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t.A number of information systems 
an be des
ribed as a set of intera
ting entities, whi
h must follow intera
tion proto
ols.These proto
ols determine the behaviour and the properties of the overall system, hen
e it is of the uttermost importan
e that theentities behave in a 
onformant manner.A typi
al 
ase is that of multi-agent systems, 
omposed of a plurality of agents without a 
entralized 
ontrol. Complian
eto proto
ols 
an be hardwired in agent programs; however, this requires that only �
erti�ed� agents intera
t. In open systems,
omposed of autonomous and heterogeneous entities whose internal stru
ture is, in general, not a

essible (open agent so
ietiesbeing, again, a prominent example) intera
tion proto
ols should be spe
i�ed in terms of the observable behaviour, and 
omplian
eshould be veri�ed by an external entity.In this paper, we propose a Java-Prolog-CHR system for veri�
ation of 
omplian
e of 
omputational entities to proto
olsspe
i�ed in a logi
-based formalism (So
ial Integrity Constraints). We also show the appli
ation of the formalism and the systemto the spe
i�
ation and veri�
ation of three di�erent s
enarios: two spe
i�
ations show the feasibility of our approa
h in the
ontext of Multi Agent Systems (FIPA Contra
t-Net Proto
ol and Semi-Open so
ieties), while a third spe
i�
ation applies to thespe
i�
ation of a lower level proto
ol (Open-Conne
tion phase of the TCP proto
ol).1. Introdu
tion. Many information systems 
an be des
ribed as a set of mutually independent, intera
tingentities. A typi
al example is that of multi-agent systems. In su
h a s
enario the intera
tion is usually subje
tto some kind of intera
tion proto
ols, whi
h the agents should respe
t when intera
ting. This raises the obviousproblem of verifying that intera
tion proto
ols are a
tually followed.It is possible to design agents so that they will �spontaneously� 
omply to proto
ols, and, if possible,formally verify that at design time. For instan
e, in [13℄, Endriss et al. propose an approa
h where proto
olsare �imported� into individual agent poli
ies.However, this approa
h is not viable in open1 agent so
ieties, where intera
ting agents are autonomous andheterogeneous and, in general, their internal stru
ture 
annot be a

essed. In this 
ase, agents should be 
he
kedfor 
omplian
e to intera
tion proto
ols based on their observable behaviour, by a trusted external entity.In previous work [5℄, we proposed a 
omputational logi
-based formalism (based upon So
ial IntegrityConstraints, SICs) to spe
ify intera
tion proto
ols. So
ial Integrity Constraints are meant to 
onstrain the agentobservable behaviour rather than agents' internal (mental) state or poli
ies. In other words, this approa
h doesnot restri
t an agent's a

ess to so
ieties based on its internal stru
ture; regardless of its poli
ies, any agent 
ansu

essfully intera
t in a so
iety ruled by SICs, as long as its behaviour is 
ompliant. The formal semanti
s ofSo
ial Integrity Constraints [4℄ is based on abdu
tive logi
 programming [18℄.The purpose of this paper is to demonstrate the viability of So
ial Integrity Constraints as a formalism tospe
ify intera
tion between 
omputational entities, in
luding, but not limited to, agents in open so
ieties. Wewill use a modi�ed version of So
ial Integrity Constraints, whi
h better �ts our needs in terms of both simpli
ityof presentation, and expressiveness.The paper is stru
tured as follows. In Se
t. 2, we introdu
e the version of So
ial Integrity Constraints usedin this work, giving their syntax and an informal explanation of their semanti
s.In Se
t. 3 we spe
ify in terms of SICs a 
ontra
t net-based proto
ol for resour
e allo
ation and negotiationin multi-agent systems, 
alled FIPA CNP, and in Se
t. 4 we spe
ify a proto
ol for entering �semi-open� so
ieties,i. e., virtual environments 
hara
terized by the presen
e of a �gatekeeper� agent and a proto
ol that governs theagents' a

ess to the so
iety. In Se
t. 5 we demonstrate the usage of SICs to spe
ify a network 
ommuni
ationproto
ol, namely the three-way handshake opening of the TCP Internet Proto
ol.The arti
le ends with the presentation of the 
omplian
e veri�
ation system (Se
t. 6), and some notes aboutits Java+Prolog implementation.
∗This arti
le is an extended version of the one by Alberti, Daolio, Gavanelli, Lamma, Mello, and Torroni, published in Haddad,Omi
ini, and Wainwright, eds., Pro
eedings of the 19th ACM Symposium on Applied Computing, SAC 2004, Spe
ial Tra
k onAgents, Intera
tions, Mobility, and Systems (AIMS). Ni
osa, Cyprus, Mar
h 14-17, 2004. pp. 72-78. ACM Press (2004).
1We intend openness in so
ieties of agents as Artikis, Pitt and Sergot [7℄, where agents 
an be heterogeneous and possiblynon-
ooperative. 1
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ial Integrity Constraints. We distinguish between a
tual behaviour (happened events) and desiredbehaviour (expe
tations), sin
e in non-ideal situations they do not always 
oin
ide. In this se
tion, we let thereader get a
quainted with our representation of events and we introdu
e So
ial Integrity Constraints (SICs) asa formalism used to express whi
h expe
tations are generated as 
onsequen
e of happened events.Happened Events and Expe
tations. Happened events are in the form
H(Description,Time)where Des
ription is a term (as intended in logi
 programming, see [20℄) representing the event that hashappened, and Time is an integer number representing the time at whi
h the event has happened. For example,

