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DEPTH ESTIMATION OF MONOCULAR VR SCENES BASED ON IMPROVED
ATTENTION COMBINED WITH DEEP NEURAL NETWORK MODELS

GUANG HU ∗AND PEIFENG SUN†

Abstract. The boundary blurring issue with the existing unsupervised monocular depth estimation techniques is addressed
by a suggested network design based on a dual attention module. This architecture is able to overcome the boundary blurring
issue in depth estimation by making effective use of the remote contextual information of picture features. The model framework
comprises of a pose estimation network and a depth estimation network to estimate depth and camera pose transformations
simultaneously. The complete framework is trained using an unsupervised method based on view synthesis. The depth estimation
network incorporates a dual attention module, comprising a position attention module and a channel attention module. This allows
the network to estimate the depth information more precisely by representing the distant spatial locations and the contextual
information between various feature maps. Based on the KITTI and Make3D datasets, the experimental findings demonstrate that
this method may successfully solve the depth estimation border ambiguity problem and increase the accuracy of monocular depth
estimation.

Key words: Self-Attention Mechanism, Monocular Depth Estimation, Photometric Loss, Image Reconstruction,Depth Esti-
mation Accuracy.

1. Introduction. Depth information plays an important role in understanding 3D scenes and it can
be applied to various robotics techniques such as 3D reconstruction, 3D target detection and Simultaneous
Localization and Mapping (SLAM) [1]. The task of obtaining depth information from an image is known
as image depth estimation, and recovering pixel-level depth through images is gaining interest in the field of
computer vision due to properties such as lightness and cheapness of cameras [2, 3].

With the rapid development of deep learning techniques, many works use supervised depth learning to
infer depth information from images. However, the acquisition of truth data required for supervised learning
is not easy, so recent work attempts to solve the depth estimation problem using unsupervised learning [4].
To learn the mapping from pixels to depth in the absence of true annotations, the model needs to have other
constraints attached. One form of unsupervised depth estimation is to use synchronized binocular image pairs
for training [5]. The simultaneous binocular image pairs are used only during training, and the model estimates
the left-right image parallax or image depth, thereby reconstructing the image by comparing the image The
model is trained by comparing the differences between the images [6].

For the study of monocular image depth estimation, a large number of research methods have been proposed
by domestic and foreign researchers in this direction [7]. In recent years, the rise of deep learning has also had
a great impact on the field of deep estimation, and many research methods based on deep learning have been
proposed with excellent results. Three popular types of methods for image depth estimation are currently
available-supervised learning methods, joint semantic segmentation methods, and unsupervised learning [8].
Models are trained using supervised learning, and the training uses datasets labeled with a large amount of
depth information. Two networks are overlaid: the first network is the Global Coarse-Scale Network, which
performs coarse-scale global prediction of images; the other network is the Local Fine-Scale Network, which is
mainly responsible for local refinement. The performance is improved by CRF normalization. The basic idea
of this study is to use multi-scale neural networks to estimate the depth map [9]. It proposed a model with
discrete depths for the problem of new view synthesis and subsequently extended this approach by estimating
continuous parallax values.[10] produces better results than current partially supervised methods by using a
left-right depth consistency term. Another unsupervised form with fewer constraints is to use monocular video
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data to train the model, using image reconstruction losses as a supervised signal to train the network. This
unsupervised training approach requires the network to estimate the camera pose between frames in addition
to the estimated depth. [11] pioneered the use of only monocular video to train a depth estimation network
as well as a separate bit-pose estimation network. To handle non-rigid scene motion, they proposed to use
the network to learn to interpret the mask, allowing the model to ignore specific regions that violate the rigid
scene assumption. [12] used a more explicit geometric loss to jointly learn depth and camera motion for rigid
scenes. A refined network was added to the study of in the literature to estimate the residual optical flow.
These methods accomplish the training task using only monocular video sequences or binocular image pairs
and produce better results than partially supervised methods in outdoor scenes [13].

