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SENSORY STYLING DESIGN OF PHYSIOTHERAPY BEDS BASED ON BP NEURAL
NETWORK

CHEN SU∗, CHANGJUN LI†, YUPENG JIANG‡, AND XINCAN LI§

Abstract. There is a significant gap between the form of current physiotherapy beds and users’ perceptual images. By
employing techniques such as computer graphic design and logical operations, analyzing the mathematical relationship between
user needs and design elements contributes to enhancing the scientific nature of product design and making the design process more
rigorous. This paper, based on an analysis of the product image and design process, employs a comprehensive fuzzy evaluation
method to identify representative perceptual vocabulary for physiotherapy beds. The KJ method and Delphi method are utilized
to select necessary samples. A morphological analysis matrix is established using the morphological analysis method, and a
comprehensive decision-making model for product design is constructed using a BP neural network on the MATLAB platform.
Through training the BP neural network on physiotherapy bed products, it becomes possible to predict the perceptual evaluation of
product design, achieving a quantification of the design. This provides valuable support for the appearance design of physiotherapy
bed products and significantly enhances the efficiency of designers’ work.
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1. Introduction. In recent years, physiotherapy methods have matured, leading to the active involvement
in China about the exploration of physiotherapy products [1]. With increased health awareness and advances
in medical technology, the demand for physiotherapy beds has gradually risen. Currently, there is a structural
disparity between users’ perceptual demands and designs for these physiotherapy products, evolving from rigid
requirements to perceptual needs [2]. Beyond functional requirements, users also prioritize inner emotional ex-
periences, necessitating designers to convey product characteristics through specific forms. Therefore, assessing
the perceptual cognitive elements in product design holds crucial significance in shortening design cycles and
reducing development costs.

As a design approach that translates users’ perceptual images into design elements, Kansei Engineering
aligns with the trend of constructing mathematical models for quantified research objectives [3]. In past
practices, Zhao Yanan et al. constructed a Kansei image prediction model for office chairs based on a BP neural
network [4]. Ding Lu et al. applied a BP neural network to optimize the overall design of a programmable paper
cutter, yielding improved results in perceptual design [5]. Ma S and Yan X designed an intelligent clothing
pattern design system based on BP neural network [6]. Chen DL also combined Kansei Engineering and BP
neural networks in the development of a product form design system [7]. However, in the application process,
subjective methods often dominate the selection of one or multiple suitable perceptual terms. The utilized
BP neural network typically retains a single hidden layer even when dealing with multiple outputs, limiting
selection and resulting in lower accuracy. This can lead to non-scientific neural network outputs or suboptimal
weight allocation.

Thus, this paper, after obtaining raw data through multiple questionnaire surveys and conducting multivari-
ate analysis and cluster analysis using SPSS, identifies representative perceptual vocabulary for physiotherapy
bed design. The morphological analysis method is employed to deeply deconstruct the design elements of
physiotherapy beds, resulting in a comprehensive perceptual image assessment matrix. For cases involving
multiple outputs, a BP neural network is designed with multiple hidden layers to increase combination possi-
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Fig. 2.1: Research Process and Methodology.

bilities, establishing a mapping relationship between the two. Simulated predictions are performed to render
the previously experientially driven design process more scientifically grounded.

2. Research Process and Methodology. When considering the conceptual design output, designers
need to combine user requirements, design patterns, and bidirectional inference [8]. This involves transform-
ing users’ subjective perceptions into comprehensible images, effectively integrating the visual attributes of a
product with users’ perceptual images. In light of the specific details of the research, this paper establishes the
research framework into four main sections, as illustrated in Figure 2.1.

2.1. Collection and Selection of Perceptual Images. In this phase, a diverse range of perceptual
vocabulary is gathered to express various potential perceptual images, utilizing these words to embody and
elucidate the semantic aspects of the product. This enables the analysis of human perceptions to derive novel
content for product development [10]. Based on the Semantic Differential (SD) method questionnaire results,
this paper employs comprehensive fuzzy evaluation. As the representative samples are formed in the cognitive
space dimension based on the size of the sample population and the complexity of the design form, mathematical
techniques such as multivariate analysis and cluster analysis are utilized to establish representative images.

