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Abstract.

Data management is a key aspect of any distributed system. This paper surveys data management techniques in various
distributed systems, starting from Distributed Shared Memory (DSM) systems to Peer-to-Peer (P2P) systems. The central focus is
on scalability, an important non-functional property of distributed systems. A scalability taxonomy of data management techniques
is presented. Detailed discussion of the evolution of data management techniques in the different categories as well as the state
of the art is provided. As a result, several open issues are inferred including use of P2P techniques in data grids and distributed
mobile systems and the use of optimal data placement heuristics from Content Distribution Networks (CDNs) for P2P grids.

1. Introduction. Data management is an important facet of distributed systems. Data management
encompasses the ability to describe data, handle multiple copies (replication or caching) of data objects or
files, support for meta-data as well as data querying and accessing. Different approaches for data management
have given importance to these different aspects and provide explicit support, while other aspects are implicitly
or indirectly supported. For instance, Distributed Shared Memory (DSM) systems and shared object spaces
handled consistency of replicated data, but supported meta-data indirectly through object lookups.

Orthogonal to the above mentioned issues of managing data, the main non-functional challenges are fault-
tolerance, scalability and security, as illustrated in [32]. We survey various distributed systems from the per-
spective of scalability of data management solutions and provide a scalability taxonomy. We classify data
management approaches into three categories: Centralized /Naively Distributed (CND) techniques, Sophisticat-
ed/Intermediate Data (SID) management techniques and Large Scale Data (LSD) management techniques. We
give a brief view of the evolution of data management in each of the categories.

CND techniques for data management were used by DSM systems such as TreadMarks [10], Munin [25] and
shared object spaces such as Linda [24], Orca [36] and T Spaces [4]. Many of these systems provide application
transparent replica consistency management. They use centralized or naively distributed components to achieve
the same. For instance, T Spaces uses a centralized server for consistency maintenance and for object lookups,
while Java Spaces [81] uses a centralized transaction coordinator.

SID techniques have been used mainly in data management in grid computing systems such as [51], which
provides a Replica Management Service (RMS). Some of these systems are characterized by data sharing across
autonomous organizations at intermediate scale (possibly thousands of nodes). These approaches mainly manage
replicated data in a grid computing environment. Data grids [27] handle data management as first class entities
in addition to computation issues. They are characterized by the size of the data sets, which could be order
of gigabytes or even terabytes. High Energy Physics (HEP) applications such as GriPhyN [31] and CERN [79]
are examples of data grids. Other approaches that use SID techniques include Content Distribution Networks
(CDNs) and data management in distributed mobile systems. CDNs such as Akamai [43] have been proposed
to deliver web content to users from closer to the edge of the Internet, enabling web servers to scale up. Data
management in distributed mobile systems are characterized by data sharing in the presence of mobile nodes,
exemplified by systems such as Coda [74]. The common feature across these different systems is the scale of
operation (thousands of nodes) that distinguishes SID techniques for data management. Many of these systems
assume that failures are rare and reliable servers (distributed, not centralized) are available.

LSD management techniques do not assume reliable servers. The distinguishing feature of LSD techniques
is that the execution of services is delegated to the edges of the Internet, resulting in high scalability and
fault-tolerance. LSD techniques work well over the Internet and could handle millions of nodes/data entities.
Peer-to-Peer file sharing systems such as Napster [57] and Gnutella [33], P2P file storage management systems
such as PAST [15] and Oceanstore [49] as well as P2P extensions to Distributed DataBase Management Systems
(DDBMS) such as PIER [38] and PeerDB [60] all fall into the LSD category.

A taxonomy of data grids has been provided in [87]. It compares data grids with related data management
approaches such as CDNs, DDBMS and P2P systems. A functional perspective of data management that
focuses on data location, integration, sharing and query processing as well as the different P2P systems that
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address these functionalities is given in [50]. A survey of P2P content distribution has been provided in [77].
It examines P2P architectures from the perspective of non-functional properties such as performance, security,
fairness, fault-tolerance and scalability. Our survey is broader and tries to provide the equivalent survey for grids,
P2P systems, CDNs and DDBMS. We also provide a scalability taxonomy that distinguishes our survey from
others. Further, we discuss state of the art in several of these areas and discuss how ideas/concepts/techniques
from one area can be applied to others. The reader must keep in mind that though the authors have made an
effort to be unbiased, the survey has limitations as it is perceived through their looking glass.

The rest of the paper is organized as follows. Section 2 discusses the CND techniques for data management
and includes DSMs and shared object spaces. Section 3 discusses the SID techniques and includes data manage-
ment in grids, CDNs, and distributed mobile systems. Section 4 discusses P2P data management techniques.
Section 5 explores the state of the art data management techniques in distributed systems. Section 6 concludes
the paper and includes a taxonomy figure and gives directions for future research.

2. CND Techniques: Data Replication in DSMs and Shared Object Spaces. DSM provides an
illusion of globally shared memory, in which processors can share data, without the application developer needing
to specify explicitly where data is stored and how it should be accessed. DSM abstraction is particularly useful
for parallel computing applications, as demonstrated by TreadMarks [10]. Collaborative applications such as
on-line chatting and collaborative browsing would be easier to develop over a DSM.

Page based DSMs can be more efficient, due to the availability of hardware support for detecting memory
accesses. But due to the larger granularity of sharing, page based DSMs may suffer from false sharing. Relaxed
consistency models including Release Consistency (RC) and its variants such as lazy RC allow false sharing to be
hidden more efficiently than strict consistency models [64]. Munin [25] was an early DSM system which focused
on reducing the communication required for consistency maintenance. It provides software implementation of
RC. TreadMarks [10] is another DSM system that provides an implementation of release consistency. Java/DSM
[91] provides a Java Virtual Machine (JVM) abstraction over TreadMarks. It is an example of page based DSMs,
similar to Munin and TreadMarks.