However, none of the above methods make good use of the contextual information in the scene. [14]studied
the statistics of depth images of natural scenes and showed that depth images can be decomposed into segmented
smooth regions with little dependence on each other and often with sharp discontinuities. Therefore, the
variation of scene depth is closely related to the concept of ”object” in the scene, rather than some underlying
features like color, texture, illumination, etc. Some of the current studies [15] use edge-aware smoothing loss
to constrain the model to produce a smoother depth image within the ”object”. However, the edge map based
on image gradient does not represent the object boundary well. To solve this problem, this paper proposes
to improve the depth estimation network using the dual attention module proposed in [16] in the field of
semantic segmentation to enhance the feature extraction capability of the model by using the intra- and inter-
object contextual information more effectively through the attention mechanism. The validation results of this
paper’s approach on the KITTI dataset and Make3D dataset demonstrate the effectiveness of the attention
mechanism in improving the depth estimation accuracy.

Here are the major contributions of our paper:
This paper introduces a dual attention module combining spatial and channel attention mechanisms, sig-

nificantly enhancing the model’s ability to capture both local and global context in monocular unsupervised
depth estimation.

Through the integration of self-attention mechanisms, the proposed model demonstrates superior perfor-
mance in terms of error reduction and threshold accuracy on the KITTI dataset, outperforming several state-
of-the-art methods.

A robust photometric loss function combining Structural Similarity Index (SSIM) and L1 parametrization
is designed to address illumination effects and enhance view reconstruction accuracy.

2. Literature Review. Monocular depth estimation has gained significant attention in recent years due
to its wide range of applications in autonomous driving, augmented reality, and scene understanding. This
section reviews several recent studies in the field, highlighting their contributions and how the proposed work
in this paper compares to them.

2.1. Traditional Depth Estimation Approaches. Early works on depth estimation primarily relied
on supervised learning techniques, requiring large datasets with ground truth depth information. For instance,
[7] developed one of the earliest multi-scale convolutional neural network (CNN) models for depth estimation,
using a coarse-to-fine approach to predict depth at various scales. However, supervised methods face challenges
due to the scarcity of labeled data and their reliance on high-cost depth sensors for ground truth data collection.

2.2. Unsupervised Learning Methods. To overcome the limitations of supervised approaches, unsuper-
vised methods have been proposed that rely on stereo image pairs or monocular sequences for training without
ground truth labels. [5] introduced an unsupervised method using stereo images, leveraging a photometric loss
based on image reconstruction. Their method greatly reduced the need for expensive depth sensors but suffered
from limitations related to image occlusions and moving objects.

The paper [10] further advanced this area by introducing a fully unsupervised framework using only monoc-
ular video sequences. They introduced a view synthesis approach that allowed the network to learn depth
estimation without stereo pairs, making the approach more generalizable. Despite these advancements, their
method struggled with capturing fine details and often produced artifacts in object boundaries.

2.3. Attention Mechanisms in Depth Estimation. Recently, attention mechanisms have been inte-
grated into depth estimation models to enhance feature extraction and focus on important regions of the image.
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[13] incorporated a spatial attention module to improve scene understanding, demonstrating improved accuracy
on the KITTI dataset. However, their approach lacked an effective strategy to capture channel dependencies,
which limited the model’s ability to fully leverage multi-channel feature maps.

Incorporating both spatial and channel attention, [15] proposed an approach to improve the accuracy of
depth estimation by enhancing the model’s ability to capture the relationships between different feature channels.
While their approach demonstrated superior performance, the model still faced difficulties in preserving fine-
grained details, particularly in complex scenes with occlusions.

2.4. Recent Developments. Recent works such as those by [4] and [6] have further advanced the field
by introducing novel architectures and loss functions to improve depth estimation accuracy. [11] presented a
multi-scale feature fusion approach that improved the network’s ability to generalize across different datasets,
while [12] explored depth estimation in diverse scenarios using large-scale datasets. Both approaches improved
generalization but did not address the issue of enhancing feature compactness within objects and improving
overall feature distinguishability.

Compared to recent works, our approach demonstrates a more balanced and robust framework for monoc-
ular depth estimation, addressing limitations in both contextual understanding and feature preservation. By
leveraging dual attention mechanisms and a robust loss function, the proposed method outperforms state-of-
the-art models in terms of both error reduction and depth prediction accuracy, particularly on challenging
datasets like KITTI.