H(request(ai, aj, give(10$), d1), 7)represents the fa
t that agent ai requested agent aj to give 10$, in the 
ontext of intera
tion d1 (dialogueidenti�er) at time 7.All happened events form the history of a so
iety. Given the history of a so
iety at a given time, someevents will have to happen in order for intera
tion proto
ols to be satis�ed: we represent su
h events by meansof expe
tations, whi
h 
an be positive or negative. Positive expe
tations are of the form
E(Description,Time)and represent an event that is expe
ted to happen (typi
ally, an a
tion that an agent is expe
ted to take).Negative expe
tations are of the form

EN(Description,Time)and represent the fa
t that an event is expe
ted not to happen.Expe
tations may (and, typi
ally, will) 
ontain variables, to re�e
t the fa
t that the expe
ted event is notfully spe
i�ed; however, CLP [17℄ 
onstraints 
an be imposed on variables to restri
t their domain. For instan
e,
E(a

ept(ak, aj , give(M), d2), Ta) : M ≥ 10, Ta ≤ 15 (2.1)represents the expe
tation for agent ak to a

ept giving agent aj an amount M of money, in the 
ontext ofintera
tion d2 at time Ta; moreover, M is expe
ted to be at least 10$, and Ta to be at most 15.Sin
e we impose no restri
tions on the Des
ription term of an expe
tation, expe
tations 
an regard any kindof event that 
an be expressed by a Prolog-like term. However, expe
tations only regard point-time events; thusit is not possible to express 
on
isely that some proposition is expe
ted to be true along a given time interval.Sin
e we make no assumptions about the agents' internal stru
ture or poli
ies, their behaviour may or maynot satisfy expe
tations. We represent these two 
ases by means of the notions of ful�llment and violation. Wesay that an event mat
hes an expe
tation if and only if:

• their 
ontents unify (à la Prolog);
• all relevant CLP 
onstraints on variables (if any) are satis�ed.A positive expe
tation 
an get ful�lled by a mat
hing event, whereas a negative expe
tation 
an get violated bya mat
hing event.For instan
e, event

H(a

ept(ak, aj , give(20), d2), 15)ful�lls expe
tation (2.1); the same event would, instead, violate a negative expe
tations with the same 
ontentand CLP 
onstraints.If we assume at some point that no more events will ever o

ur, we say that the history is 
losed. In that
ase, all positive expe
tations that are not ful�lled are violated, and all negative expe
tations that are notviolated are ful�lled.
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tion Proto
ols 3Table 2.1BNF syntax of So
ial Integrity ConstraintsSIC::=χ → φ
χ::=EventLiteral [∧ EventLiteral℄∗ [:CList℄
φ::=PriorityLevel [⇒ PriorityLevel℄∗PriorityLevel::=HeadDisjun
t [∨ HeadDisjun
t℄∗, PEventLiteral::=H(Term,T)HeadDisjun
t::=Expe
tation [∧ Expe
tation℄∗ [:CList℄Expe
tation::=E(Term,T) | EN(Term,T)So
ial Integrity Constraints. The way expe
tations are generated, given a (partial) history of a so
iety,is spe
i�ed by So
ial Integrity Constraints (SICs). In this arti
le, we adopt a modi�ed version of the SICsintrodu
ed in [2℄ (we dis
uss and motivate su
h modi�
ations in Se
t. 7).Table 2.1 reports the BNF syntax of SICs. Term is a logi
 programming term [20℄, P is an integer numberand T is a variable symbol or integer number. CList is a 
onjun
tion of CLP 
onstraints on variables.SICs are a kind of forward rules, stating what expe
tations should be generated on the basis of happenedevents. By means of SICs, it is possible to express that 
onjun
tions of expe
tations (HeadDisjun
ts in Table2.1) are alternative, and it is also possible to assign a priority, represented by an integer number, to ea
h list ofalternatives (PriorityLevels in Table 2.1).For instan
e, the following SIC:

H(e0, T0) ∧ H(e1, T1) : T0 < T1

→ E(e2, T2) : T2 < T1 ∨EN(e3, T3) : T3 < T0, 1

⇒ E(e4, T4) : T4 < T0, 2

(2.2)means that, if e0 happens before e1, then either of the two 
ases below hold:
• e2 should have happened before e1 or e3 should not have happened before e0,
• e4 should have happened before e0;and the �rst 
ase has higher priority than (or is preferred to) the se
ond one. Intuitively, a SIC means that,when a set of events mat
hing its body happens, then at least one of the �priority levels� in its 
on
lusionshould be satis�ed (the higher the priority, the better). In this 
ase, we say that the SIC is ful�lled ; otherwise,it is violated. While priorities have no e�e
t upon the ful�llment status of the so
iety, they 
ould instead beused by a possible 
omputational entity representing the so
iety to guide its members' behaviour towards somepreferred state. This 
an be useful when expe
tations are a

ounted for by agents deliberating about futurea
tions. At ea
h point in time there are in general several equally ful�lled sets of expe
tations. But if someare more preferred to others, an imaginary �so
ial reasoner� whi
h produ
es expe
tations based on events 
ouldthen evaluate and 
hoose whi
h sets of expe
tations better �t its goals, and transmit only them to the so
ietymembers. If su
h members take expe
tations into a

ount, the whole so
iety 
ould evolve towards preferredstates.The expe
tations in SIC (2.2) regard events that should have (or have not) happened before the time ofthe event that raises them: we 
all this kind of expe
tations ba
kward. Expe
tations that regard events thatare expe
ted to happen (or not to happen) after the event that raises them are named forward. We restri
tthe possible SICs by requiring that they 
ontain only either ba
kward expe
tations or forward expe
tations:in the �rst 
ase, we will 
all the SIC ba
kward, in the se
ond 
ase forward. We dis
uss this restri
tion inSe
t. 7.3. Spe
i�
ation of the FIPA Contra
t-Net. FIPA-CNP [1℄ is a proto
ol based on FIPA-ACL [14℄de�ned for regulating transa
tions between entities by negotiation. The proto
ol �ow, represented as an AUML[21℄ diagram in Fig. 3.1, starts with an Initiator whi
h issues a request for a resour
e (
fp, standing for 
allfor proposals) to other Parti
ipants. The Parti
ipants 
an reply by proposing a pri
e that satis�es the request(propose), or by refusing the request altogether (refuse). The Initiator must a

ept (a

ept-proposal) or reje
t(reje
t-proposal) the re
eived proposals. A Parti
ipant whose proposal has been a

epted must, by a givendeadline, inform the Initiator that it has provided the resour
e (by sending an inform-done message, or a moreinformative inform-result message) or that it has failed to provide it (failure).
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Fig. 3.1. FIPA-Contra
t-Net Intera
tion Proto
ol (AUML Diagram)3.1. De�nition by So
ial Integrity Constraints. The whole set of SICs used to de�ne FIPA-CN is
omposed of 14 ba
kward SICs and 3 forward SICs. This 
hoi
e of SICs is obviously not the only possibility.We are 
urrently investigating a general mapping of AUML proto
ol diagrams and other graphi
al formalismsto SICs, so as to allow for an automati
 translation. Some progress in this sense has been done with the GOSpelgraphi
 language [10℄ in the health 
are appli
ation domain.In the SICs in the remainder of this se
tion, I will represent the initiator, P a parti
ipant, R the resour
e,
Q the pri
e, D the dialogue identi�er, S the explanation of a result, and T, T1, . . . the time. We will not usepriority levels.Ba
kward SICs. Ba
kward SICs are used to express that an a
tion is only allowed if some other events have(not) o

urred before.SICs (3.1) and (3.2) state that propose and refuse are only allowed in reply to a 
fp.

H(tell(P, I, propose(R, Q), D), T ) →

E(tell(I, P, 
fp(R), D), T1) : T1 < T
(3.1)

H(tell(P, I, refuse(R), D), T ) →

E(tell(I, P, 
fp(R), D), T1) : T1 < T
(3.2)SICs (3.3) and (3.4) express mutual ex
lusion between propose and refuse.

H(tell(P, I, propose(R, Q), D), T ) →

EN(tell(P, I, refuse(R), D), T1) : T1 ≤ T
(3.3)
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H(tell(P, I, refuse(R), D), T ) →

EN(tell(P, I, propose(R, Q), D), T1) : T1 ≤ T
(3.4)SICs (3.5) and (3.6) state that a

ept-proposal and reje
t-proposal are only allowed in reply to a propose.

H(tell(I, P, a

ept-proposal(R, Q), D), T ) →

E(tell(P, I, propose(R, Q), D), T1) : T1 < T
(3.5)

H(tell(I, P, reje
t-proposal(R, Q), D), T ) →

E(tell(P, I, propose(R, Q), D), T1) : T1 < T
(3.6)SICs (3.7) and (3.8) express mutual ex
lusion between a

ept-proposal and reje
t-proposal.

H(tell(I, P, a

ept-proposal(R, Q), D), T ) →

EN(tell(I, P, reje
t-proposal(R, Q), D), T1) : T1 ≤ T
(3.7)

H(tell(I, P, reje
t-proposal(R, Q), D), T ) →

EN(tell(I, P, a

ept-proposal(R, Q), D), T1) : T1 ≤ T
(3.8)SICs (3.9), (3.10) and (3.11) say that inform-done, inform-result and failure are only allowed in reply to ana

ept-proposal.