2.2. Sample Filtering and Selection. A crucial step in extracting users’ perceptual images involves
obtaining samples through methods like interviews or surveys. The sample repository typically encompasses
physical samples and virtual samples. Physical samples refer to tangible products available on the market, while
virtual samples are designs simulated by various designers. Thus, this paper collects product design samples
from sources such as online marketplaces, official company websites, and journals. The representative sample
library within these design samples then needs to be selected.
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2.3. Construction of Product Design Elements Repository. The repository of product design el-
ements serves as the foundation for constructing perceptual image designs. Products are defined by multiple
categories, each containing diverse design elements. Additionally, functional deconstruction of products is nec-
essary to focus on the primary functional units, reducing the influence of other factors. Therefore, in analyzing
design elements, categorization is based on design characteristics and functional components.

2.4. Establishment of Product Image Design Model. The construction of image design models often
relies on intelligent algorithms in computing, frequently using methods such as BP neural networks, ant colony
algorithms, genetic algorithms, and support vector machines [9]. BP neural networks, a powerful algorithm,
possess strong nonlinear mapping capabilities. They emulate biological neural processing systems and unique
human learning and cognitive patterns [10]. Due to their effectiveness in managing and establishing complex
relationships between input and output variables, they find extensive application in product design and related
fields [11].

3. Handling User Perceptual Images. The perceptual images obtained from the questionnaire sur-
vey serve as raw data. Given the vagueness and complexity of perceptual images, it’s necessary to perform
quantitative processing on the collected perceptual images.

3.1. Categorization and Fitting of Perceptual Images. The perceptual images collected through user
surveys tend to be scattered and lack concentration, making it difficult to identify representative vocabulary
or determine the number of categories. Commonly, previous research has relied on subjective judgment for
categorization. Therefore, this paper aims to determine the number of categories for perceptual images through
distributing questionnaires and processing the data.

In the questionnaire survey, participants are asked to group semantically similar words into the same
category. The number of categories ranges from 4 to 10, with varying word counts per group, ensuring that all
words are used without repetition. Based on the grouping results, the frequency of pairs of perceptual image
words being placed in the same category is calculated, leading to the creation of a matrix of similar frequencies.

Considering the fit analysis of perceptual image words along with the content analysis, the dimensions of
the matrix are set to M∗M, where M represents the number of initial perceptual images collected. The matrix
is represented using ∆ = (xij) (i, j = 1, 2 . . . 40), as shown in formula 3.1.

∆ =

 X1,1 · · · X1,40

... . . . ...
X40,1 · · · X40,40


xij-The frequency of the i-th word and the j-th image appearing in the same category. Based on the matrix of
similar frequencies, we can utilize Multidimensional Scaling (MDS) to assess the fit between words, enabling
a deeper exploration of their underlying relationships and calculating their coordinates in a lower-dimensional
space. MDS constructs a distance matrix Dij = (dij) between objects based on the similarity matrix Cij = (cij),
with the transformation between data represented by formula 3.2.

dij =
√
(cii + cjj − 2cij)

By performing k-dimensional fitting, we can generate a grid X of size n ∗k, which corresponds to a complex
system composed of a distance matrix in the form of n∗k. This system contains off-diagonal elements. Through
arranging these elements and understanding their relationships, effective fitting in K-dimensions can be achieved.
To facilitate k-dimensional fitting, a grid X of size n ∗ k is constructed, with X corresponding to a distance
matrix D̂ij =

(
d̂j

)
that contains information as in equation Dij = dij . Non-diagonal elements from Dij = dij

are selected, sorted in ascending order, and labeled as follows:

S2(X̂) =
min

∑
ipj

(
d∗ij − d̂ij

)
∑

ipj d
2
ij
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Table 3.1: Fitting Goodness Empirical Criteria.

Stress Value Fitting Degree Stress Value Fitting Degree
Stress�20% Poor Stress�2.5% Very Good
Stress�10% Satisfactory Stress=0 Perfect Match
Stress�5% Good

Adjusting d∗ij to achieve the maximum value of S2(X̂), at this point, {dij} corresponding to the extreme minimum
value of S2(X̂) is referred to as the least squares regression of {dij}. It is assumed under the premise of invariance,
and there exists a X̂ such that:

S2(X̂) = min
Xn+k

S(X̂) = Sk

In this case, X̂0 is referred to as the best-fitting construction point, while Sk represents the pressure
index. Once the perceptual image vocabulary objects in the K-dimensional space are positioned, their original
similarity can be reflected by transforming the ”distance” coordinates between each word. To assess the fitting
effectiveness in the K-dimensional space, the matrix is multidimensionally unfolded, and their composite degree
is determined based on the empirical standard of fitting goodness. The criteria for fitting goodness are presented
in Table 3.1.