3. Related Research.

3.1. Problem description. The task of predicting the scene depth from the image data is known as
depth estimation of the image [17]. The image captures the projection information of the three-dimensional
world on the imaging plane, It falls under the category of computer-related 3D reconstruction, and this issue is
expressed mathematically as D = F (I) , where is D depth, I is the image, and F is the mapping function from
the image to the depth. Monocular depth estimate is an ill-posed (ill-posed) problem because of the ambiguity
of the scale, so it can hardly be solved directly F . Many scholars have started to use supervised deep learning
for depth estimation, however, because gathering large-scale, real-labeled data is costly and time-consuming, a
lot of recent research has concentrated on unsupervised deep learning techniques.

3.2. View reconstruction as a supervised signal. Using view reconstruction as a supervised signal is
an unsupervised method, and its core idea is to use depth and pose as intermediate quantities, combined with
pairwise polar geometry for view reconstruction. Assuming that the observation scene is stationary, given two
views taken at different viewpoints It, Is , if the coordinate transformation matrix of the depth map Dt, It to
the view It is known, the pixel mapping relationship between It, Is .

ps = KTt∼sDtK
−1pt (3.1)

where K is the camera internal reference, Tt∼s is the coordinate transformation matrix from It to Is, and
pt, ps are the pixel coordinates of the two views, respectively. The network model can learn the interframe
posture transformation and the depth of each pixel, so that the images from different views can be synthesized
and compared with the target view using an interpolation algorithm (e.g., bilinear interpolation) based on the
mapping relationship in Eq.3.1, and thus the depth and pose transformation can be estimated by unsupervised
training of the model.

4. System Model Framework.

4.1. Network structure overview. As can be observed in Fig.4.1, the bit-pose transformation estimate
network and the depth estimation network are the two parts of the model framework used in this work. In this
paper, a single color image is used as the input for the depth estimation network. Its result is a dense depth
map, which is different from some earlier research. Moreover, the training of the entire system is easier to
converge since direct depth estimation involves less inverse operations than parallax estimation. Two pictures
are fed into the bit-pose estimation network, and a 6-Do F bit-pose transform is produced as the output. The
training process does not require the real depth and the pose-transform annotation of the actual camera motion.
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Fig. 4.1: Model framework.

Instead, the depth map estimated by the model and the pose-transform are used for view reconstruction, and
the contrast error between the reconstructed view and the target view is used as a loss to train the neural
network.

Two fully convolutional networks—a depth estimation network and a bit-pose transform estimation network—
make up the model architecture in this work. The structure of the depth estimation network, which is based
on the U-Net architecture, is depicted in Fig.4.2. In order to represent distant contextual information while
extracting deep features, it incorporates jump connections and attention modules. To extract strong image
characteristics, this paper uses ResNet18 as the encoder for RGB picture feature extraction. Compared to the
encoders in earlier studies that employed Disp Net and Res Net50-based models, the encoder in this study
operates more quickly and requires less parameters. In this study, pre-trained weights from Image Net are
used to initialize the encoder weights. Tests show that as compared to training the model from scratch, this
initialization improves accuracy.

Since the encoder downsamples the input image to extract the feature map, an upsampling procedure
is required to perform the feature map resolution reduction. The decoder of the deep estimation network,
consisting of five upsampling modules, uses the Exponential Linear Unit (ELU) as the activation function
everywhere except at the output. A convolutional operator layer and the nearest neighbor interpolation method
make up the upsampling module of this paper. Fig.4.2 dashed-labeled area illustrates the construction of this
module. In this paper, the attention module is added to the decoder section of the deep estimation network
in order to model the remote contextual information and improve the correlation between features. To learn
the contextual information between features without introducing too much computational overhead, a two-
channel attention module—which consists of a location attention module and a channel attention module—is
inserted in the first two layers of the decoder. The image’s depth information is output via a Sigmoid activation
function and a 3x3 convolution process, which make up the depth estimation layer. This study performs a linear
transformation of the output to constrain it to a tolerable range.

The encoder portion of the bit-pose transform estimation network is a conventional Res Net18 structure,
and the entire convolutional network with six input and output channels is used. The decoder consists of four
layers of convolutional operations: layers 1 and 4 have 1×1 convolutional kernel sizes, while layers 2 and 3
have 3×3 convolutional kernel sizes. Rectified Linear Unit (ReLU) activation functions are present in all layers
except the output layer. Image sequences are fed into the network via batch size stacking. The encoder then
extracts the feature maps, and further convolution operations are used to derive the higher-level features of
the various frames, and finally the output pose is output by 1×1 size convolution. The output bit-pose is a
6-dimensional bit-pose transformation vector, with the first 3 dimensions representing rotation and the last 3
dimensions representing displacement.