Release consistency is a widely known relaxed consistency model for DSMs. Memory accesses are divided
into synchronization (sync) and non-synchronization (nsync) operations. The nsync operations are either data
operations or special operations not used for synchronization. The sync operations are further divided into
acquire and release operations. An acquire is like a read operation to gain access to a shared location. A
release is the complementary operation performed to allow access to the shared location. Acquire and release
operations can be thought of as conventional operations on locks. There are two variations of RC, RCs,—which
realizes sequential consistency and RCp. which realizes processor consistency. RC,. maintains program order
from an acquire to any operation that follows it, from an operation to a release and between special operations.
RC). is similar, except that write to read program order is not maintained for special operations. Eager RC,
as the original RC became subsequently known [48], requires ordinary shared memory access to be performed
only when a subsequent release operation is due by the same processor. Lazy RC (LRC) is a variation of RC
in which processors further delay performing modifications until subsequent acquires by other processors and
modifications are made only by the acquiring processor. LRC intuitively assumes competing shared accesses to
be separated by synchronization operations.

2.1. Shared Object Spaces. Object based DSMs (also known as shared object spaces) alleviate the false
sharing problem by letting applications specify granularity of sharing. Examples of object based DSMs include
Linda [24], Orca [36], T Spaces [4], JavaSpaces [81] as well as an object based DSM in the .NET environment
[75]. Orca relies on an update mechanism based on totally ordered group communication to serialize access
to replicas. Even though a study has shown that the overhead of totally ordered group communication affects
application performance minimally [37]', the study was done on a Myrinet cluster. Orca has not been evaluated
on the Internet scale. T spaces is a shared object space from IBM [4] that adds database functionality to
Linda tuplespace [24] and is implemented in Java to take advantage of its wider usability. In addition to the
traditional Linda primitives of in, out, read, T spaces supports set oriented operators and a novel rendezvous
operator called rhonda. Global shared objects [90] allows heap objects in a JVM to be shared across nodes.
Based on memory access patterns of applications, it also proposes various consistency mechanisms to be realized
efficiently. However, it uses locks and per-object lock managers for keeping replicas consistent. It does not
address failures of the lock manager. Java Spaces specification from Sun [81] provides a distributed persistent

IThis is due to its choice of which objects to replicate those with high read/write ratios and efficient implementation of totally
ordered group communication.
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shared object space using Java RMI and Java serialization. It provides Linda-like operations on the tuple space
and uses Jini’s transaction specification to achieve serializability of write operations. It also does not address
fault tolerance, an important issue for Internet scale systems.

2.1.1. Globe. Globe [3] attempted to address the challenges of building software infrastructure for de-
veloping applications over the Internet. A key design objective of Globe was to provide a uniform model for
distributed computing. This means that Globe provides a uniform way to access common services (such as
naming, replication and communication) without sacrificing distribution transparency. Objects in Globe encap-
sulate policies for replication, migration, etc. Each object comprises multiple sub-objects, allowing an object to
be physically distributed. The different sub-objects of an object include one each for semantics (functionality),
communication (sending/receiving messages), replication and control flow. This helps the programmer to sepa-
rate functionality from orthogonal non-functional properties such as replication. Objects also help in realizing
distribution transparency by hiding implementation details behind well defined interfaces. The implementation
framework of Globe is flexible, meaning that different implementations of the same interfaces are possible. It
also provides an efficient mechanism for object lookups by using a tree based hierarchical naming space. It
must be observed that distributed object middleware such as CORBA [61] also provide similar services such as
naming and trading. But they cannot provide object-specific policies that can be provided in Globe.

2.2. Software Availability and Usage Summary. To the knowledge of the authors, T spaces and
Java Spaces are widely used and are available as open source software. Linda is a specification and has been
implemented by several groups. Orca and Globe are research prototypes, information on their deployment and
use is not available.

2.3. Observations. We have proposed a generic scalability model for analyzing distributed systems in [6].
It takes the view that scalability of distributed systems should be analyzed considering related issues such as
consistency, synchronization, and availability. We give below the essence of the model.

scalability = f(avail, sync, consis, workload, faultload)

e qawvail is availability can be quantified as the ratio of the number of transactions accepted versus those
submitted.

e consis is consistency, itself a function of update ordering and consistency granularity. Update ordering
refers to the update ordering mechanisms across replicas of an object and can be one of causal, seri-
alizable or PRAM. Consistency granularity refers to the grain size at which consistency needs to be
maintained.

e sync refers to synchronization among the replicas. The two dimensions of synchronization are how often
the replicas are synchronized and the mode of synchronization (push/pull).

e workload can be broken down into workload intensity (number of transactions per second or number of
clients) and workload service demand characterization (CPU time for operations).

e faultload refers to the failure sequences and the number as well as location of the replicas.

The scalability model given above is useful to identify bottlenecks in distributed systems. By applying the
scalability model on shared object spaces, we have identified the key bottlenecks that inhibit existing shared
object spaces (with the exception of Globe) from scaling up to the Internet:

e (Centralized Components
Many existing DSMs and shared object spaces have some centralized components that affect their
scalability. For instance, Orca has a sequencer for realizing totally ordered group communication, while
others like T Spaces [4] have a centralized component for object lookups.

e Failures
Existing shared object spaces do not handle failures. For instance, JavaSpaces and global shared objects
do not handle failures of transaction coordinator, while Orca does not handle failure of the sequencer.

e Object Lookup
Given an object identifier (id), efficient mechanisms must exist that maps the id to the node that either
stores a replica or stores meta-data about the replica. Existing shared object spaces such as T Spaces
use centralized lookup mechanisms. Object lookup mechanisms in distributed object middleware such
as CORBA and DCOM also have difficulty in handling failures and scaling up.

e Consistency
Several existing DSM systems such as TreadMarks, Munin and shared object spaces such as JavaSpaces
provide relaxed consistency mechanisms such as release consistency and entry consistency. Relaxed
consistency mechanisms have also been explored in other areas [66, 52|. However, to our knowledge,
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these mechanisms have not been evaluated in Internet scale systems. Peer-to-Peer (P2P) systems which
have been scaled to the Internet, such as Pastry [69] and Tapestry [17] assume replicas are read-only.