3.2. Selecting Representative Perceptual Vocabulary. After obtaining the number of clusters K for
the perceptual image vocabulary, further dimension reduction will be carried out using clustering methods to
obtain representative perceptual image vocabulary. Common clustering methods include hierarchical clustering
and K-means clustering. In this study, hierarchical clustering will be employed for clustering. By comparing
the clustering results, the optimal output solution for representative perceptual image vocabulary clustering
will be chosen.

Hierarchical clustering is an approach that organizes data through successive splitting and merging, result-
ing in a hierarchical tree-like structure. In hierarchical clustering, the Euclidean distance is commonly used
as the calculation criterion, and the between-group average linkage method is employed. The distance from
sample x to cluster G is defined as shown in formula 3.5.

D(x−G) =
1

n

n∑
j=1

D (x− gj)

n represents the number of samples in the cluster; x represents the number of cases in cluster G;D (c− gj) rep-
resents the Euclidean distance between a case and another case within cluster G. After conducting hierarchical
clustering analysis using SPSS, a dendrogram representing the clustering analysis is obtained. Based on this
dendrogram and the predetermined number of clusters K, representative perceptual vocabulary for the product
can be identified.

4. BP Neural Network Design. BP neural networks possess the advantage of the error backpropagation
algorithm, enabling effective modeling of complex nonlinear functions. This provides an efficient approach to
explore the design of physiotherapy beds and its connection with other similar design requirements.

4.1. Structure of the BP Neural Network. A BP neural network consists of an input layer, hidden
layers, and an output layer, with varying numbers of interconnected neurons between layers. Signals propagate
forward through the input, hidden, and output layers, while errors propagate backward in the opposite direction,
iteratively adjusting the weights and biases between layers. Iteration continues until the output error meets
the desired precision or a preset number of iterations is reached. The topology of the BP neural network is
illustrated in Figure 4.1.
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Fig. 4.1: Structure of the BP Neural Network.

4.2. Determining the Number of Hidden Layer Neurons. The number of neurons in the hidden
layer plays a role in uncovering underlying patterns in the training samples and converting them into weights.
The quantity of hidden layers also impacts the accuracy of the BP neural network. Too few hidden layers can
compromise the approximation precision of nonlinear functions, while too many may lead to longer training
times and overfitting. Determining the number of neurons in the hidden layer generally relies on empirical
formulas to avoid futile attempts and unnecessary calculations. Therefore, an empirical formula is employed
here using a trial-and-error method for determination. The preliminary range for estimation is shown in formula
4.1.

L <
√
M+N+A

L - Number of neurons in the hidden layer; M - Number of neurons in the input layer; N - Number of neurons
in the output layer; A - Adjustment constant typically taken between 1 and 10

4.3. Selection of Activation Function. In the BP neural network, the transfer function employs a
nonlinear transformation function, specifically the Sigmoid function. This function is further divided into
unipolar and bipolar types. In the neural network constructed in this paper, the unipolar version will be
employed, as shown in formula 4.2, with a value range of (0, 1).

log si(x) =
1

1 + e−x

Meanwhile, the output layer will employ the purelin function, as shown in formula 4.3 .

y = x

4.4. Data Normalization. In order to facilitate rapid convergence of the network and prevent values
from being too widely dispersed, which can hinder neural network learning, data normalization is necessary to
scale the data to the range [−1, 1]. This paper will use formula 4.4 as the normalization formula.

xnrom = 2× x−xmin

xmax − x
− 1

5. Example Verification. Using fuzzy analysis and BP neural network f innovative design of physio-
therapy bed forms.

5.1. Establishment and Selection of Perceptual Images. After systematic research, a total of 145
perceptual vocabulary words related to physiotherapy beds were collected through various means such as user
interviews, journals, and evaluation reports. These vocabulary words encompass research outcomes from multi-
ple fields including perceptual engineering, design studies, and product aesthetics, in order to better represent
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Table 5.1: Perceptual Image Vocabulary List after Frequency Screening.

Perceptual Image Vocabulary
Humanized Safe Clean Technological Precise
User-friendly Sturdy Tidy Practical Professional
Stable Friendly Reliable Advanced Simple
Durable Approachable Efficient Harmonious Comfortable
Modern Smooth Accurate Neat Round
Orderly Strong Automated Steady Diamantine
Steadfast Pleasant High-end Gentle Expensive
Substantial Organized Elegant Soft Delicate

Fig. 5.1: Scree Plot of Perceptual Image.