H(tell(P, I, inform-done(R), D), T ) →

E(tell(I, P, a

ept-proposal(R, Q), D), T1) : T1 < T
(3.9)

H(tell(P, I, inform-result(R, S), D), T ) →

E(tell(I, P, a

ept-proposal(R, Q), D), T1) : T1 < T
(3.10)

H(tell(P, I, failure(R), D), T ) →

E(tell(I, P, a

ept-proposal(R, Q), D), T1) : T1 < T
(3.11)SICs (3.12), (3.13) and (3.14) express mutual ex
lusion between inform-done, inform-result and failure.

H(tell(P, I, inform-done(R), D), T ) →

EN(tell(P, I, failure(R), D), T1) : T1 ≤ T ∧

EN(tell(P, I, inform-result(R, S), D), T1) : T1 ≤ T

(3.12)
H(tell(P, I, inform-result(R, S), D), T ) →

EN(tell(P, I, failure(R), D), T1) : T1 ≤ T ∧

EN(tell(P, I, inform-done(R), D), T1) : T1 ≤ T

(3.13)
H(tell(P, I, failure(R), D), T ) →

EN(tell(P, I, inform-done(R), D), T1) : T1 ≤ T ∧

EN(tell(P, I, inform-result(R, S), D), T1) : T1 ≤ T

(3.14)
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eiving a 
fp, a Parti
ipant is expe
ted to issue a propose or arefuse by 200 time units.2
H(tell(I, P, 
fp(R), D), T ) →

E(tell(P, I, propose(R, Q), D), T1) : T1 < T + 200 ∨

E(tell(P, I, refuse(R), D), T2) : T2 < T + 200

(3.15)SIC (3.16) states that the Initiator is expe
ted to reply to a propose with an a

ept-proposal or a reje
t-proposalby 200 
lo
k ti
ks.
H(tell(P, I, propose(R, Q), D), T ) →

E(tell(I, P, a

ept-proposal(R, Q), D), T1) : T1 < T + 200∨

E(tell(I, P, reje
t-proposal(R, Q), D), T2) : T2 < T + 200

(3.16)SIC (3.17) states that a Parti
ipant is expe
ted to reply to an a

ept-proposal with an inform-done, aninform-result or a failure by 200 
lo
k ti
ks.
H(tell(I, P, a

ept-proposal(R, Q), D), T ) →

E(tell(P, I, inform-done(R), D), T1) : T1 < T + 200∨

E(tell(P, I, inform-result(R, S), D), T2) : T2 < T + 200∨

E(tell(P, I, failure(R), D), T2) : T2 < T + 200

(3.17)Note that, in all the three 
ases, ba
kward SICs make the alternative expe
tations mutually ex
lusive.4. Spe
i�
ation of a semi-open so
iety a

ess proto
ol. A

ording to [11℄, so
ieties 
an be 
lassi�edinto 4 groups, ea
h 
hara
terized by a di�erent degree of openness. In the following, we give an example of howour framework 
an model a semi-open so
iety, i. e., a so
iety that 
an be joined by an agent exe
uting an a

essproto
ol. In this example we imagine that a spe
ial gatekeeper agent is in 
harge of re
eiving joining requests,and it requests agents willing to enter to �ll in some registration form.The a

ess proto
ol is de�ned by the following SICs, in whi
h C represents the name of an agent willing tojoin in:
H(tell(C, gatekeeper, ask(register), D), T ) →

E(tell(gatekeeper, C, ask(form), D), T1) : T1 < T + 10
(4.1)

H(tell(C, gatekeeper, ask(register), D), T )∧

H(tell(gatekeeper, C, ask(form), D), T1) ∧ T < T1 →

E(tell(C, gatekeeper, send(form, F ), D), T2) : T2 < T1 + 10

(4.2)
H(tell(gatekeeper, C, ask(form), D), T1)∧

H(tell(C, gatekeeper, send(form, F ), D), T2) ∧ T1 < T2 →

E(tell(gatekeeper, C, accept(register), D), T3) : T3 < T2 + 10 ∨

E(tell(gatekeeper, C, reject(register), D), T3) : T3 < T2 + 10

(4.3)SIC (4.1) says: if C asks gatekeeper to join the so
iety (register), then the gatekeeper should ask for aregistration form; SIC (4.2) imposes that, after the �rst two messages, the agent should provide the form;and SIC (4.3) says that, after re
eiving the form, the gatekeeper should either accept or reject the registrationrequest.
2Time unit is an abstra
t 
on
ept, whose instantiation a
tually depends on the appli
ation. A time unit may represent forexample a 
lo
k ti
k, or a transa
tion time.
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ols 7For the sake of simpli
ity, in the sequel we assume that member agents do not leave the so
iety. Then, thepresen
e in the history of an event of type:
H(tell(gatekeeper, C, accept(register), D), T )
an be regarded as C's �formal� a
t of �membership�, and it 
an be used in SICs as a 
ondition for generatingexpe
tations.For instan
e, SIC (3.15) from the FIPA-CNP (Se
t. 3.1) 
ould be modi�ed as follows to take membershipinto a

ount:

H(tell(gatekeeper, I, accept(register), D), TI)∧

H(tell(I, P, 
fp(R), D), T ) →

E(tell(P, I, propose(R, Q), D), T1) : T1 < T + 200 ∨

E(tell(P, I, refuse(R), D), T2) : T2 < T + 200

(4.4)5. Spe
i�
ation of the TCP proto
ol opening phase. In this se
tion, we present a spe
i�
ation of theopen-
onne
tion phase of the TCP proto
ol. We will fo
us on the well known �three-way handshake� opening,summarized below:1. a peer A sends to another peer B a syn segment;32. B replies by a
knowledging (with an a
k segment) A's syn segment, and by sending a syn segment inturn;3. A a
knowledges B's syn segment with a a
k segment, and starts sending data.The following two integrity 
onstraints des
ribe su
h a proto
ol:
H(tell(A, B, t
p(syn,null, NSynA, AckNumber), D), T 1) →

E(tell(B, A, t
p(syn, a
k, NSynB, NSynAAck), D), T 2) :

NSynAAck = NSynA + 1 ∧ T 2 > T 1.

(5.1)SIC 5.1 says that if A sends to B a syn segment, whose sequen
e number is NSynA, then B is expe
ted tosend to A an a
k segment, whose a
knowledgment number is NSynA + 1, at a later time.
H(tell(A, B, t
p(syn,null, NSynA, AckNumber), D), T 1)

∧ H(tell(B, A, t
p(syn, a
k, NSynB, NSynAAck), D), T 2) :

T 2 > T 1 ∧ NSynAAck = NSynA + 1 →

E(tell(A, B, t
p(null, a
k, NSynAAck, NSynBAck), D), T 3) :

T 3 > T 2 ∧ NSynBAck = NSynB + 1.

(5.2)SIC 5.2 says that, if the previous two messages have been ex
hanged, then A is expe
ted to send to B ana
k segment a
knowledging B's syn segment, and with a
knowledgement number is NSynB +1, where NSynBis the sequen
e number of B's syn.A third integrity 
onstraint has been added, to verify the intera
tion between peers with di�erent responsetime. A faster peer in fa
t 
ould not wait enough for the a
knowledge message, and try to resend a syn messageto a slower peer. This situation 
an lead to several problems in the slower peer, whose queue of the in
omingmessages 
ould easily get saturated by requests.
H(tell(A, B, t
p(syn,null, NSynA, ANY ), D), T 1)

∧ ta(TA) →

EN(tell(A, B, t
p(syn,null, NSynA, ANY ), D), T 2) :

T 2 < T 1 ∧ T 2 > T 1 − TA.

(5.3)SIC 5.3 says that, if A has sent to B a syn segment to open a 
onne
tion, then A is expe
ted not to sendanother syn segment before TA time units, where TA is an appli
ation-spe
i�
 
onstant, de�ned by the ta/1predi
ate.The above spe
i�
ation has been used to 
he
k the intera
tion between experimental mobile phones and aserver.
3The term �segment� is used in the TCP spe
i�
ation to indi
ate bit 
on�guration or streams.
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o Chesani et al.Table 6.1State of an expe
tationType Veri�ed Expired State
E yes ful�lled
E no no wait
E no yes violated

EN yes violated
EN no no wait
EN no yes ful�lled6. Veri�
ation System. In this se
tion, we des
ribe a prototypi
al system that we have developed toverify the 
omplian
e of the agent behaviour to intera
tion proto
ols spe
i�ed by means of SICs.The system 
he
ks for 
omplian
e by a

omplishing two main tasks:1. it �res (a
tivates) SICs whose 
onditions be
ome true as relevant events o

urs;2. it de
ides whether a
tivated SICs are ful�lled or violated.The system is designed to work during the evolution of the so
iety, so it will only have, at ea
h instant, a partialhistory available, and it must take into a

ount that new events may happen in the future. For instan
e, let us
onsider again the sample expe
tation in Se
t. 2:

E(a

ept(ak, aj , give(M), d2), Ta) : M ≥ 10, Ta ≤ 15.Let us now suppose that, at time 12, no mat
hing event has yet o

urred. So, while this expe
tation hasnot been ful�lled, neither it has (yet) been violated: sin
e a mat
hing event 
ould still happen at time 13, 14or 15. It will a
tually be violated instead, in 
ase a mat
hing event fails to o

ur by time 15, be
ause the CLP
onstraint on the time variable be
omes unsatis�able as of time 16.More generally, it may not be possible to state whether a SIC is ful�lled or violated at the same time it�res; thus, we identify three possible states for an a
tivated SIC:
• ful�lled, if the SIC is ful�lled;
• violated, if the SIC is violated;
• wait, if the SIC is still neither ful�lled nor violated.The initial state for an a
tivated SIC is wait; happening events will eventually 
hange its state to ful�lled orviolated.If we pro
ess events in the 
orre
t order in time, in the 
ase of ba
kward SICs, the transition from a waitstate to a ful�lled or violated state is immediate, be
ause expe
tations in a ba
kward SIC regard events thatshould have (not) happened in the past and, thus, they 
an be immediately 
he
ked for ful�llment.6.1. Runtime identi�
ation of the state of a SIC. In the following, we explain how the state of aSIC 
hanges at runtime.The a
tivation of a SIC 
auses the 
reation of an instan
e of its �head� (organized in priority levels, ea
hbeing a disjun
tion of 
onjun
tion of expe
tations, as explained in Se
t. 2). Afterwards, the state of ea
h singleexpe
tation is de�ned, followed by the state of the priority levels, and �nally by the state of the SIC.State of an expe
tation. An expe
tation is 
alled �veri�ed� if there exists a mat
hing event in the so
iety his-tory. The state of a veri�ed positive expe
tation is ful�lled ; the state of a veri�ed negative expe
tation is violated.An expe
tation is 
alled �expired� if CLP 
onstraints over its time variable 
annot be any longer satis�ed(typi
ally, this is the 
ase with 
onstraints representing deadlines whi
h have expired). The state of an expiredand not veri�ed expe
tation is violated if the expe
tation is positive and ful�lled if the expe
tation is negative;the state of a not expired and not veri�ed expe
tation is instead wait.Table 6.1 summarises all these 
ases.State of a 
onjun
tion of expe
tations. The state of a 
onjun
tion of expe
tations is de�ned by the followingrules:1. if the state of at least one expe
tation in the 
onjun
tion is violated, then the state of the 
onjun
tionis violated ;2. if the state of all expe
tations in the 
onjun
tion is ful�lled, the state of the 
onjun
tion is ful�lled ;3. otherwise, the state is wait.
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ols 9State of a priority level. A priority level is a disjun
tion of 
onjun
tions of expe
tations. The state of apriority level is then de�ned by the following rules:1. if the state of at least one of the disjun
ts is ful�lled, then the state of the priority level is ful�lled ;2. if the state of all of the disjun
ts is violated, then the state of the priority level is violated ;3. otherwise, the state is wait.State of a SIC. If all the priority levels of a SIC are violated, then the SIC is violated ; otherwise, the stateof the highest non-violated priority level of the SIC de�nes the state of the SIC.6.2. Veri�
ation of Complian
e. As shown in Se
t. 3.1 in relation to the FIPA CNP, ba
kward SICs
an express that events are only allowed if some other events have (not) happened before; sin
e their state 
anbe immediately resolved to ful�lled or violated, ba
kward SICs 
an be used to verify that an event is allowedas soon as it o

urs. In designing our system, we made a 
hoi
e to ignore the events that are not allowed.However, the system 
aptures the violation: in a ri
her so
ial model, we 
an imagine some authority to rea
tto the violation.The set of forward SICs asso
iated with a legal a
tion is then used to generate expe
tations about the futureevents in the so
iety (i. e., the heads of asso
iated forward SICs will be 
he
ked for ful�llment).In order to verify the ful�llment of SICs, we have de�ned two di�erent phases: the Event Driven phase andthe Clo
k Driven phase.Event-driven phase. An event-driven phase starts ea
h time a new event o