3. SID Techniques for Data Management.

3.1. Computing Grids. Globus [39] a de-facto standard toolkit for grid computing systems, relies on
explicit data transfers between clients and computing servers. It uses the GridFTP protocol [19] that provides
authentication based efficient data transfer mechanism for large grids. Globus also allows data catalogues, but
leaves catalogue consistency to the application. The paper [51] explores the interfaces required for a Replica
Management Service (RMS) that acts as a common entry point for replica catalogue service, meta-data access
as well as wide area copy. It does not address consistency issues per se. Further, the RMS is centralized and may
not scale up. The other grid paper that has addressed data management issues [29] outlines possible use-cases
and gives higher level view of the data management requirements in a grid. The quorum scheme it describes for
handling read-write may have to be modified in an Internet kind of an environment to handle quorum dynamics.
Further, it does not address various granularities of replication and uses locks for synchronization. The paper [78]
also addresses read-write data consistency in a grid environment based on a lazy update propagation algorithm.
The update propagation algorithm is based on timestamps and may not scale up to work in a large scale grid
environment (Update conflicts are handled manually by application programmer - non-trivial task). Attempts
have also been made to extend the existing 2Phase Commit (2PC) based algorithms [82]. These would need
global agreement and may be expensive in an Internet setting.

3.2. Data Grids. A generic architecture for handling large data sets in grid computing environments has
been proposed in [27]. It describes the way data grid services such as replication and replica selection can be
built over basic services of data and meta-data access. It assumes that replicas (file instances) are read-only.

GriPhyN [31] attempts to support large-scale data management in High Energy Physics (HEP) applications
as well as for astronomy and gravitational wave physics. GriPhyN provides users transparent access to both
raw and processed data (The term virtual data is used to refer to both). It can convert raw data to processed
data by scheduling required computations and data transfers. GriPhyN is built on top of Globus. It takes
application meta-data and maps it into a Directed Acyclic Graph (DAG), which is an abstract representation
of the required actions on data sets. A request planner takes the DAG and transforms it into a concrete DAG,
which can be executed by a grid scheduling system such as Condor-G [42].

CERN, the European organization for nuclear research, is also involved in handling computation on large
data sets in the HEP area. Object level as well as file level replication for data grids has been explored in
[79], a CERN effort. It also assumes files are read only and can be replicated without need for counsistency
protocols. They support replica catalogs to handle meta-data. Actual file/object transfers are achieved using
GridFTP [19].

Data related activities on the grid such as queuing, monitoring and scheduling need to be carefully man-
aged, as data could become bottleneck for data intensive applications. Currently, these data related tasks are
performed manually or by simple scripts. The main goal of Stork [85] was to make data a first class citizen on
the grid. Data placement jobs have different characteristics from compute intensive jobs and so, may have to
be treated differently. Stork is a separate scheduler for scheduling and managing data intensive jobs on grid.
Data related activities are represented in the form of a DAG. Stork can interact with higher level planners such
as Directed Acyclic Graph Manager (DAGman) which is a part of CondorG. Enhancements have been made
to DAGman to make it submit compute intensive jobs to grid schedulers such as CondorG and data intensive
jobs to Stork. Stork also supports different heterogeneous storage systems and various data transfer protocols.
Case studies have demonstrated the use of Stork as a pipeline between two heterogeneous storage systems and
for runtime adaptation of data transfers.

3.3. Content Distribution Networks. Web servers had difficulty in handling the flash crowd problem.
The flash crowd problem refers to a large number of requests coming in suddenly, overwhelming the server’s
bandwidth, or CPU or back-end transaction infrastructure. Web servers have bursty request nature, for instance
during a football match in World Cup or during an election counting process, resulting in the flash crowd
problem. Content Distribution Networks (CDNs) such as Akamai [43] have been proposed to handle this
problem and to enable web servers to scale up. A separate infrastructure of dedicated servers spread across the
Internet was built by several companies to offload content distribution from web servers or to deliver content
from the edge of the Internet. Akamai’s CDN consists of over twelve thousand servers across thousand different
networks. They use either URL rewriting or DNS interposition to redirect client requests to the proximal CDN
server.
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Studies have shown that caching is beneficial in CDNs as they mainly deliver images or videos (static
content) [44]. Akamai CDNs achieved cache hit rates of nearly 88% in another study that compared the CDNs
with P2P file sharing systems for distributing content [76]. This shows that CDNs are beneficial for content
delivery and can reduce response time for clients. However, another study has shown that the average response
time for clients is not affected by employing CDNs [44]. But they avoid worst case of badly performing servers
rather than routing client requests to an optimal CDN server.

Cache consistency becomes a challenging issue in order to deliver non-static content to clients. Traditional
caching mechanisms such as leasing [22] may not be directly applicable to CDNs. Origin servers would have to
keep track of each CDN proxy that caches an object (web document) from the server. It must also manage the
lease related issues for that CDN proxy, including notifying the CDN proxy on updates to the object. The CDN
proxy has to renew the lease to receive further notifications. Mechanisms for CDNs must be scalable, requiring
the CDN proxies to cooperatively maintain consistency. Cooperative leases has been proposed as a scalable
mechanism for maintaining cache consistency in CDNs. [12, 11]. Each object is assigned a A parameter, which
indicates the time or the rate 1/A at which an origin server notifies interested CDN proxies of updates to that
object. This allows consistency to be relaxed implying that CDN proxy can be notified only once every A time
units, instead of after every update. Leases are cooperative, meaning that a CDN proxy acts as a leader for a
CDN proxy group for lease related interactions with an origin server. The leader is responsible for notifying the
other CDN proxies. This reduces both the state maintained at the origin server and the number of updates it
must send.