Table 5.2: Fitting Goodness Evaluation.

Dimension Stress ( ) Coefficient of Determination (RSQ) Fitting Degree
4 0.049 0.973 Good
5 0.029 0.982 Good
6 0.019 0.987 Very Good
7 0.014 0.99 Very Good

user perceptual images. After thorough investigation, 152 questionnaires were distributed to engineers and
designers associated with physiotherapy beds, yielding 145 valid responses. Following meticulous screening,
vocabulary words with frequencies below 5% were excluded, as statistically, frequencies below 5% lack uni-
versal representativeness. This process resulted in retaining 70 more representative vocabulary words. After
organizing the approximations and inconsistencies of these words, and undergoing selection by an expert group,
40 perceptual vocabulary words were obtained as the initial perceptual image library (See in table 5.1).

After involving 42 individuals with diverse backgrounds, we conducted a grouped questionnaire survey,
ultimately receiving 35 completed questionnaires. Upon collecting the questionnaire data, the data was orga-
nized into a 40x40 matrix based on formula 1. The collected data was subjected to a correlation analysis of
perceptual factors using SPSS. At this point, with the assistance of the scree plot in Figure 5.1, the number of
factors can be inferred. When the line passes through 4, the sudden steepness becomes stable, suggesting that
the optimal number of reference factors for this matrix is 4 or more groups.

Subsequently, the matrix was positioned in a K-dimensional space. After unfolding the matrix multidimen-
sionally, coordinates for 40 vocabulary words were obtained in the K-dimensional space, as shown in Table 5.2,
the fitting goodness was evaluated for dimension numbers of 4, 5, 6, and 7.
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Fig. 5.2: Hierarchical Clustering Dendrogram of Perceptual Image Vocabulary.

Table 5.3: Hierarchical Clustering Grouping Results.

Group Representative
Vocabulary

Words within the Group

Group1 Safe Technological, Precise, Sturdy, Stable, Reliable, Advanced, Durable, Efficient, Accu-
rate, Neat, Strong, Automated, Steady, Diamantine, Expensive, Substantial, Stead-
fast, Modern, Professional, Organized, Delicate

Group2 Soft Comfortable, Gentle
Group3 Friendly Elegant, Pleasant, Round
Group4 Humanized Harmonious, Smooth, Approachable, Orderly, High-end, Tidy, User-friendly, Clean,

Simple, Practical

Considering the need for simplicity in the BP neural network’s output and to avoid setting too many nodes
in the output layer, it is more reasonable to set the number of clusters to 4 in the clustering analysis. Moreover,
when the dimension is set to 4, with Stress (Sk) = 0.040 < 0.05, it indicates a good fitting. Therefore, it is
judged that these 40 vocabulary words can be divided into 4 groups, obtaining the number of groups for the
perceptual vocabulary in the physiotherapy bed evaluation system.

This paper will employ hierarchical clustering separately to achieve clustering. Through the comparison
of clustering results, the optimal output scheme for perceptual image vocabulary selection will be chosen. In
this case, 4 representative vocabulary words will be selected as the optimal output. Hierarchical clustering
analysis was conducted using SPSS, resulting in a dendrogram as shown in Figure 5.2. Upon analysis, it can
be determined that the representative perceptual vocabulary words are ”Safe,” ”Humanized,” ”Friendly,” and
”Soft.” Further details about the grouping results can be found in Table 5.3.

5.2. Constructing Sample Styling Feature Codes. Through online collection, a total of 68 initial
samples were obtained. After undergoing the KJ method and Delphi method screening, 12 samples were selected
which shared similar styling functionalities and exhibited representative qualities. Based on the morphological
analysis approach, these 12 samples were deconstructed to establish a repository of styling elements. According
to the functional aspects and styling characteristics of therapeutic beds, these samples were broken down into
9 distinct styling morphological elements. Each morphological element encompasses design features numbering
between 3 and 6, with the aim of ensuring both comprehensiveness and specificity. Furthermore, each element
was assigned a unique code, as illustrated in Table 5.4.
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Table 5.4: Deconstruction Coding of Styling Design Elements.