4.2. Depth estimation network combining dual attention module. Sometimes, the convolution
technique breaks the depth estimation for some elongated objects (like streetlights) since it has a limited
perception range and the object objects in the input image fluctuate in scale, angle, and brightness. In order
to maximize the accuracy of the depth estimate and make better use of the global knowledge of the scene and
the relationship between the representation properties, this research employs the dual attention module in the
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Fig. 4.2: Depth estimation network structure.

Fig. 4.3: Dual-focus module.

depth estimation network.
The location attention module and the channel attention module are the two attention modules that make

up the dual-attention module. The spatial and channel characteristics of remote contextual information are
captured by the two attention modules. The depth estimation network’s decoder incorporates the dual-channel
attention module, and Fig.4.3 displays a schematic of the two attention modules’ structural layout.

4.2.1. Location attention module. Traditional complete convolutional networks are prone to the issue
where the edges do not match the actual objects when estimating depth because they extract local features that
lack global information to indicate the link between local features. This study presents the location attention
module to model the contextual relationships of local features. For the feature map X ∈ RC×H×W encoded by
the convolution layer, it is first fed into the 1×1 convolution layer to downscale the number of channels and
generate two new features Q ∈ R

C
r ×H×W ,K ∈ R

C
r ×H×W respectively, where takes the value of 8 in this paper.

Q,K are then reshaped into Q ∈ R
C
r ×N ,K ∈ R

C
r ×N and the transpose of Q is matrix multiplied with K ,
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where N = H ×W . Finally, the obtained results are passed through the softmax layer to calculate the spatial
attention map S ∈ RN×N , as shown in Eq.4.1 is shown.

Sji =
exp(Qi ·Kj)∑N
i=1 exp(Qi ·Kj)

(4.1)

The stronger the correlation between two locations, the more similar the feature representations of those
sites are. In the meantime, a new feature map is created by feeding the input features X into the convolution
layer . The V is reshaped into V ∈ RC×N and then matrix multiplication is performed between the transpose of

V andYi = α
N∑
i=1

(SjiVi) + βX
j
∈ XRC×H×W , Sji =

exp(Qi·Kj)∑N
i=1 exp(Qi·Kj)

∈ RN×N , V ∈ RC×N , r,Q,K,N = H ×W

. Finally, to make the module more flexible, the result of multiplying V and S with the input features X is
multiplied by the element-by-element summing operation and the scale parameter. is performed in this paper
to obtain the final output Y ∈ RC×H×W , as shown in Eq.4.2

Yi = α

N∑
i=1

(SjiVi) + βXj (4.2)

where α is initialized to 0, β is initialized to 1, as the training eventually assigns both weights. From Eq.4.2, it
can be derived that the output feature Y at each location is a weighted sum of the features at all locations and
the original features. As a result, it collects contexts selectively using the spatial attention network and has a
global context view. When similar features of an object are associated, the compactness of the features inside
the object is enhanced.

4.2.2. Module for Channel Attention. The high-level feature map of each channel can be viewed
as an object-specific response, and there are relationships between various feature maps that are intimately
connected to the three-dimensional structure of the scene. A specific scene object’s feature representation can
be enhanced by the model by taking advantage of the interdependencies between channel feature mappings.
Consequently, the channel attention module, the structure of which is depicted in Fig.4.3b, is used in this
research to explicitly represent the interdependencies between channels. Here, the channel attention map is
computed directly from the original characteristics, in contrast to the location attention module. Specifically,
the input features X ∈ RC×H×W are reshaped into X ∈ RC×N matrix multiplication between their transpose,
and then the softmax layer is applied to obtain the channel attention map S ∈ RC×C , see Eq.4.3

Sji =
exp(Xi ·Xj)∑N
i=1 exp(Xi ·Xj)

(4.3)

where Sji measures the effect of the i -th channel on the j -th channel. Subsequently, a matrix multiplication
operation is performed between the transpose of S and X . The result is then multiplied with the input feature
X by the scale parameter and subjected to an element-by-element summation operation to obtain the final
output Y ∈ RC×H×W , as shown in Eq.4.4:

Yj = λ

C∑
i=1

(SjiXi) + ωX
j

(4.4)

where λ, ω learn the weights gradually starting from 0 and 1, respectively. After processing by the channel
attention module, each channel’s final feature is the weighted sum of its initial characteristics as well as the
features of all other channels, It enhances feature distinguishability and aids in the network’s representation of
the scene’s structural information by modelling the remote dependencies between feature mappings.