3.4. Data Management in Distributed Mobile Systems. Distributed Mobile Systems (DMS) are
distributed systems in which some nodes may be mobile and may have constraints. These constraints could
be battery or memory or computing power related. Data could either be stored on or be accessed from mobile
devices. Different kinds of management have been identified, with respect to the level of transparency to
applications in [54]. Client transparent adaptation allows applications to seamlessly access data without being
aware of mobility, with the system providing complete support. The other extreme is a laisse-faire model
in which adaptation is entirely at user level, with the system providing no support. There are a wealth of
strategies between the two extremes, that allow applications to be aware of mobility in varying degrees including
application aware adaptation and extended client server models.

Coda [74] was one of the early file systems that allows clients to seamlessly access information, an example of
client transparent adaptation. The main goal of Coda was to enable operations to be performed on a shared data
repository, even in the face of disconnected operations. Disconnections may be frequent in DMS. Venus is the
cache manager on each client that manages the cache, hiding mobility from the application. Venus caches volume
mappings, with a volume referring to a subtree of the Coda namespace. In the face of connected operations,
Coda uses server replication and callback based cache coherence to ensure session semantics (contents will be
latest when a session is starting and after it ends) for applications. During disconnections, Venus relies on
cache contents and propagates failure to application when a cache miss occurs. When disconnection ends, Coda
reverts back to server replication by using reintegration operations using logs.

Application aware adaption has been used in the Odyssey system [21]. Odyssey provides a clean separation
between the concerns of the system and the application: system monitors resource dynamics and notifies
applications if required, but retains control of resource allocation mechanism; while applications specify mapping
of resource levels to fidelity levels. Fidelity is defined as the degree to which client data matches with server’s.
It has multiple dimensions of consistency, frame rate and image quality for video data as well as resolution for
spatial data. Building a system that allows diverse fidelity levels necessitates type awareness - client code is
responsible for handling particular data types. This is achieved through the use of wardens, which are specialized
code components that encapsulate system level support at the client. Wardens are subordinate to Viceroy, which
is responsible for centralized resource management.

Odyssey is an example of client based application aware adaptation. Rover [13] is a system that allows
client-server adaptation. This means that some code required for adaption would also reside in server. Rover
uses the concept of Relocatable Dynamic Objects (RDOs) for data types handled by the application. The
application programmer splits the program containing RDOs into those that reside on the client and those that
run on servers. This requires that the adaptation code be resident on origin servers. Another approach has
been taken to avoid this, named as proxy based adaptation. The adaptation is done by the proxy, which acts
on behalf of clients. The Barwan project [30] is an example. Flexible client server model for application aware
adaptation has been proposed in the Bayou system [84]. It allows clients to read/write shared data. Conflicts
resolution is handled by using application specific dependency checks and merge procedures. It provides eventual
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consistency, an unbounded consistency mechanism that allows replicas to diverge, but be consistent after an
unspecified time.

3.5. Software Availability and Usage Summary. Globus is a widely used toolkit and is available as
an open source software. Stork is a research prototype, while GriPhyN and CERN have been deployed and
used. Akamai’s CDNs are widely deployed and used, while cooperative leases [12] is a research prototype. Coda
and Odyssey are the distributed mobile systems software that are widely deployed and used.

4. Large Scale Data Management Techniques.

4.1. P2P Data Management. We first give an overview of P2P file sharing systems starting from
the initial unstructured P2P systems such as Napster to super-peer systems such as Kazaa before discussing
structured P2P systems. We go on to discuss P2P storage management systems such as Oceanstore.

4.1.1. P2P File Sharing Systems. P2P as an area became popular only after the advent of Napster,
a file sharing system. Napster [57] was used for sharing music files. Meta-data about files is stored in a
global directory, which is stored in a centralized server. The meta-data stored information about music files
themselves, which were downloaded from peers. Gnutella [33] came up with a decentralized search protocol
for file sharing applications. Gnutella can be seen to be a purely decentralized unstructured P2P system. The
term “unstructured” refers to the lack of structure in the overlay, which is mostly a random graph. Search was
achieved by flooding the network or by using random walks. Freenet added a mechanism to route requests
to possible content locations, based on best effort semantics. Freenet also adds a notion of anonymity to the
data shared. The main advantage of the unstructured P2P systems was that complex queries could be easily
handled. By complex queries, we mean queries such as “get all nodes with processing speed > 3GHz and RAM
> 1GB and storage > 100GB”. This is because the query is sent to each node and evaluated explicitly. However,
deterministic guarantees for searching are difficult to provide in these systems.

Initial attempts at introducing structure to the overlay in P2P systems resulted in super-peer systems,
with some nodes (which have better capabilities) acting as super-peers. The other nodes act as clients to
the super-peers, which form a P2P overlay among themselves. Super-peers made searching more efficient for
complex queries, by exploiting the heterogeneous nature of nodes (some nodes have better capabilities and
more importantly, better connectivity than others). An example of a popular super-peer system is Kazaa
(http://www.kazaa.com). However, handling super-peer failures requires replicating super-peers (otherwise
the clients may become disconnected). K-replicas can be created in each cluster, resulting in reduced load on
the super-peers [93]. However, this may make replicas client aware. Other design issues in super-peer systems
include cluster size and dynamic layer management. A large cluster size is good for aggregate bandwidth, but
may create bottlenecks. A small cluster size avoids bottlenecks, but may reduce search efficiency. Dynamic
layer management allows nodes to play super-peer or client nodes adaptively, thereby making the super-peer
network more efficient [95].

The third generation of P2P systems introduced structure in the overlay network. The motivation came
from providing deterministic search guarantees, partitioning the load over the available machines effectively,
scaling to large numbers and achieving fault-tolerance. The Distributed Hash Table (DHT) was mainly used as
the structure for overlay formation. It was based on the Plaxton data structure [23]. Nodes are given identifiers
(ids) from an id space. Application objects are also given ids from the same space. The DHT provides a mapping
from the application object id (key) to the node id that is responsible for that key. Each node has a routing
table consisting of neighbours and performs routing functions to lookup objects. Various DHTs have been
proposed, each having different routing algorithms and routing table maintenance. Geometric interpretations
of DHTs have been given in [45] (but the focus of that paper was mainly to study the static resilience of DHTS).
Chord [40] is based on a ring, while Content Addressable Network (CAN) is based on a hypercube, Plaxton
data structure is based on a tree, while Pastry [69] is a hybrid geometry combining the tree and the ring. We
discuss some of these structured P2P systems in more detail below.

