proves that the
algorithm proposed in this paper is a feasible, simple and effective data correction scheme.
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1. Introduction. Process data in the petroleum refining industry are generally flow-related operating
parameters, such as flow, concentration, temperature and other field operating parameters. Under normal cir-
cumstances, accurate process test data is an essential basis for operation analysis, improvement of production
process control and improvement of factory production and management [1]. However, the test results obtained
in practical applications often contain some randomness and errors, which are inconsistent with the character-
istics of the manufacturing process itself. The error of process test data can be divided into two kinds: one is
random error, and the other is fault error. The random deviation in the system is caused by the noise of the
test signal and the random variation during operation. Fault error is caused by unforeseen circumstances such
as instrument failure, inaccurate calibration or reference drift, equipment leakage, etc. Data correction aims to
improve the reliability, accuracy and integrity of data in process production to provide high-quality data for
the production and management of process enterprises [2]. Although there are relatively complete commercial
product development applications, they are still based on conventional statistical testing and linear analysis
methods. It mainly focuses on error finding, data correction and parameter estimation. There are significant
defects in its practical application: first, there is no credible reference standard for error detection, which leads
to weak recognition and easy-to-miss diagnosis. Second, the process’s data correction and parameter estimation
are too dependent on the process structure and spatial information, and the process history information is not
effectively mined. Third, the algorithm takes too long, making it challenging to realize the real-time correction
of the measured data.

In this paper, the problems of data classification, error correction, data correction, and so on are deeply
studied, as well as their organic integration with conventional test data correction [3]. In this way, the shortcom-
ings of routine test data correction are solved. This method is suitable for data correction in the manufacturing
process of large petrochemical enterprises.

2. Data processing methods.

2.1. Classification of measurement data. The measurement data correction must be based on the
redundancy of the process variables. Only the remaining measurement data type and the observation type’s
non-measurement variables are corrected [4]. Due to many measured variables and constraints in industrial
production, it isn’t easy to correct and estimate them, so it is necessary to divide the process parameters to
reduce the scale of problem-solving. The existing test data division method based on the zero-matrix method
is limited in the complex industrial production process. According to the basic theory of graph theory, some
scholars have established the sorting method, which does not require matrix operation and saves a lot of storage
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space [5]. It is suitable for classifying more complex processes. In the case of no observed data, the equilibrium
constraint equation with no observed value is obtained to modify the data directly.

2.2. Fault error detection. The measurement data error can be divided into two categories: random
error and negligent error. Before the correction, if the error information cannot be found and excluded, the
correction and estimation results will not be able to reflect the actual situation [6]. Therefore, the error
correction should be done before the correction of observation data and parameter estimation. In addition,
the failure of measuring instruments or pipeline leakage and other factors resulted in human error. Therefore,
the conclusion of error discovery can help the operator to maintain the measuring instrument better and
can resolve the problem of the instrument operation in time [7]. There are three ways to investigate errors:
theoretically analyzing all kinds of data that may cause errors, using various measurement methods to realize
the measurement comparison of the same process parameters, and verifying based on the statistical properties
of the test data.

The error detection method based on mathematical statistics has a high application value based on the
statistical characteristics of measurement data [8]. However, there are significant limitations in practical ap-
plication. The traditional investigation methods include global inspection, node inspection and measurement
data inspection.

Scholars mostly use the MT-NT combined test method to solve the defects of a single test. The idea is
to combine the strengths of both. For example, principal component analysis can accurately judge the error
orientation but often gives too much fault error. While NT does not spread the error throughout the system,
the risk of error is more significant. So, the two can complement each other [9]. In the existing methods of
correction of measured data, linear and nonlinear data correction are often treated separately. The standard
correction method is linear correction, and nonlinear correction is used for flow rate, temperature and other
data. In fact, according to the fundamental needs of data correction, the higher the redundancy of data, the
better. If only the linear method is used to correct the data, the number of limiting equations required is
limited, so the accuracy of the calculation results is not good. If only the nonlinear iterative method is used for
correction, it will consume a lot of iterative operations. In this way, the real-time correction of the measured
data of the equipment cannot be realized [10]. Due to the use of a separate limiting equation, no flow data
is involved in the correction process, so the result is not accurate enough. This project intends to adopt two
methods: linear correction and nonlinear correction. The velocity data after linear correction is used as the
initial value, and then nonlinear iterative correction is carried out to minimize the number of iterations and
calculation speed. In this way, the data can be corrected in real-time.