4.3. Loss function design. In this article, the model is trained using the difference between the synthetic
image and the target view as a supervised signal, so the design of the image comparison loss function is an
important part. Since the camera motion is easily affected by illumination, this paper uses the robust similarity
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Table 5.1: Error results compared before and after the self-attention module was included.

Method AbsRel SqRel RMSE LogRMSE
This algorithm (without self attention mechanism) 0.097 0.796 4.631 0.199

This algorithm 0.091 0.717 4.415 0.181

Table 5.2: Comparison of threshold accuracy results before and after adding the self-attention module.

Method δ < 1.25 δ < 1.252 δ < 1.253

This algorithm (without self attention mechanism) 0.858 0.944 0.978
This algorithm 0.881 0.959 0.981

comparison function in the literature [17] as the loss function of the model to judge the good or bad view
reconstruction, i.e., the combination of Structural Similarity Index (SSIM) and L1 parametrization, and the
specific photometric loss function:

Lp = α
1− ssim(ItIt)

2
+ (1− α)|It − It| (4.5)

where I is the real view, It is the synthetic view, and α is the weight parameter, which is set here to 0.85. In
the image sequence, the image contrast luminosity loss can be obtained according to the loss function by using
the images of moment t− 1 and moment t+ 1 , respectively, to synthesize the image of moment . In order to
reduce the effect of occlusion and moving objects, this paper uses the minimum value of the synthetic loss of
taking different frames as the final loss in the literature [17], that is

L =
1

N

N∑
i=0

min
t

Lp (ItIi→t) (4.6)

Here Lp denotes the photometric loss function of Eq.4.5, and is the total number of pixels. Due to the bilinear
interpolation with subdifferentiation, the loss is calculated for the output of the four scales in this paper so as
to reduce its effect.

5. Analysis and outcomes of the experiment.

5.1. Quantitative analysis. This chapter deals with monocular picture depth estimation using unsuper-
vised learning techniques. Comparative studies are carried out to confirm the algorithm’s efficacy following the
addition of the self-attention module to Attention-Unet. The experimental findings before and after the self-
attention mechanism was added to the Attention-Unet network in the depth estimation network are compared
in Table5.1 and Table5.2. The results of the experimental comparison data demonstrate that the estimation
network functions better on the KITTI dataset when the attention mechanism is added.

The depth estimation network, which is composed of several attention modules, may now incorporate self-
attention to better gather context about the image and avoid the problem of losing image object features in
the network model during depth estimation. The network uses a large number of Skip-Connections at the same
time, which can fuse all feature information and hasten the convergence of the network. This also enhances
some invalid and sparse feature information, improving the performance of the network model. Following
data comparison, the self-attention mechanism in the Attention-Unet network in the depth estimation network
improves the model’s error and threshold accuracy, and the result on the threshold accuracy of δ < 1.25 is
improved by 2.3% compared with the algorithm without the self-attention mechanism. The experiments will
be compared with a few popular algorithms to confirm the efficacy of this approach. Table5.3 presents the
comparison between the method used in this chapter and other methods that were trained on the KITTI
dataset and subsequently tested on the Eigen Split test set.
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Table 5.3: Error results compared with other methods.

Method AbsRel SqRel RMSE LogRMSE
Song [5] 0.218 1.777 6.857 0.279

Zhang [7] 0.199 1.549 6.301 0.278
Osamah [11] 0.176 1.171 5.286 0.278

An [13] 0.139 1.340 5.850 0.237
Li [15] 0.120 0.840 4.497 0.195

ZKaushik [17] 0.099 0.765 4.486 0.189
Our 0.089 0.728 4.411 0.183

Table 5.3 compares the experimental findings with the state-of-the-art methods; the suggested algorithm in
this research yields the best results. A full-resolution image is used as the training input for the depth estimation
network model, which is based on a dual network structure. For the extraction of global features the network
with relatively deep depth is used to process the high-resolution scene images, and the relatively shallow network
is used to process the low-resolution scene images to extract local detailed features. However, this method has
the potential to lead to region estimation errors and local details missing in the image. Compared with this
method, the results of the model in this paper have lower errors, with 4.1% improvement in the threshold
accuracy of δ < 1.25 and 0.6% improvement in the threshold accuracy of δ < 1.252 .