Chord provides the lookup abstraction of DHTs through the method: lookup(key) which maps a key to
a node responsible for it. Chord uses consistent hashing to assign m-bit identifiers to both Chord nodes and
application objects. The ids are arranged in a ring fashion (modulo 2™). A key k maps to the first node whose
id is equal to or follows k in the identifier space (this node is known as successor(k)). Each node maintains a
pointer to its successor in the ring. Routing proceeds along the ring till a key is straddled between two node
ids, with the second node id being the destination. Each node also maintains information on O(log(N)) (for
N nodes) other nodes in the form of a finger table in order to speed up routing. Even if nodes in the finger
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table were to fail, only efficiency is affected, but not correctness. As long as each node is able to connect to its
successor, routing is guaranteed to finish in O(log(V)) time.

CAN routes over a hypercube. Each CAN node stores a chunk (or zone) of the hash table. Each node also
stores information on adjacent zones in the table. This is again to speed up routing. Lookup requests for a
particular key are routed towards a CAN node whose zone contains that key. Requests are routed by correcting
bits (n bits for a n-dimensional hypercube). Generally tree based DHTs such as the Plaxton data structure
allow bits to be corrected in order (from MSB to LSB of key), while hypercube based DHTs allow bit correction
in any order. This makes routing more resilient to node/link failures.

Pastry can be viewed as having a hybrid geometry due to its use of tree based routing and ring like neighbour
formation. It provides a route abstraction to applications. The route(msg, key) ensures that the message with
a given id is routed to a node with the closest matching id as key among all live nodes. Each node keeps track
of its immediate neighbours in the node id space by maintaining leaf sets. They also store information about a
few other nodes that have prefix matching ids in the form of a routing table. Pastry takes into account network
locality in routing. This means that a given message will be routed to the nearest node that is alive and that has
the closest matching id as the key. Routing takes place by prefix matching, with each hop taking the message
one bit closer in the node id space, resulting in O(log(N)) hops.

4.1.2. P2P File Storage Systems. Ivy [56] is a read/write P2P file system that provides an NFS-like
abstraction for programmers. Ivy provides NFS-like semantics in a failure free environment. Under network
partitions and failures, Ivy uses logs to allow applications to detect and resolve conflicts. Ivy logs are specific to
each participant and host. The logs are stored in DHash, a DHT based P2P block storage system over which
Ivy is built. Participants can read other logs, but write only his/her log while updating the file system. Ivy uses
versioning vectors to detect conflicting updates and provides information to application level conflict resolvers.
Ivy system demonstrated a performance within 2-3 factor of NFS performance in a WAN testbed.

PAST [15] is an Internet based P2P storage utility. It offers persistent storage services, availability, security
and scalability. PAST provides insert, reclaim and retrieve operations on files. Since a file cannot be inserted
multiple times, files are assumed to be immutable in PAST. It must be noted that PAST is an extension of
Pastry to provide a file storage system. On insertion of a file into PAST, the file is routed by Pastry to k-nodes
with closest matching ids as the file id and that are alive. The set k£ will be diverse with respect to location,
capabilities and connectivity due to the randomization of the identifier space. File availability is ensured as
long as all k nodes do not fail simultaneously. It provides security using optional smartcards that are based on
a public-key cryptosystem.

Oceanstore [49] is an Internet based file system that provides persistence and availability of files by using
a two-tiered system. The upper tier consists of capable machines with good connectivity. These machines act
as an inner circle of servers for serializing updates. The lower tier consists of less capable machines which only
provide storage resources to the system. Pond [67] is an Oceanstore realization that provides fault tolerant
durable storage to applications. It uses erasure coding to store data. Erasure coding [20] is a technique that
allows a block to be split into m fragments, which are encoded into n fragments (n > m). The key property
of erasure coding is that it ensures that the block can be reconstructed from any m of the n coded fragments.
Oceanstore uses Tapestry [17], another DHT, to store the erasure coded fragments (based on fragment number
+ block id). Oceanstore uses primary copy replication to ensure consistency of file blocks. It handles read/write
data by a versioning mechanism in which any write operation creates a new version of the data. The problem
is then reduced to one of finding the most recent version of the file.

4.1.3. Observations. Ivy has the disadvantage that it leaves write conflict resolution to the application,
limiting the scalability. PAST provides a persistent caching and storage management layer on top of Pastry.
It provides insert, lookup and reclaim operations on files. However, it also assumes files are immutable, as files
cannot be inserted multiple times with the same id. Oceanstore’s versioning mechanism has not been proved
scalable. The evaluations on Oceanstore and Pond [67] have not considered conflicting write operations and
have assumed there is a single write per data block. Moreover, Oceanstore assumes an inner circle of reliable
servers to ensure consistency. Further, all the three storage systems (Ivy, PAST and Oceanstore) have been
built over DHTs. DHTs provide support for only limited queries (exact matching kind) and may not allow
application specific criterion for data placement. In the words of [47], virtualization (through DHTs) “destroys
locality and application specific information”. However, there have been recent efforts that enable DHTs to
handle advanced queries such as those handled in [18].
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4.2. P2P Extensions to DDBMS. A simplistic view of a traditional distributed database management
system is that it uses a centralized server to provide a global schema and ACID properties through transactions.
Several approaches have extended these techniques to work in a decentralized manner, to apply to Internet
or P2P systems. Active XML [9] provides dynamic XML documents over web services for distributed data
integration. It is a model for replicating (whole file) and distributing (parts of a file) XML documents by
introducing location aware queries in X-Path and X-Query. It also provides a framework by which peers
perform decentralized query processing in the presence of distribution and replication. It allows peers to
optimize localized query evaluation costs, by a series of replication steps.