3. Time series analysis is applied to data correction. A prerequisite for revising process measurement
data is to have some degree of redundancy. There’s a lot of redundancy in process systems. This excess
information can be divided into two types: one is caused by the presence of connections in the process, called
”spatial redundancy,” and the data obtained from multiple tests with the same precision instrument at the
same measuring point is called ”time redundancy.” Time limits are domain limits. Equality limits are value
limits. The above data correction algorithms are based on spatial redundancy [11]. A real-time database with
high reliability is established for petrochemical enterprises using numerical control technology, which can collect
and store the data. From the principle of data correction and effective use of information resources, we must
consider spatiotemporal redundancy and spatiotemporal redundancy [12]. Therefore, this project intends to
use the improved timing analysis method to correct the process data based on the timing characteristics and
improve the accuracy of error discovery and data correction.

The improved time series analysis method is a smoothing algorithm based on robust local weighted regres-
sion used to analyze time series data. The time series F = (K,U) is divided into three parts: trend component
P , periodic component Z, and residual component S. Here U = {u1, . . . , un} , un is the n time node; Where
U = {u1, . . . , un} , un is the data associated with time n.

F = P + Z + S

A prediction method based on the trend component is proposed. Periodic components can reflect periodic
fluctuations in frequency. Residuals are the components that remain after removing the trend and cyclical
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components [13]. The improved time series analysis method includes two aspects. It is divided into the
outer cycle and the inner cycle. The direction component P and the periodic component Z are obtained by
smoothing the timing of F in the inner cycle. The remaining components were collected in the outer cycle
section. Assuming that the size of the point (tl, ul) in the time series is rz, then the weight ωl

j of tj at any time
is calculated in the range with ui as the core and rz as the interval:

ωl
j =

(
1−

(
|uj − uj |

ufarthot − ui

)3
)3

uFarthest is the point in the region furthest from ui. Take ui as a linear regression at any time in this interval
and find a smooth curve f ′ = α + βt, then the smooth value at time point ti is fi. After a given interval
length rz, the timing of F can be decomposed to obtain the corresponding subsequence. After smoothing the
subsequence, a periodic subsequence Z ′ can be obtained, and then the frequency component S is obtained by
a low-pass filter, and the periodic component is expressed by Z = Z ′ − S. And then keep going:

P ′ = F − Z

P ′ is smoothed at intervals of rq, and a trend component P is obtained. And then, the remaining component
is denoted by S = F −P −Z. Assuming that the initial data set corresponding to time series K = {t1, . . . , tn}
is U = {u1, . . . , un} = {g (t1) , . . . , g (tn)}, and assuming that (ti, ui) data is missing, then:

W (ti) = g (t1) + (tl − t1) g [t2, t1] + (ti − t1) (ti − t2)

g [t3, t2, t1] + . . .+ (tl − t1) (tl − t2) . . . (ti − tn−1) g [tn−1, . . . , t2, t1]

S (tl) = (ti − t1) (ti − t2) . . . (ti − tn) g [tn−1, . . . , t2, t1]

W (tl) = g (t1) + (ti − t1) g [t2, t1] + (ti − t1) (ti − t2)

g [t3, t2, t1] + . . .+ (ti − t1) (ti − t2) . . . (ti − tn−1) g [tn−1, . . . , t2, t1]

g [ti, tj ] is the first-order differential quotient of g(t) at point ti, tj . Where W (ti) is the Newton interpolation
approximation. S (ti) is a residual function [14]. Define the data set that has been populated with lost values as
U ′ = {u′

1, . . . , un}. The maximum value is umax and the minimum value is umin . The method of Inormalization
is used so that all data values fall within the range of [0, 1]. For example:

fi =
ui
i − umin

umax − umin

The data set F = {f1, . . . , fn} obtained at the end of the pre-processing. The improved time series analysis
method eliminates the trend and periodicity components of the sequence. This makes it easier to find outliers
and reduce problems such as error alarms caused by outliers [15]. A modified timing method obtained residuals
S for the pre-processed data set. S Perform electrostatic protection tests. Here’s how it works:

1. Calculate the middle-value M of the residual series data S.
2. Find the deviation of M from the median value.
3. Calculate statistics for each data point in S:

Ri =
Si − S̄

mad

S̄ is the sample average.
4. The maximum value in R is statistically treated, and if the value exceeds the critical value ε, it is

regarded as an outlier and removed from the time series.
5. Repeat the process (1) to (4).