By using a self-attention module, the network model with joint attention mechanism presented in this
paper is able to gather contextual information and detail information of the scene images more effectively. In
the comparison of the threshold accuracy results for δ < 1.25 , the results of the method in this paper improve
0.6% and 0.3% in all the accuracies of δ < 1.252,δ < 1.253 . As a result, the technique presented in this paper
improves in error as well as thresholding accuracy compared to other popular algorithms.

5.2. Qualitative Analysis. Experiments add other modules to the network independently and perform
control experiments on the same dataset in order to further validate the methodology presented in this paper.
The results are displayed in Fig.5.1. Three scenes are chosen for comparison experiments: a) the row depicts
the scene as it was originally seen; b) the row employs the most basic network structure without including the
attention mechanism, automatic masking loss function, and combined reprojection loss; and c) the depth map
derived from the experiment is distorted by numerous artifacts. c) segments the image and drastically reduces
the artifacts in the graph by using the suggested network with reprojection loss and automatic masking loss
function for training without the attention method. However, there are still some errors, and the tree trunk
in scene A and the outline of the column in scene B with the trees in the distance and the trees on the left in
scene C are not yet completely clear. d) Row method, i.e., the network structure proposed in this paper, adds
attention mechanism to the depth estimation network, and after combining reprojection loss and automatic
masking, the effect of depth map is further improved, e.g., in scene B, the excess shadow contour on the top of
the column is removed, and a more accurate presentation of the column contour is obtained, while the obscured
trees, vehicles, etc. are presented with a clearer effect.

The experimental results demonstrate that the automatic masking loss function and reprojection loss may
successfully decrease the artifacts caused by moving objects. Additionally, the depth map formed with the self-
attention mechanism has a higher hierarchical structure and is more clearly delineated. It has been shown that
integrating the attention mechanism with the automatic masking block, reprojection loss, and other components
improves the performance of the depth estimation network.

Two scenarios are re-selected in order to compare the outcomes before and after utilising the self-attention
mechanism (self-Attention) in the depth estimation network architecture with other conditions remaining con-
sistent. The comparison plots are displayed in Fig.5.2, where it is evident that the depth prediction is improved
over that which would have resulted from the absence of the self-attention mechanism. After the self-attention
mechanism is added, the contours of automobiles and trees are more easily distinguished, shadows are lessened,
and the outlines of objects that are relatively far away are more clearly defined and clearly layered.

The depth estimation results are compared with those of the algorithm in the literature [5] on the KITTI
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Fig. 5.1: Comparison of the results of adding different modules.

Fig. 5.2: Comparison of before and after adding attention mechanism.

Fig. 5.3: Comparison of the depth estimation results with the literature [5].

Eigen Split test set in order to confirm the efficacy of the approach in this paper. The comparison graph is
displayed in Fig.5.3. The scene maps in the figure are obtained from the KITTI dataset, and this experiment
is conducted to compare three scenes separately, and it is evident from the three scene maps that this paper’s
depth estimation map performs better than the literature’s method in terms of overall depth estimation, tiny
item recognition, and hierarchical separation contouring.
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6. Conclusion. This paper presents a novel unsupervised monocular depth estimation method based on
a dual attention mechanism. The incorporation of both spatial and channel attention modules allows the
network to effectively capture global contextual information and enhance the structural details of the depth
map. Experimental results on the KITTI and Make3D datasets demonstrate that the proposed method achieves
superior accuracy compared to existing approaches. By addressing the challenges of object feature loss and
improving depth prediction for complex scenes, the model exhibits strong generalization capability. Future
work will focus on optimizing the pose estimation network and integrating binocular cues to further enhance
depth estimation accuracy.

Data Availability. The experimental data used to support the findings of this study are available from the
corresponding author upon request.
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