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Abstract.

A number of information systems can be described as a set of interacting entities, which must follow interaction protocols.
These protocols determine the behaviour and the properties of the overall system, hence it is of the uttermost importance that the
entities behave in a conformant manner.

A typical case is that of multi-agent systems, composed of a plurality of agents without a centralized control. Compliance
to protocols can be hardwired in agent programs; however, this requires that only “certified” agents interact. In open systems,
composed of autonomous and heterogeneous entities whose internal structure is, in general, not accessible (open agent societies
being, again, a prominent example) interaction protocols should be specified in terms of the observable behaviour, and compliance
should be verified by an external entity.

In this paper, we propose a Java-Prolog-CHR system for verification of compliance of computational entities to protocols
specified in a logic-based formalism (Social Integrity Constraints). We also show the application of the formalism and the system
to the specification and verification of three different scenarios: two specifications show the feasibility of our approach in the
context of Multi Agent Systems (FTPA Contract-Net Protocol and Semi-Open societies), while a third specification applies to the
specification of a lower level protocol (Open-Connection phase of the TCP protocol).

1. Introduction. Many information systems can be described as a set of mutually independent, interacting
entities. A typical example is that of multi-agent systems. In such a scenario the interaction is usually subject
to some kind of interaction protocols, which the agents should respect when interacting. This raises the obvious
problem of verifying that interaction protocols are actually followed.

It is possible to design agents so that they will “spontaneously” comply to protocols, and, if possible,
formally verify that at design time. For instance, in [13], Endriss et al. propose an approach where protocols
are “imported” into individual agent policies.

However, this approach is not viable in open' agent societies, where interacting agents are autonomous and
heterogeneous and, in general, their internal structure cannot be accessed. In this case, agents should be checked
for compliance to interaction protocols based on their observable behaviour, by a trusted external entity.

In previous work [5], we proposed a computational logic-based formalism (based upon Social Integrity
Constraints, SICs) to specify interaction protocols. Social Integrity Constraints are meant to constrain the agent
observable behaviour rather than agents’ internal (mental) state or policies. In other words, this approach does
not restrict an agent’s access to societies based on its internal structure; regardless of its policies, any agent can
successfully interact in a society ruled by SICs, as long as its behaviour is compliant. The formal semantics of
Social Integrity Constraints [4] is based on abductive logic programming [18].

The purpose of this paper is to demonstrate the viability of Social Integrity Constraints as a formalism to
specify interaction between computational entities, including, but not limited to, agents in open societies. We
will use a modified version of Social Integrity Constraints, which better fits our needs in terms of both simplicity
of presentation, and expressiveness.

The paper is structured as follows. In Sect. 2, we introduce the version of Social Integrity Constraints used
in this work, giving their syntax and an informal explanation of their semantics.

In Sect. 3 we specify in terms of SICs a contract net-based protocol for resource allocation and negotiation
in multi-agent systems, called FIPA CNP, and in Sect. 4 we specify a protocol for entering “semi-open” societies,
i. e., virtual environments characterized by the presence of a “gatekeeper” agent and a protocol that governs the
agents’ access to the society. In Sect. 5 we demonstrate the usage of SICs to specify a network communication
protocol, namely the three-way handshake opening of the TCP Internet Protocol.

The article ends with the presentation of the compliance verification system (Sect. 6), and some notes about
its Java+Prolog implementation.

*This article is an extended version of the one by Alberti, Daolio, Gavanelli, Lamma, Mello, and Torroni, published in Haddad,
Omicini, and Wainwright, eds., Proceedings of the 19th ACM Symposium on Applied Computing, SAC 2004, Special Track on
Agents, Interactions, Mobility, and Systems (AIMS). Nicosa, Cyprus, March 14-17, 2004. pp. 72-78. ACM Press (2004).

IWe intend openness in societies of agents as Artikis, Pitt and Sergot [7], where agents can be heterogeneous and possibly
non-cooperative.
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2. Social Integrity Constraints. We distinguish between actual behaviour (happened events) and desired
behaviour (ezpectations), since in non-ideal situations they do not always coincide. In this section, we let the
reader get acquainted with our representation of events and we introduce Social Integrity Constraints (SICs) as
a formalism used to express which expectations are generated as consequence of happened events.

