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DESIGN OF ELECTRICAL LOAD PREDICTION SYSTEM BASED ON DEEP LEARNING
ALGORITHM

YUANLI XU∗

Abstract. In order to solve the problems of low prediction accuracy and long model time in current prediction algorithms,
the author proposes the design of an electrical load prediction system based on deep learning algorithms. The author proposes an
improved deep learning short-term load forecasting model based on random forest algorithm and rough set theory. The model is
first based on historical data and uses the random forest algorithm to extract key feature quantities that affect load forecasting.
Then, the key feature quantities and historical load values are used as input and output terms for training the deep neural network,
and the prediction results are corrected through rough set theory. Finally, simulation verification is conducted through numerical
examples. The experimental results showed that compared with the RF-DL model, the MSE index of the RFDL-RST model
decreased by 30.187%, and the overall prediction results were closer to the true values. The MAE index also decreased from 5.76%
to 4.02%. During special periods of significant load changes such as 07:00-08:00 (rapid increase in load) and 22:00-23:00 (rapid
decrease in load), the prediction accuracy was greatly improved. In addition, compared with the DL-RST model, the MAE and
MSE indicators of the RF-DL-RST model were reduced by 15.210% and 21.414%, respectively, and the DL training time of the
RF-DL-RST model was shortened by 10.175%, indicating that simplifying the DL input feature quantity through the RF model
can improve the load forecasting effect. The prediction accuracy of this model is higher than that of a single deep learning model
and a model without prediction correction.
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1. Introduction. Predicting electricity demand in the near future is crucial for maintaining the safety and
efficiency of power systems[1]. In recent years, with the continuous development of the global electrical market,
the spot market and intraday trading system have been continuously improved, and the requirements for load
forecasting accuracy have become increasingly high [2]. There are various factors that affect load, including
weather factors (temperature, humidity, sunlight intensity, etc.) and time factors (working days, holidays,
current specific time, etc.). At the same time, some policy factors can also lead to changes in load patterns, such
as factory production reduction and shutdown caused by epidemic control, resulting in a decrease in electricity
load; Encouraging policies for electric vehicles have led to an increase in electricity demand. The above factors
make short-term load forecasting exhibit strong non-linear and stochastic characteristics [3]. Electrical load
forecasting is a series of forecasting work that takes electrical loads as objects, including predicting future
electrical demand (power), predicting future electricity consumption (energy), and predicting load curves [4].
Forecasting the load on electrical systems plays a vital role in planning and operating power grids, forming the
basis for tasks like dispatching, regulation, and control. Typically, load forecasting spans various timeframes,
including long-term, medium-term, short-term, and ultra short-term, each serving specific purposes within
the electrical system [5,6]. Short-term load forecasting, extensively studied and highly relevant to experts
and scholars, focuses on predicting electrical demand for the upcoming day to week. Typically, this involves
forecasting the capacity or daily and weekly consumption data of a specific region. The aim is to establish power
generation plans and inform operational scheduling. Various methodologies exist for short-term load forecasting,
with intelligent forecasting methods currently being the predominant approach. This method applies powerful
intelligent algorithms to establish a prediction model and make predictions. As the power grid continues to
expand, its complexity grows, demanding more sophisticated load forecasting techniques. Intelligent algorithms
like neural networks and support vector machines are commonly employed for this purpose. As the grid becomes
smarter, there’s a greater need for load forecasting methods that can meet the evolving demands of this dynamic
environment. Traditional intelligent algorithms belong to shallow structure algorithms, and shallow structures
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are difficult to effectively represent nonlinear complex functions when given limited samples [7].

2. Literature Review. With the rapid progress of computer technology, machine learning is undergoing
a resurgence, finding applications across diverse fields like image recognition, object detection, and natural
language processing. In electrical load forecasting, machine learning algorithms have demonstrated considerable
success. Advanced techniques such as reinforcement learning and transfer learning have been leveraged in this
domain. However, traditional machine learning approaches face challenges with high-dimensional data. Deep
learning, particularly Artificial Neural Networks (ANNs), addresses this by extracting meaningful features
from complex data, thereby enhancing forecasting accuracy. ANNs, consisting of input, output, and hidden
layers, serve as foundational tools in machine learning, facilitating the modeling of intricate relationships within
the data. Sasidharan, M. P. et al. conducted an analysis of several prominent deep learning architectures,
including Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural Network
(CNN), as well as hybrid models combining LSTM with CNN, and CNN with GRU, among others. They
explored the suitability of these models for predicting charging load in charging stations. Training data were
sourced from multiple charging stations within a specific region to train the models. The performance of
each model was evaluated using standard metrics, and the resulting predictions were thoroughly assessed
and presented [8]. Jin, X. B. et al. introduced an attention-based encoder-decoder network enhanced by
Bayesian optimization to achieve precise short-term power load forecasting. This model adopts an encoder-
decoder structure incorporating a Gated Recurrent Unit (GRU) recurrent neural network, renowned for its
robustness in handling time series data [9]. Zhu, C. et al. introduced a power load forecasting approach utilizing
Long Short-Term Memory (LSTM) networks. Through comparative analysis with conventional models, their
method demonstrated reduced errors and increased applicability, showcasing its effectiveness in power load
prediction [10].