Design Ele-
ment

Type

1 2 3 4 5 6
Base x1 Rectangular Rod Wheels Trapezoidal

Angle
Pipe-like

Support x2 Square Trapezoidal Leg Custom Irreg-
ular Shape

Exposed
Structure

One Side Sus-
pended

Bed Surface
x3

Rectangular Two Wide,
One Narrow

Circular Rect-
angular

One Side Nar-
row

Peripheral
Handles x4

None Expandable
Single-Side
Handle

Expandable
Dual-Side
Handles

Control Panel
x5

None Remote Con-
trol

Integrated
into Bed
Body

Individually
Set Console

Bed Surface
Movement
Structure x6

Fixed Sectional
Front-Back
Extension

Sectional
Vertical Move-
ment

Sectional Ver-
tical Tilt

Overall Verti-
cal Tilt

Bed Surface
Material x7

Fabric Leather Plastic

Color x8 Cool Tones Warm Tones Black and
White Neu-
tral Colors

Fixing Device
x9

None Additional
Structural
Fixation

Straps Fixa-
tion

Table 5.5: Deconstructed Design Elements

Sample Design Element Sensory Imagination Evaluation Average
x1 x2 x3 x4 x5 x6 x7 x8 x9 Safe Humanized Friendly Soft

1 2 4 1 1 2 1 1 1 1 1.82 2.64 2.10 3.12
2 2 3 1 1 1 1 2 2 1 1.54 2.12 1.34 1.56
3 5 2 1 3 2 2 2 3 1 2.02 2.32 2.86 2.48
4 5 3 4 1 1 1 2 3 2 2.74 2.34 1.86 1.42
5 3 5 4 1 3 4 2 3 2 1.98 3.02 1.32 2.22
... ... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ... ...
49 2 3 1 3 3 1 1 3 2 2.10 1.84 2.92 2.78
50 1 5 4 1 2 4 2 3 2 1.62 1.58 1.886 1.70

5.3. Evaluation of Sensory Imagination for Physiotherapy Beds. Based on the research ques-
tionnaire statistics and the summarized sensory evaluation average values, as well as the deconstruction of the
design elements of physiotherapy beds, a sensory evaluation matrix consisting of fifty samples and ”nine sensory
imageries” was established. The conformity was measured using a 1-5 Likert scale, where a score of 1 indicates
non-conformity and a score of 5 indicates complete conformity. After conducting questionnaire surveys with
34 design professionals and 16 non-design professionals, the evaluations were averaged to study the preference
of the survey subjects towards the samples. The partial data from the table can be found in Table 5.5.

Based on the aforementioned analysis, the BP neural network is constructed using the MATLAB 2022
software. Given the network’s characteristic of multiple inputs and multiple outputs, an additional hidden
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Table 5.6: Model Accuracy under Different Hidden Layers.

Hidden
Layer Neu-
rons

Mean Abso-
lute Error
(MAE)

Mean
Squared Er-
ror (MSE)

Root Mean
Squared
Error
(RMSE)

Hidden
Layer Neu-
rons

Mean Abso-
lute Error
(MAE)

Mean
Squared Er-
ror (MSE)

Root Mean
Squared
Error
(RMSE)

5 0.23097 0.10847 0.32935 10 0.16461 0.048648 0.22056
6 0.18153 0.055638 0.23588 11 0.11175 0.019345 0.13909
7 0.18106 0.045277 0.21278 12 0.31526 0.19502 0.44161
8 0.21159 0.061676 0.24835 13 0.21998 0.05842 0.2417
9 0.15716 0.04218 0.20538 14 0.2025 0.06482 0.2546

layer is introduced to determine the optimal number of neurons. Since the network entails 9 design elements,
the input layer comprises 9 nodes. Correspondingly, there are 4 sensory imaginations being evaluated, leading
to the output layer containing 4 nodes. Computed according to the empirical formula in formula 6 , with M = 9
and N = 4, the value of L < 5 ∼ 15 is obtained.

For the purpose of accurate performance assessment, the MAE function is utilized. This function is less
susceptible to the influence of outliers, allowing for a more precise depiction of data distribution. The specific
formula for MAE is as follows:

MAE =
1

m

m∑
i=1

|yi − f (xi)|

yi-denotes the actual value for the i-th sample. f (xi)-signifies the predicted value by the neural network for the
i-th sample. Utilizing the MATLAB software, various parameters were trained, and the corresponding error
results for each parameter were presented in Table 5.6.