4. Application of time series analysis method in practice. The improved time series method was
tested and evaluated in a refinery’s atmospheric and vacuum plant, focusing on the ability of error detection
and the influence of time domain value and error size on error correction.
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Fig. 4.1: Flow chart of petroleum atmospheric and vacuum device.

4.1. Process Overview. This type of atmospheric and vacuum equipment from a refinery produces oil
from an oil depot and sends it to the equipment before heating it through an exchange process and then feeding
it to an electric desalination tank. It is desalted and dehydrated in the process. In this process, it is also
given a simple flash [16]. The flash-top gas is exchanged with the flash-bottom oil in the atmospheric tower
and then heated into the tower for flash. Usually, line, two-line and three-line products are produced from the
sideline of the atmospheric tower. The gas is discharged from the standard gas compressor and then through
the heat exchange at the bottom of the stabilizing tower to obtain stable gas, liquefied gas, and naphtha. The
conventional bottom fraction is divided into four parallel sections and fed into the pressure reducer for heating.
It is then fed into a vacuum fractionator for classification. The products of reducing the first, second, third,
and fourth lines are produced by the sideline of the decompression tower. The decompression tower extracts
the oil at the top of the decompression tower, while the bottom reduction residue is discharged by heat transfer.
A simple schematic diagram of the flow structure is obtained through the positioning analysis of each logistic
measuring instrument in the equipment (Figure 4.1).

The process data in Fig. 4.1 was classified by sorting rule classification and matrix method. In this way,
the simplified process structure of the standard pressure-reducing valve can be obtained [17]. There are 29 flow
units and 6 nodes in the whole process.

4.2. Analysis of causes for error discovery. This project intends to establish 500 sets of 29,000 obser-
vation samples with the field calibration results of this equipment as actual values and add two 2.5% random
deviations of positive and negative values. The random error is added to it to study its detection ability in
various cases.

4.2.1. Influence of time domain value on error discovery rate. Select 12-30 errors in the time
domain. Add fault errors of 20%, 40%, 60%, 80% and 100% in actual cases. The influence of time domain size
on error detection ability is studied [18]. The evolution of the virtual detection rate of fault error over time
is shown in Figure 4.2. At 16-20, the improved sequence method has a meager detection rate of fault errors,
which can efficiently detect and eliminate fault errors and obtain more reasonable data correction.

4.2.2. Detection of errors of different sizes. As can be seen from the relative deviation between
correction values and actual values in Table 4.3, the improved time series method has a good detection of errors
of various sizes, and the results are the same as the previous examples.

4.2.3. Error identification in the communication of multiple orders of magnitude. The con-
ventional error detection algorithm cannot locate the error accurately in the minor traffic flow, resulting in a
significant deviation between the corrected result and the actual value. The test results show that the improved
time series method can accurately detect and exclude. As can be seen from figures 4.4 and 4.5, the correction
values are very close to the actual values.
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Fig. 4.2: Influence of time domain values on the detection capability of obsolete errors.

Fig. 4.3: Change of correction accuracy with error size.

4.3. Analysis of results after data modification. The time series method is used to modify 100
measured data. The results of the revised series are shown in Table 4.1.

As shown in Table 4.1, in the test data of the combination, 7,12, and 26 each carry 1 fault error. The
average deviation between their correction and actual values is only 1%.

5. Conclusion.
1. According to the accurate division of the chemical production process, the defects of error detection

are discussed, and a composite test method with process simulation as the core is established. This
allows for better detection of errors.

2. Aiming at the linear and nonlinear problems existing in the system, the joint correction method is
studied to increase the redundancy of the observation data. It also improves the speed and accuracy
of data correction.

3. The process parameter correction method based on time series analysis is studied to use better the
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Fig. 4.4: Comparison of the results of a large order of magnitude traffic correction and actual value.

Fig. 4.5: Comparison of the results of a small order of magnitude flow correction and actual value.

massive historical data in the numerical control system. This project intends to use the improved
sequence method to analyze observational data in the time domain. This reduces the influence of
random error and the threshold of error discovery. The defects of conventional statistical testing
methods are solved.
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