The author proposes an improved deep learning (DL) short-term load forecasting model (RF-DL-RST)
based on RF algorithm and rough set theory (RST). This model introduces policy factors and, together with
time and weather factors, establishes a load forecasting feature set. Key feature quantities and historical load
values are used as inputs and outputs for deep learning training, and the prediction results are corrected through
rough set theory. Simulate and verify the effectiveness of the model.

3. Method.

3.1. Introduction to Random Forest Algorithm. The schematic diagram of the random forest algo-
rithm is shown in Figure 1. The key to the random forest algorithm lies in the decision tree, which obtains
prediction or regression results by voting or weighted averaging the prediction results of each decision tree [11].

Researchers both domestically and internationally have developed numerous decision tree algorithms, in-
cluding ID3, C4.5, and Classification and Regression Tree (CART). These algorithms employ a top-down
methodology to construct decision trees [12]. In the process of forming a decision tree, each new node needs to
choose a new attribute as the basis for splitting. The difference between these three decision tree algorithms
lies in the decision criteria for leaf splitting during the growth process. Among them, CART uses minimum
mean square error as the attribute metric for splitting regression trees and Gini index (GI) as the splitting
criterion for classification trees. When using the random forest algorithm for classification, the final result is
determined by voting. When using the random forest algorithm for regression, the prediction result is obtained
by taking the mean [13,14]. In addition, in order to reduce the impact of overfitting and random errors on the
prediction results, the original data is generally divided into training and testing sets, and then the bootstrap
method is used to extract the training set. Then, the CART algorithm is used to train each decision tree from
top to bottom one by one until it meets the requirements.

3.2. Feature extraction. How to select key feature quantities in the dataset is crucial for reducing model
complexity and shortening computation time. When extracting key feature quantities using the random forest
algorithm, the Gini index or out of bag data error rate is generally used for evaluation.

The author used the Gini index method for research, and the principle is as follows: Assuming the dataset



Design of Electrical Load Prediction System Based on Deep Learning Algorithm 1379

Fig. 3.1: Schematic diagram of the random forest algorithm

has J feature quantities (X1, X2, X3, · · · , Xj), C categories, and I decision trees, the Gini index of node m is

Gm =

C∑
c=1

p̂mc(1− p̂mc) (3.1)

In the formula, p̂mc represents the probability estimate that node m sample is of class c.
The importance score V GI

jm of feature quantity Xj at node m is represented by the change in Gini index
before and after node m branching:

V GI
jm = Gm −Gl −Gr (3.2)

In the formula, Gl and Gr are the Gini indices of two new nodes 1 and r after node m branches.
If the set of nodes where the feature quantity Xj appears in the i-th tree is set to M, then the importance

of the feature quantity Xj in the i-th tree is represented as

V GI
ij =

∑
m∈M

V GI
jm (3.3)

In summary, the importance of the feature quantity Xj in RF can be expressed as

V GI
j =

1

I

I∑
i=1

V GI
ij (3.4)

From this, it is possible to rank the importance of each feature quantity in the dataset and extract important
feature quantities.

3.3. Principles of Deep Learning. A Deep Neural Network (DNN) is a type of neural network archi-
tecture that consists of multiple layers, including at least one hidden layer [15]. Compared with traditional BP
neural networks, the two have similar structures, but DNN generally has more hidden layers and adopts a layer
wise training mechanism to overcome the gradient diffusion problem in BP neural network training. Compared
with traditional solving methods, well trained DNNs have higher computational efficiency and accuracy.

A typical DNN network structure consists of input and output layers at the beginning and end, with the
middle layer being the hidden layer and the layers being fully connected (any node in the previous layer must
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be connected to any node in the following layer). Assuming there are g nodes in the i-1st layer, the output hi
j

of the jth node in the i-th layer is represented as

hi
j = σ(zij) = σ(

g∑
k=1

ωi
jkh

i−1
k + bij) (3.5)

In the formula: σ(·) is an activation function used to sum and further enhance the input of a node; ωi
jk is the

weight coefficient from the k-th node in layer i-1 to the j-th node in layer i; hi−1
k is the output of the k-th node

in the i-1 layer; bij is the deviation coefficient of the jth node in the i-th layer.
The author uses the mean squared error loss function, represented as follows:

L =
1

PT

T∑
p=1

T∑
t=1

(yp,t − p′pt)
2 (3.6)

In the formula: P represents the number of training samples; yp,t is the expected value of the p-sample at time
t; y′p,t is the predicted value output by DNN; T is the number of predicted time periods.