Edutella [58] attempts to design and implement a schema based P2P infrastructure for the semantic web.
It uses W3C standards RDF and RDF Schema as the schema language to annotate resources on the web. It
uses RDF-QEL as an expressive query exchange language to retrieve the data stored in the P2P network. It
uses super-peer routing indices that include schema and other index information.

Piazza [83] is a peer data management system that facilitates decentralized sharing of heterogeneous data.
Each peer contributes schemas, mappings, data and/or computation. Piazza provides query answering capabil-
ities over a distributed collection of local schemas and pairwise mappings between them. It essentially provides
a schema mediation mechanism for data integration over a P2P system.

P2P Information Exchange and Retrieval (PIER) [38] is a P2P query engine for query processing in Internet
scale distributed systems. PIER provides a mechanism for scalable sharing and querying of finger print infor-
mation, used in network monitoring applications such as intrusion detection. It provides best effort results, as
achieving ACID properties may be difficult in Internet scale systems. The query engine does not assume data
is loaded into databases on all peers, but is available in their natural habitats in file systems. PIER is realized
over CAN, the hypercube based P2P system.

PeerDB [60] is an object management system that provides sophisticated searching capabilities. PeerDB is
realized over BestPeer [59], which provides P2P enabling technologies. PeerDB can be viewed as a network of
local databases on peers. It allows data sharing without a global schema by using meta-data for each relation
and attributes. The query proceeds in two phases: in the first phase, relations that match the user’s search
are returned by searching on neighbours. After the user selects the desired relations, the second phase begins,
where queries are directed to nodes containing the selected relations. Mobile agents are dispatched to perform
the queries in both phases.

4.3. Software Availability and Usage Summary. Gnutella and Napster have been widely deployed
and used. Chord is a research prototype that is also available as an open source software. Pastry is also available
as an open source software and has also been used widely. CAN and Ivy are research prototypes about which
deployment information is not available. PAST and Oceanstore are research prototypes that have been deployed
and used in the Planetlab testbed.

Edutella is available as an open source software. The authors do not have information on the deploy-
ment /availability on other research prototypes Piazza, PeerDB and Active XML. PIER has been deployed in
the Planetlab testbed.

5. State of the Art Data Management.
5.1. SID Techniques: State of the Art.

5.1.1. P2P Techniques in Grids. JuxMem [2] provides a data sharing service for grids by integrating
DSM concepts with P2P systems. It is realized over (Juxtapose) JXTA [34], an emerging framework for
developing P2P applications. JuxMem uses cluster advertisements to advertise the amount of memory each
peer can provide to the global storage. It is organized into a federation of clusters, with each cluster having
a Cluster Manager (CM). The CM is responsible for storing all cluster advertisements in its group. The CMs
across clusters form a DHT. Actually, the amount of memory provided in the cluster advertisement is hashed
and the CM with the closest matching id in the DHT stores this advertisement. When a client asks for a block
of memory with a given rounded size (fixed sized blocks can only be supported), the size is hashed and the
cluster advertisement which provides that size is retrieved from the CM with the closest matching id. The
cluster advertisement has the details of the actual storage provider. Recent extensions to JuxMem [14] provide
mechanisms to decouple consistency protocols from fault-tolerance mechanisms. This allows the use of standard
DSM consistency protocols to integrate fault-tolerance components. In particular, DSM consistency schemes
such as home based consistency [41] which assume a single home node for serializing concurrent writes, can be
made fault-tolerant by having a group of nodes as the home node. This requires group membership protocols, as
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well as an atomic multicast protocol, which is achieved by using consensus protocols based on Failure Detectors
(FDs) [26]. The data sharing mechanisms of JuxMem have only been evaluated at the cluster level.

The replica location problem has been addressed in grids using P2P concepts in [5]. It proposes a P2P
realization of the Replica Location Service (RLS), a key component of data grids. The Logical File Name (LFN)
is hashed to give the identifier for a replica. The node with the closest matching id as the LFN hash contains
the LFN to Physical File Name (PFN) mapping. This is the meta-data stored in RLS for file lookup. It also
proposes an update protocol to handle consistency of meta-data. The RLS realization is based on Kademlia
[63]. Kademlia is a structured P2P system that uses a novel XOR metric for routing distance between two
nodes is defined as the eXclusive OR (XOR) of their numeric ids. A Kademlia node forms log(n) neighbours,
where neighbour i is at XOR distance [2¢, 2¢+1]. The neighbour set is same as that formed by a tree based DHT
PRR [23]. Even the failure-free routing in Kademlia is similar to PRR, in that bits are corrected from left to
right. However, in the case of failures, XOR metric allows bits to be corrected in any order. This implies that
the static resilience? of Kademlia is better compared to PRR [45].

5.1.2. Replica Placement in CDNs. Optimal placement of replicas in CDNs is a non-trivial task and
has not been addressed. QoS aware replica placement was proposed in [92] to meet QoS requirements of
clients with the objective of minimizing the replication cost. The replication cost includes cost of storage and
consistency management, while QoS is specified in terms of distance metrics such as hop count. Two problems
are formulated: Replica-aware and Replica-blind. In replica-aware model, the CDN servers are aware of where
object replicas are stored in the CDN network. This helps the servers to redirect client requests to the nearest
replica. In the replica blind model, application or network level routing ensures client requests are routed to
CDN servers, with servers being transparent to replica location. Each replica (CDN server) serves requests
coming to it. Dynamic programming techniques are used to arrive at near optimal solutions for the optimal
replica placement problem, which is shown to be NP-complete.

5.1.3. Distributed Mobile Storage System. Segank [80] provides an abstraction of a shared storage
system for heterogeneous storage elements. The motivation was that traditional mechanisms for managing data
in distributed mobile environments such as Coda and Bayou, have time consuming merge operations. In Coda,
updates are released to the server before becoming visible on clients. If servers are physically far away, this
could increase the time after which updates become visible. Bayou uses full replication, leading to potentially
expensive merge operations. Segank handles data location problem when data could be located on any subset of
devices, by using a location and topology sensitive multicast-like (named as segankcast) operation. It allows lazy
P2P propagation of invalidation information to handle consistency of replicated data. It also uses a distributed
snapshot mechanism to ensure a consistent image across all devices for backup. It must be observed that
Segank uses only unstructured P2P system concepts. This implies that Segank cannot provide deterministic
search guarantees.