urs. The system a
tivates allba
kward SICs asso
iated with the event; if they are all ful�lled, then the event is re
ognized to be allowed andthus marked as �legal� and added to the history of the intera
tion. If some of the ba
kward SICs are violated,then the event is marked as �illegal�, sin
e it is not allowed, and it is not re
orded in the history of the so
iety.If the event is marked legal, the system pro
esses the new updated history by a
tivating the forward SICsasso
iated with the new event. Forward (a
tivated) SICs de�ne the expe
ted future behaviour of the so
iety,and they will be 
he
ked for ful�llment.Clo
k-driven phase. The 
lo
k-driven phase starts whenever a spe
ial event 
alled �
lo
k,� or �
urrent time,�is registered by the so
iety. The system pro
esses the set of a
tivated forward SICs identifying the state of ea
hone. If the state of a SIC is ful�lled, the SIC is removed from the list of pending (waiting) SICs. If the stateof a SIC is violated, the SIC is removed but a violation is raised. If the state is wait, the SIC is kept pendinguntil the next 
lo
k-driven phase or the next event-driven phase. Note that the time asso
iated to events andthe �
urrent time� event whi
h �res a 
lo
k-driven phase must syn
hronize.6.3. Implementation. The veri�
ation system has been implemented on top of SICStus Prolog's Con-straint Handling Rules (CHR) library [22℄.CHR[16℄ are essentially a 
ommitted-
hoi
e language 
onsisting of guarded rules that rewrite 
onstraintsin a store into simpler ones until they are solved. CHR de�ne both simpli�
ation (repla
ing 
onstraints bysimpler 
onstraints while preserving logi
al equivalen
e) and propagation (adding new, logi
ally redundant but
omputationally useful, 
onstraints) over user-de�ned 
onstraints.6.3.1. A
tivation of SICs. Ea
h event happened in the system is represented by the CHR 
onstrainth/2, where the arguments are a Prolog ground term representing the happened event and an integer numberrepresenting the time.Positive (resp. negative) expe
tations are represented by the Prolog term e (resp. en). Its arguments are:a Prolog term des
ribing the event expe
ted to happen (resp. not to happen), the time (typi
ally non ground),and a list of CLP 
onstraints over the variables in the des
ription.A PriorityLevel is represented by the Prolog term pr, whose arguments are the list of alternative HeadDis-jun
ts of the priority level and the integer number representing the priority (the lower the number, the higherthe priority). Priority levels generated by a SIC are 
olle
ted as the list argument of a plist term.The argument of the CHR 
onstraint le/1 is the list of all a
tivated plists (one for ea
h a
tivated SIC).Ea
h SIC is represented by a simpagation CHR. In general, simpagation rules have the form
H1, . . . , Hl\Hl+1, . . . , Hi ⇔ G1, . . . , Gj |B1, . . . , Bk (6.1)where l > 0, i > l, j ≥ 0, k ≥ 0 and where the multi-head H1, . . . , Hi is a nonempty sequen
e of CHR
onstraints, the guard G1, . . . , Gj is a sequen
e of built-in 
onstraints, and the body B1, . . . , Bk is a sequen
e ofbuilt-in and CHR 
onstraints. Operationally, when the 
onstraints in the head are in the 
onstraint store and
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o Chesani et al.the guard is true, H1, . . . , Hl remain in the store, and Hl+1, . . . , Hi are substituted by B1, . . . , Bk. For instan
e,the following CHR implements SIC (2.2):h(event0,T0), h(event1,T1) \ le(LExp) <=> T0<T1 &append(LExp,[plist([pr([and([ e(event2,T2,[min(T2,T1)℄) ℄),and([ en(event3,T3,[min(T3,T0)℄) ℄)℄,1),pr([and([ e(event4,T4,[min(T4,T0)℄) ℄)℄,2)℄,id1)℄, LExp1)| le(LExp1).If event0 and event1 have o

urred and are part of the �history,� the two CHR 
onstraints h(event0,T)and h(event1,T1) are in the 
onstraint store; if the guard T<T1 is true, then the rule is a
tivated. The store(the LExp list) of the heads of a
tivated SICs is updated appending a new plist(), whi
h 
ontains the list ofpriority levels (two in this example) in the head of the SIC. The CHR 
onstraint le/1, whi
h 
ontained the oldLExp before the a
tivation of the rule, is removed by simpagation and repla
ed by the same 
onstraint with thenew list LExp1 as argument.Note that two di�erent symbols are used to represent the CLP 
onstraint <: < if its arguments are thetimes of two happened events4, and min if they are instead the times of two expe
tations.The translation of a SIC into a simpagation CHR is rather straightforward, whi
h makes it easy to implementnew proto
ols.As further examples, we report below the CHR implementation of SIC (3.1) and SIC (3.15):h(tell(P,I,propose(R,Q),D),T) \le(LExp) <=>true &append(LExp,[plist([pr([and([e(tell(I,P,
fp(R),D),T1,[min(T1,T)℄)℄)℄,1)℄)℄, LExp1) | le(LExp1).h(tell(I,P,
fp(R),D),T) \le(LEv,LExp) <=>Td is T+200 &append(LExp,[plist([pr([and([e(tell(P,I,propose(R,Q),D),T1,[min(T1,Td)℄)℄),and([e(tell(P,I,refuse(R),D),T2,[min(T2,Td)℄)℄)℄,1)℄)℄,LExp1) | le(LExp1).
4In this 
ase, the times are 
ertainly ground and the Prolog prede�ned predi
ate 
an be applied to them.
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eventRecorderListenerFig. 6.1. UML diagram6.3.2. Identi�
ation of the state of SICs. The identi�
ation of the state of a SIC is 
oded in standardProlog. The system performs all the steps des
ribed in Se
t. 6.1. It analyses all its stored plists, thusimplementing the event-driven and 
lo
k-driven phases des
ribed above.6.3.3. Interfa
e to the veri�
ation system. In order to use the system in 
on
rete 
ase studies, aJava pa
kage (using the SICStus Prolog's Jasper library [22℄) has been implemented. This pa
kage has beendeveloped to be used as a Java wrapper for the veri�
ation system.The UML diagram of the system is represented in Fig. 6.1. To use the system the user must 
reate a histo-ryGenerator obje
t giving as parameter the path to a (
ompiled) Prolog �le 
ontaining the proto
ol de�nitionexpressed by SICs. The Java system implements the Event Driven phase re
eiving messages from the even-tRe
orderListener interfa
e and the 
lo
k-driven phase re
eiving �
urrent time� events from the timerListenerinterfa
e. The rest of the system implements the Java-Prolog interfa
e.7. Dis
ussion and related work. The syntax of So
ial Integrity Constraints proposed in this paper is amodi�ed version of that proposed in [2℄ and in [5℄. The modi�
ations have been made in order to ta
kle bothexpressiveness and implementation issues. Spe
i�
ally:
• we added priority levels to SICs (see Se
t. 2). This allows for a more �exible spe
i�
ation of proto
ols,enabling the proto
ol designer to devise alternative proto
ol �ows while being able to spe
ify preferen
esamong them;
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• we imposed the restri
tion of having only either ba
kward or forward expe
tation in a SIC (see Se
t. 2).While this improves e�
ien
y, on the downside it prevents from writing SICs su
h as