At the same time, the author introduces L2 regularization to the loss function, aiming to limit the weight
parameters to a certain range to adapt to outliers and noise. The expression is as follows:

L =
1

PT

p∑
p=1

T∑
t=1

(yp,t − y′p,t)
2 +

α

2
ωTω (3.7)

In the formula: α to regularize hyperparameters; ω for weight vectors.
Set the learning rate of the parameter as µ, update the hidden layer parameters repeatedly through equation

3.7 until the prediction accuracy converges.
3.4. Predictive Correction Model. Rough set theory is a mathematical tool for dealing with uncertainty

and fuzzy problems, which can effectively correct and analyze defect information that is inconsistent, requires
error correction, or has data loss [16].

Establishing a load forecasting correction model using rough set theory:
y′t+1 = yt+1 + st|kt+1 − kt|
kt+1 = yt+2 − yt+1

kt = yt+1 − yt

(3.8)

In the formula, yt+1 and y′t+1 are the predicted and corrected values at time t+1, respectively; st is the scale
factor.

In order to solve the scaling factor st, an information system needs to be constructed. The author assumes
that the information system on which the rough set theory is based is K=(U,A), where: the domain U is the set
of predicted values output by DNN; A = C ∪S is the attribute set, S=st represents the decision attribute, and
the conditional attribute C is the set of feature quantities in the dataset. Based on existing research results,
C={a,b,c} is defined here [17]. Among them:

a =
|kt+1 − kt|

yt
(3.9)

b = sgn(kt+1 − kt) (3.10)

c = | yt
max(yt)

| (3.11)

At this point, the load prediction value can be corrected through equations 3.9-3.12.
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Fig. 3.2: Schematic diagram of RF-DL-RST model

3.5. Prediction Result Evaluation Model. The author employs two metrics, mean square error (MSE)
and maximum absolute error (MAE), to assess the accuracy of the prediction results. MSE quantifies the overall
prediction performance by measuring the average squared difference between predicted and actual loads. On
the other hand, MAE evaluates the predictive accuracy at specific points by calculating the maximum absolute
difference between predicted and actual loads. The MSE and MAE are indicated as follows:

ϵMSE =
1

N

N∑
n=1

(yn − y′n)
2 (3.12)

ϵMAE = max(|yn − y′n
yn

|) (3.13)

In the formula, N represents the number of predicted points; yn is the true value of the nth predicted point; y′n
is the predicted value of the nth prediction point [18,19].

3.6. RF-DL-RST prediction model. The RF-DL-RST model framework is shown in Figure 3.2. The
author’s goal is to make short-term predictions of electrical loads, and the input feature quantities include
various factors such as weather and time, which differ from the predicted results (that is load data) in terms of
dimensions, units, etc. Therefore, preprocessing of the predicted data is necessary[20].

There are many factors that affect the electricity load in a region, including weather, time, and policies.
However, the prediction accuracy of DNN is not positively correlated with the input items. When there are
too many input items, it not only causes the network structure to be complex, but also may degrade the model
accuracy.

The author establishes a feature set for load forecasting. However, the author believes that the week date,
workdays, and holidays in its time factor constitute duplicates, so the characteristic quantity of the week date
is excluded. At the same time, considering the impact of epidemic lockdowns on social electricity consumption
in recent years, the author also studied whether the day was under lockdown as a characteristic quantity. In
addition, the author also added weather factors such as average temperature, average wind speed, sunrise time,
and sunset time as characteristic variables. The specific predicted feature quantities are shown in Table 3.1.
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Table 3.1: Predicted feature quantities

Influence factor Feature Meaning
Month From January to December
Day Specific dates of each month

Time factor Weekday Normal work, value 1
Festival and holiday Saturdays, Sundays, and other holidays, with a value of 0
Day Hour 00:00-24:00
Maximum temperature The highest temperature of the day, ℃
Minimum temperature The lowest temperature of the day, ℃
Average temperature Average temperature of the day, ℃

Weather Average relative humidity Daily average humidity,%
factors Weather conditions Such as sunny, cloudy, rainy, snowy, etc

Air quality Air quality index
Average wind speed Daily average wind speed, m/s
Sunrise time Specific time
Sunset time Specific time

Policy factors Is it under When affected by epidemics or natural
lockdown or not disasters, take 1, otherwise take 0

3.7. Experimental Analysis. The author used load data from a certain regional power grid from October
28, 2022 to February 4, 2023 to simulate and verify the RF-DL-RST prediction model. In order to verify the
superiority of the RF-DL-RST model, two comparative models are set up, among which: Comparative model 1
is the RF-DL model without RST correction part; Comparison Model 2 is a DL-RST model without RF feature
selection. The selection of relevant parameters for the three models is consistent.