From Table 5.6, it is evident that when the number of neurons in the hidden layer is 11, both the training
model’s Mean Squared Error (MSE) and the validation model’s MSE are minimized. Therefore, for this neural
network architecture, the optimal number of neurons in the hidden layer is chosen to be 11. The BP neural
network structure is set as 9*11*11*4, with a learning rate of 0.1 and an expected error of 0.00001. Following
the specified criteria, the optimal network is trained and stored as the final quantitative relationship model for
the design. The model is established using the purelin transfer function and trained using the gradient descent
method.

The correlation coefficient between the training results and the actual evaluation data is R=0.96359, as
shown in Figure 5.3. This indicates a high level of prediction accuracy for the model, demonstrating a strong
fitting effect on the training dataset.

Model Practical Testing. Once the neural network is established, it can serve as a reference for the design
of the therapeutic bed’s visual imagery, providing design directions for designers. However, it is necessary to
demonstrate its functional rationality. Therefore, different design proposals will be subjected to performance
testing using the established BP neural network. To perform cross-validation, five industrial designers will
each provide a set of therapeutic bed design proposals. These proposals will be adjusted and modeled in the
Rhinoceros software to incorporate the model’s design factors, resulting in five sets of therapeutic bed designs.
Material and color design will be applied, and the models will be imported into Key shot for rendering. The
specific proposals can be seen in Figure 5.4.

These five proposals will undergo expert scoring to obtain actual evaluation values. Subsequently, the five
samples to be verified will be encoded according to Table 5.2 and used as input to the constructed BP neural
network. The obtained indicator values from the output layer will be compared with the actual evaluation
values to determine the relative error in predicted evaluation values.

Based on the data presented in Table 5.7, it is evident that the results generated by the neural network
closely align with the evaluations conducted by experts, with a maximum deviation of only 8.5% and a min-
imum deviation of just 0.8%. This finding demonstrates that the trained neural network for design imagery
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Fig. 5.3: Fitting Goodness of the Training Set.

Fig. 5.4: Neural Network Training and Testing Scheme.

Table 5.7: Verification and Comparison Results.

Sensory Vocabulary Data Error Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Safe
Predicted Sensory Value 2.1 3.60 1.96 1.64 1.84
Actual Sensory Mean 2.28 3.80 2.02 1.60 1.82
Relative Error (%) 8.5% 5.6% 3.1% 2.4% 1.1%

Humanized
Predicted Sensory Value 2.1 2.84 1.82 2.19 1.66
Actual Sensory Mean 2.06 2.62 1.80 2.10 1.62
Relative Error (%) 1.9% 7.7% 1.1% 4.1% 2.4%

Friendly
Predicted Sensory Value 2.9 3.48 2.42 2.26 2.32
Actual Sensory Mean 2.84 3.38 2.36 2.12 2.28
Relative Error (%) 2.1% 2.9% 2.5% 6.2% 1.7%

Soft
Predicted Sensory Value 3.61 2.67 2.18 2.72 2.32
Actual Sensory Mean 3.64 2.60 2.00 2.68 2.14
Relative Error (%) 0.8% 2.6% 8.3% 1.5% 7.7%

can effectively capture the sensory characteristics of the therapeutic bed. Consequently, this network can be
employed to comprehensively assess the visual design of therapeutic beds. By employing the neural network
model, designers are empowered to move beyond relying solely on experience and sketches to infer the overall
appearance of therapeutic beds. This design approach is notably more precise and scientifically grounded.

6. Conclusions. By applying the BP neural network model, we were able to establish a more scientifically
grounded connection between the overall visual design elements of the physiotherapy bed and users’ sensory
imaginations. Additionally, we could enhance the precision of understanding users’ emotions, enabling design-
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ers to better employ design language to convey the product’s meaning. The introduction of mathematical
evaluation models helps overcome the limitations of solely relying on designers’ subjective experiences in the
original design process. This significantly reduces design risks and facilitates more informed decisions for visual
design. However, the design of a physiotherapy bed, being a versatile medical rehabilitation equipment, also in-
volves various factors such as specific functional requirements, internal operational structures, material choices,
and human-computer interaction. These factors could serve as inputs for the BP neural network or other
mathematical models, establishing logical connections between them and users’ sensory demands. Furthermore,
different neural network architectures or training functions can be utilized to obtain diverse sensory perception
evaluation averages, thus balancing the diverse needs of users. With the extensive application of machine deep
learning techniques in product sensory image design, more comprehensive and powerful mathematical models
will likely facilitate further development in research on design methods based on sensory ergonomics.
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