Happened Events and Ezpectations. Happened events are in the form
H(Description, Time)

where Description is a term (as intended in logic programming, see [20]) representing the event that has
happened, and Time is an integer number representing the time at which the event has happened. For example,

H(request(a;, aj, give(108), d1),7)

represents the fact that agent a; requested agent a; to give 108, in the context of interaction d; (dialogue
identifier) at time 7.

All happened events form the history of a society. Given the history of a society at a given time, some
events will have to happen in order for interaction protocols to be satisfied: we represent such events by means
of expectations, which can be positive or negative. Positive expectations are of the form

E(Description, Time)

and represent an event that is expected to happen (typically, an action that an agent is expected to take).
Negative expectations are of the form

EN(Description, Time)

and represent the fact that an event is expected not to happen.
Expectations may (and, typically, will) contain variables, to reflect the fact that the expected event is not
fully specified; however, CLP [17] constraints can be imposed on variables to restrict their domain. For instance,

E(accept(ay, aj, give(M),ds), T,) : M >10,T, <15 (2.1)

represents the expectation for agent a; to accept giving agent a; an amount M of money, in the context of
interaction dy at time T,; moreover, M is expected to be at least 10$, and T, to be at most 15.

Since we impose no restrictions on the Description term of an expectation, expectations can regard any kind
of event that can be expressed by a Prolog-like term. However, expectations only regard point-time events; thus
it is not possible to express concisely that some proposition is expected to be true along a given time interval.

Since we make no assumptions about the agents’ internal structure or policies, their behaviour may or may
not satisfy expectations. We represent these two cases by means of the notions of fulfillment and violation. We
say that an event matches an expectation if and only if:

e their contents unify (a la Prolog);
e all relevant CLP constraints on variables (if any) are satisfied.
A positive expectation can get fulfilled by a matching event, whereas a negative expectation can get violated by
a matching event.
For instance, event

H(accept(ar, a;, give(20), d2), 15)

fulfills expectation (2.1); the same event would, instead, violate a negative expectations with the same content
and CLP constraints.

If we assume at some point that no more events will ever occur, we say that the history is closed. In that
case, all positive expectations that are not fulfilled are violated, and all negative expectations that are not
violated are fulfilled.
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TaBLE 2.1
BNF syntaz of Social Integrity Constraints

SIC::=x — ¢
x::=EventLiteral [A EventLiteral]* [:CList]
¢::=PriorityLevel [= PriorityLevel]*
PriorityLevel::—HeadDisjunct [V HeadDisjunct]*, P
EventLiteral::—H(Term,T)
HeadDisjunct::—Expectation [A Expectation]* [:CList]
Expectation::=E(Term,T) | EN(Term,T)

Social Integrity Constraints. The way expectations are generated, given a (partial) history of a society,
is specified by Social Integrity Constraints (SICs). In this article, we adopt a modified version of the SICs
introduced in [2] (we discuss and motivate such modifications in Sect. 7).

Table 2.1 reports the BNF syntax of SICs. Term is a logic programming term [20], P is an integer number
and T is a variable symbol or integer number. CList is a conjunction of CLP constraints on variables.

SICs are a kind of forward rules, stating what expectations should be generated on the basis of happened
events. By means of SICs, it is possible to express that conjunctions of expectations (HeadDisjuncts in Table
2.1) are alternative, and it is also possible to assign a priority, represented by an integer number, to each list of
alternatives (PriorityLevels in Table 2.1).

For instance, the following SIC:

H(eo,To) A H(el,Tl) 2Ty <11
— E(EQ,TQ) Ty <TY V EN(Eg,Tg) 2 T35 < Tp, 1 (2.2)
= E(64,T4) 2Ty < Tp,2

means that, if eg happens before ey, then either of the two cases below hold:

e ¢, should have happened before e; or es should not have happened before e,

e ¢4 should have happened before eg;
and the first case has higher priority than (or is preferred to) the second one. Intuitively, a SIC means that,
when a set of events matching its body happens, then at least one of the “priority levels” in its conclusion
should be satisfied (the higher the priority, the better). In this case, we say that the SIC is fulfilled; otherwise,
it is wviolated. While priorities have no effect upon the fulfillment status of the society, they could instead be
used by a possible computational entity representing the society to guide its members’ behaviour towards some
preferred state. This can be useful when expectations are accounted for by agents deliberating about future
actions. At each point in time there are in general several equally fulfilled sets of expectations. But if some
are more preferred to others, an imaginary “social reasoner” which produces expectations based on events could
then evaluate and choose which sets of expectations better fit its goals, and transmit only them to the society
members. If such members take expectations into account, the whole society could evolve towards preferred
states.