5.2. Large Scale Data Management: State of the Art. We shall explain the current state of the art
in P2P data management along four directions: integrating structured and unstructured P2P systems providing
Quality of Service (QoS) guarantees in P2P systems, composable consistency for P2P systems and large scale
DHT deployment. We also explain the state of the art in P2P DBMS.

5.2.1. Integrating Structured and Unstructured P2P Systems. An attempt has been made in [55]
to improve structured P2P systems along three directions where they were traditionally known to perform
worse compared to unstructured P2P systems: handling churn, exploiting heterogeneity and handling complex
queries. In P2P systems, node/network dynamics resulting in routing-table updates and/or data movement is
known as churn. The paper [55] shows that MS Pastry, an implementation of Pastry, can handle churn well
by using a periodic routing table maintenance protocol. This protocol updates failed routing table entries. It
also has a passive routing table repair protocol. They demonstrate that by exploiting structure, MS Pastry
can handle churn better than unstructured P2P systems. Heterogeneity is difficult to handle in structured P2P
systems due to constraints on data placement and neighbour selection. MS Pastry handles heterogeneity in
two ways: one by using super-peer concepts; second, by modifying neighbour selection to handle capacity. MS
Pastry is also extended to handle complex queries by introducing new techniques for flooding or random walks.
Flooding is achieved by sending the message to all nodes in the routing table. Random walk is achieved by using
a tag containing the set of nodes to visit, a queue of nodes in the routing table row and a bound on number
of rows to traverse. A few other efforts have also been made recently to make structured P2P systems handle

2Static Resilience measures the goodness of a DHT routing algorithm before recovery mechanisms take effect
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range queries [16], multi-dimensional queries [65] as well a query algebra [73]. A Scalable Wide Area Resource
Discovery (SWORD) [62] has been built to realize resource discovery over WANs by supporting multi-attribute
range queries over DHTs.

Another approach to integrate structured and unstructured P2P systems has been made in the Vishwa
computing grid middleware [53]. Vishwa uses the task management layer to handle initial task deployment
and load adaptability of the tasks. The task management layer is realized using unstructured P2P concepts
and allows capability based resource clustering. The reconfiguration layer of Vishwa is realized as a structured
P2P layer and stores information needed to handle node/network failures. The two layered architecture has
also been used for data management in Virat [1, 7]. Virat provides a shared object space abstraction over a
wide-area distributed system. Virat has been extended to a replica management middleware for P2P systems
[8]. The unstructured layer forms neighbours based on node capabilities (in terms of processing power, memory
available, storage capacity and load conditions). A structured DHT is built over this unstructured layer by using
the concept of virtual nodes. Virat achieves dynamic replica placement on nodes with given capabilities, which
would be very useful in computing/data grids. Detailed performance comparison is also made with a replica
mechanism realized over OpenDHT [68], a state of the art structured P2P system. It has been demonstrated
that the 99th percentile response time for Virat does not exceed 600 ms, whereas for OpenDHT, it goes beyond
2000 ms in an Internet testbed.

5.2.2. Composable Consistency for P2P Systems. A flexible consistency model known as compos-
able consistency suitable for a variety of P2P applications has been proposed in [72]. The authors have initially
surveyed consistency requirements for P2P applications such as personal file access, real time collaboration
and database or directory services. The survey showed that different applications need different semantics
for read/write and for replica divergence. The main contribution of [72] is the classification of consistency
requirements along five orthogonal dimensions: concurrency—degree of conflicting read/write access; replica
synchronization—degree of replica divergence; failure handling—data access semantics in the presence of inac-
cessible replicas; update visibility - time after which local updates may be made globally visible; view isolation
time after which remote updates must be made locally visible. A rich collection of consistency semantics for
shared data can be composed by combining the above five options. Performance studies have shown that com-
posable consistency in the Swarm system outperforms CoDA [74] in a file sharing scenario, while for a replicated
BerkeleyDB database, it provides different consistency mechanisms from strong to time-based.

5.2.3. Providing QoS Guarantees in P2P Systems. Guaranteeing Quality of Service (QoS) parame-
ters such as response time or throughput in P2P systems is a challenging task. An initial attempt was made in
[70] at using P2P system concepts for Domain Name System (DNS), which requires efficient data location. It
showed that though P2P DNS could provide better fault-tolerance than conventional DNS, lookup performance
of O(log(N)) provided by DHTs was far worse compared to conventional DNS. Cooperative DNS (CoDoNS) [89]
was proposed to tackle three problems of conventional DNS: susceptibility to Denial of Service (DoS) attacks;
lookup delays, especially for flash crowds; lack of cache coherency, preventing quick service relocation in emer-
gencies. CoDoNS has been proposed as a backward compatible replacement for conventional DNS. It provides
O(1) lookup time by using the proactive caching layer of Beehive [88]. Beehive enables DHTs to achieve O(1)
lookup performance by proactive replication. Traditionally, prefix matching DHTs store an application object at
the closest matching node, with each routing step successively matching prefixes, resulting in O(log(N)) lookup
performance. By aggressively caching the object all along the lookup path, Beehive achieves O(1) lookup per-
formance for that object. Since, Beehive associates different replication levels for different application objects,
an average lookup performance of O(1) is achieved. CoDoNS builds a DNS based on a self-organizing P2P
overlay formed across organizations (if each organization can provide a server for CoDoNS). CoDoNS associates
a domain name with the node having the closest matching id as the domain name’s hashed id. If the home
node fails, the node with the next best matching id takes over as the home node for that particular domain.
Performance studies over PlanetLab testbed show that CoDoNS achieves lower lookup latencies, can handle
slashdot effects and can quickly disseminate updates. However, the use of DHTs as the basis leaves CoDoNS
vulnerable to network partitions. For example, if an organization is partitioned from the outside world, while
conventional DNS would ensure that local lookups worked correctly, with CoDoNS even local lookups may fail
(DHT lookup may go outside the local network even for local lookups —stretch property of DHTSs). This suggests
that SkipNets [35] may be a better choice for realizing DNS than DHTs. This is because data in SkipNets is
organized by using string names which guarantees routing locality. This is in addition to the normal numeric
identifier based organization used in DHTs.
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5.2.4. Large Scale Deployment. OpenDHT [68] is a public large scale DHT deployment that allows
clients to use DHTs without having to deploy them. It provides a shared storage space abstraction using the
get and put primitives. The main motivation for OpenDHT is that it is hard to deploy long running distributed
system services, especially in the public domain. OpenDHT is deployed on PlanetLab (http://www.planet-
lab.org/), a global testbed for deploying planetary scale services. OpenDHT is deployed on infrastructure nodes
which alone participate in DHT routing and storage. Clients only use the storage space through the get and
put interface on gateway (infrastructure) nodes. OpenDHT allows different mutually untrusting applications to
share the DHT. It ensures that clients get a fair share of storage resources without imposing arbitrary quotas—a
trade-off between fairness and flexibility. This is achieved by associating a Time-to-Live (TTL) with application
objects and letting them expire if clients do not renew them. OpenDHT provides storage abstraction of DHTs
in contrast to the lookup abstraction of Chord or the routing abstraction of Pastry.