4. Results and Discussion.

4.1. Key feature extraction for load forecasting. Rank the importance of the predicted feature
quantities selected in Table 3.1. The Random Forest (RF) model is configured with 500 decision trees and
utilizes 3 split features. The dataset is divided into training and testing sets at a ratio of 9:1. Figure 4.1
illustrates the analysis findings regarding the importance of various features.

From Figure 4.1, it can be seen that after sorting the 15 feature quantities in Table 1 in order of importance
scores from low to high, the 8 feature quantities of the day, including hours, minimum temperature, average
temperature, weather conditions, holidays, workdays, sunrise time, and whether they are under control, have
higher scores. Therefore, they are used as input items for the DNN model.

4.2. Deep learning training. Train the DNN model using the 8 key feature quantities and historical
load data selected by RF as input and output items, respectively. The number of input layer nodes in DNN
is 8, and the number of output layer nodes is 1. Set DNN to have 3 hidden layers with 40, 30, and 20 nodes
respectively, and activate ReLU function; The ratio of training set to test set is 9:1, and the training frequency
is 200 times. During the iteration process, the mean square error of the predicted values varies with the number
of training iterations, as shown in Figure 4.2. It can be seen that the mean square error begins to converge at
around 150 training iterations and continuously approaches the value of 975MW 2.

4.3. RST correction. According to equations 3.8-3.12, calculate the conditional attributes C={a,b,c},
as well as the decision attribute S before t, in order to obtain the rough set information system. Given the
requirements of rough set theory for processing data, the encoding rule for the conditional attribute C={a,b,c}
is set as follows:

C = {a ∈ [1, 6], b ∈ [1, 3], c ∈ [1, 6]|a, b, c ∈ Z} (4.1)

From this, the corrected load forecasting data can be calculated.
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Fig. 4.1: Analysis results of feature importance in random forest algorithm

Fig. 4.2: Curve of Mean Square Error of Predictions as a Function of Training Times

Figure 4.3 shows the actual load on February 5, 2023 and the predicted load curve before and after RST
correction. It can be seen that the predicted load curve after RST correction is basically between the actual
load curve and the predicted load curve without RST correction, and is closer to the actual load curve.

4.4. Comparative analysis. According to equations 3.13 and 3.14, the evaluation indicators for the
predicted results can be calculated. The comparison of indicators between RF-DL-RST model and RF-DL,
DL-RST models is shown in Table 4.1.
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Fig. 4.3: Comparison of actual load and predicted load curve before and after RST correction

Table 4.1: Comparison of Indicators for Three Models

Model DL training time/s MSE MW 2 MAE/%
RF-DL-RST 96.28 680.32 4.02
RF-DL 96.28 974.64 5.76
DL-RST 107.20 865.83 4.72

From Table 4.1, it can be seen that compared with the RF-DL model, the MSE index of the RFDL-RST
model has decreased by 30.187%, and the overall prediction results are closer to the true values. The MAE
index has also decreased from 5.76% to 4.02%. During special periods of significant load changes such as 07:00-
08:00 (rapid increase in load) and 22:00-23:00 (rapid decrease in load), the prediction accuracy has greatly
improved. In addition, compared with the DL-RST model, the MAE and MSE indicators of the RF-DL-RST
model were reduced by 15.210% and 21.414%, respectively, and the DL training time of the RF-DL-RST model
was shortened by 10.175%, indicating that simplifying the DL input feature quantity through the RF model
can improve the load forecasting effect. Based on the above analysis, it can be concluded that the RF-DL-
RST model has significantly better prediction results, which verifies the effectiveness of the author’s prediction
model.

5. Conclusion. The author suggests a design for an electrical load forecasting system leveraging deep
learning algorithms. Specifically, for short-term load forecasting, they introduce the RF-DL-RST model, which
combines the random forest algorithm with rough set theory. Through example calculation and analysis, the
following conclusions can be drawn: 1) By evaluating the importance of factors affecting load through RF,
the model calculation time is shortened and the accuracy of prediction is improved. 2) By modifying the
model results through RST and establishing evaluation models from both global and local perspectives, the
effectiveness of the method was verified, greatly improving the accuracy of predicting load sudden changes.
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