H(a, Ta)

→E(b, Tb) : Tb < Ta, 1

⇒E(c, Tc) : Tc ≤ Ta + τ, 2

(7.1)whi
h one might want to use to express that an event (b) that does not ful�ll a ba
kward expe
tation
an, with lower priority, still be allowed, provided that 
ertain �ba
kup� event (c) o

ur at some pointin the future. However, in our experien
e, SICs su
h as (7.1) are generally not ne
essary to expressproto
ols of 
ommon use.In [4℄ we have de�ned an abdu
tive semanti
s for SICs, in the 
ontext of agent so
ieties, and a more gen-eral framework, in whi
h the veri�
ation pro
edure is performed by an abdu
tive proof pro
edure [6℄, whoseimplementation has been integrated into a software 
omponent [3℄, interfa
ed to several multi-agent platformssu
h as Jade [8℄, PROSOCS [9℄, and tuProlog [12℄. Other authors have proposed alternative approa
hes to thespe
i�
ation and in some 
ases animation of intera
tion among agents. Notably, in [7℄, Artikis et al. present atheoreti
al framework for providing exe
utable spe
i�
ations of parti
ular kinds of multi-agent systems, 
alledopen 
omputational so
ieties, and they present a formal framework for spe
ifying and animating systems wherethe behaviour of the members and their intera
tions 
annot be predi
ted in advan
e, and for reasoning aboutand verifying the properties of su
h systems. A noteworthy di�eren
e with [7℄ is that we do not expli
itlyrepresent the institutional power of the members and the 
on
ept of valid a
tion. Permitted are all so
ial eventsthat do not determine a violation, i. e., all events that are not expli
itly forbidden are allowed.In [24℄, Yolum and Singh apply a variant of Event Cal
ulus [19℄ to 
ommitment-based proto
ol spe
i�
a-tion. The semanti
s of messages (i. e., their e�e
t on 
ommitments) is des
ribed by a set of operations whosesemanti
s, in turn, is des
ribed by predi
ates on events and �uents ; in addition, 
ommitments 
an evolve, in-dependently of 
ommuni
ative a
ts, in relation to events and �uents as pres
ribed by a set of postulates. Su
ha way of spe
ifying proto
ols is more �exible than traditional approa
hes based on a
tion sequen
es in that itpres
ribes no initial and �nal states or transitions expli
itly, but it only restri
ts the agent intera
tion in that, atthe end of a proto
ol run, no 
ommitment must be pending. Agents with reasoning 
apabilities 
an themselvesplan an exe
ution path suitable for their purposes (whi
h, in that work, is implemented by an abdu
tive event
al
ulus planner). Our notion of expe
tation is more general than that of 
ommitment found in [24℄ or in other
ommitment-based works, su
h as [15℄: it represents the ne
essity of a (past or future) event, and is not boundto have a debtor or a 
reditor, or to be brought about by an agent.8. Con
lusions. We have presented a framework for the spe
i�
ation and runtime veri�
ation of 
ompli-an
e of agent intera
tion to proto
ols. The spe
i�
ation at a so
ial level of intera
tion proto
ols 
onstrains theagent observable behaviour from the outside, rather than its internal state or stru
ture. This is a 
hara
teristi
of so
ial approa
hes to agent proto
ol spe
i�
ation, and it is parti
ularly suited for usage in open agent so
i-eties. Proto
ol spe
i�
ations use a 
omputational logi
-based formalism 
alled so
ial integrity 
onstraints. Thesystem's Java-Prolog-CHRbased implementation has been tested on di�erent types of proto
ols [23℄. In thisarti
le, we have demonstrated the usage of SICs in three 
ases: the FIPA CNP, taken from the agent literature,a made up proto
ol for joining semi-open so
ieties, and the well known three-way handshake phase of the TCPIP proto
ol for 
onne
tion establishment. The veri�
ation system, implemented in Prolog and CHR, 
an beused as a module in a Java-based system, thanks to the Java-Prolog interfa
e of SICStus Prolog. The modularstru
ture of the system makes it (hopefully) easy to adapt it to new appli
ations.9. A
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