It is realized over Bamboo DHT (bamboo-dht.org), that is similar to Pastry but has differences in handling
node dynamics. OpenDHT is not a shared object space. The level of abstraction provided to programmer is
different. For instance, the programmer has to take care of object serialization, RTTI (runtime type inferencing)
etc. to realize an object storage on top of the byte storage that OpenDHT provides. OpenDHT provides limited
counsistency for the shared byte space. Conflict resolution (for concurrent writes) is left to the application,
similar to the Bayou system that ensures “eventual consistency”, a very loose form of consistency. But conflict
resolution is a non-trivial task for the application programmer. The performance of OpenDHT (especially worst
case response time) suffers due to the presence of stragglers or slow nodes. This has been improved by using
delay aware and iterative routing in [71].

5.2.5. State of the Art P2P DDBMS. Atlas P2P Architecture (APPA) [86] is the current state of the
art data management solution for large scale P2P systems. It uses a three layered architecture, with the P2P
network forming the lowest layer. This layer could be realized using unstructured or structured or super-peer
based P2P concepts. Above this layer, the basic P2P services layer is built. This provides P2P data sharing and
retrieving (key based) in the P2P network, support for peer communication, support for peer dynamics (join
and leave) and group membership management. Over the basic services layer advanced P2P data management
services such as schema management, replication, query processing and security are built. The shared data is
in XML format and queries expressed in X-Queries in order to make use of web services. It is realized over
JXTA. Tt provides replica management by extending traditional centralized log based reconciliation techniques
for P2P systems. It assumes the existence of a shared storage space for distributed reconciliation by peers.
This requires consensus protocols for realization and may be expensive. It has not been evaluated in large scale
systems.

A recent effort has been made to provide a middleware based data replication scheme in [94] by using
Snapshot Isolation (SI) as the isolation level. In SI based DBMS, read operations of a transaction T are handled
from a snapshot of the database (set of committed transactions when T started). This implies read operations
never conflict with write operations and only write-write conflicts can occur, resulting in more concurrency and
consequently better performance. It has been proposed at the cluster level and may not be applicable for P2P
systems due to its strong assumption of a totally ordered multicast.

5.3. Software Availability and Usage Summary. Juxmem and Segank are research prototypes. De-
ployment information on Structella is not available. Vishwa and Virat are research prototypes that are available
as open binaries. OpenDHT has been deployed on the Planetlab testbed and is also available as an open source
software. APPA is a research prototype.

6. Conclusions. We have presented a scalability taxonomy of data management solutions in distributed
systems. We group data management work done in DSMs and shared object spaces in the Centralized /Naively
Distributed (CND) data management category. The Sophisticated/Intermediate Data (SID) management tech-
niques include data management in grid computing systems and data grids as well as Content Distribution
Networks (CDNs) and data management in distributed mobile systems. These solutions scale better than CND
techniques by using distributed data management, instead of centralized approaches. They however, assume
an inner set of reliable servers which take care of consistency and reliability issues. However, in order to take
the data management services to the edges of the Internet, Large Scale Data (LSD) management techniques
make use of P2P concepts. They consequently provide better scalability and fault-tolerance, but at the cost of
relaxing consistency (most approaches provide probabilistic guarantees or eventual consistency).

The taxonomy is depicted in figure 6.1. The figure shows the state of the art efforts in orange color and the
possible future directions also in blue. The future directions are detailed below.
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It can be observed that LSD techniques such as Virat [8] handle large number of small data objects. The
case of handling large number of large data objects arises when existing data grids become purely P2P; instead
of using SID techniques. The existing LSD techniques may not work in this case, as the size of data objects calls
for special mechanisms to handle some operations including updates. Incremental updates or function shipping
in combination with LSD data management techniques may have to be explored.

Another interesting avenue for exploration is the use of LSD techniques combined with node mobility. The
solutions which have been proposed for handling data management in distributed mobile systems do not use
P2P concepts, but assume the presence of reliable servers that handle mobile client requests. When mobile
nodes form the P2P overlay, churn could be very high due to node mobility. This, coupled with the device
constraints, may open up a wealth of research questions.

Optimal data placement techniques which have been proposed for CDNs [92] can be used in P2P grids.
Existing data management techniques in grids (or even P2P grids such as P-Grid [46]) do not address optimal
replica placement issues. The work [8] provides heuristics for replica placement in P2P grids. But placement of
replicas may not be exactly optimal. Thus, we see that techniques for data management in one category can
be applied to others to open up research in large scale data management.
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