The expectations in SIC (2.2) regard events that should have (or have not) happened before the time of
the event that raises them: we call this kind of expectations backward. Expectations that regard events that
are expected to happen (or not to happen) after the event that raises them are named forward. We restrict
the possible SICs by requiring that they contain only either backward expectations or forward expectations:
in the first case, we will call the SIC backward, in the second case forward. We discuss this restriction in
Sect. 7.

3. Specification of the FIPA Contract-Net. FIPA-CNP [1] is a protocol based on FIPA-ACL [14]
defined for regulating transactions between entities by negotiation. The protocol flow, represented as an AUML
[21] diagram in Fig. 3.1, starts with an Initiator which issues a request for a resource (¢fp, standing for call
for proposals) to other Participants. The Participants can reply by proposing a price that satisfies the request
(propose), or by refusing the request altogether (refuse). The Initiator must accept (accept-proposal) or reject
(reject-proposal) the received proposals. A Participant whose proposal has been accepted must, by a given
deadline, inform the Initiator that it has provided the resource (by sending an inform-done message, or a more
informative inform-result message) or that it has failed to provide it (failure).
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Fia. 3.1. FIPA-Contract-Net Interaction Protocol (AUML Diagram)

3.1. Definition by Social Integrity Constraints. The whole set of SICs used to define FIPA-CN is
composed of 14 backward SICs and 3 forward SICs. This choice of SICs is obviously not the only possibility.
We are currently investigating a general mapping of AUML protocol diagrams and other graphical formalisms
to SICs, so as to allow for an automatic translation. Some progress in this sense has been done with the GOSpel
graphic language [10] in the health care application domain.

In the SICs in the remainder of this section, I will represent the initiator, P a participant, R the resource,
Q@ the price, D the dialogue identifier, S the explanation of a result, and T, 7},... the time. We will not use
priority levels.

Backward SICs. Backward SICs are used to express that an action is only allowed if some other events have
(not) occurred before.

SICs (3.1) and (3.2) state that propose and refuse are only allowed in reply to a cfp.

H(tell(P, I, propose(R,Q), D), T) —

3.1
E(tell(I, P, cfp(R), D), Ty) : Ty < T (8.1)
H(tell(P, I, refuse(R), D), T) — (3.2)
E(tell(I, P, cfp(R), D), Ty) : Ty <T '
SICs (3.3) and (3.4) express mutual exclusion between propose and refuse.
H(tell(P, I, propose(R,Q), D), T) — (3.3)

EN (tell(P, I, refuse(R), D), Ty) : Ty <T
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H(tell(P, 1, refuse(R), D), T) —

3.4
EN(tell(P, I, propose(R,Q), D), T1) : Th <T (34)
SICs (3.5) and (3.6) state that accept-proposal and reject-proposal are only allowed in reply to a propose.
H(tell(I, P, accept-proposal(R, Q), D), T) — (3.5)
E(tell(P, I, propose(R,Q), D), Ty) : Ty < T '
H(tell(I, P, reject-proposal(R, Q), D), T) — (3.6)
E(tell(P, I, propose(R,Q),D),T1): Ty <T '
SICs (3.7) and (3.8) express mutual exclusion between accept-proposal and reject-proposal.
H(tell(I, P, accept-proposal(R, Q), D), T) — (3.7)
EN (tell(I, P, reject-proposal(R, Q), D), Th) : Ty <T ’
H(tell(I, P, reject-proposal(R, Q), D), T) — (3.8)

EN(tell(I, P, accept-proposal(R,Q), D), Ty) : Ty <T

SICs (3.9), (3.10) and (3.11) say that inform-done, inform-result and failure are only allowed in reply to an
accept-proposal.

H(tell(P, I, inform-done(R), D), T) —

3.9
E(tell(I, P, accept-proposal(R,Q), D), Ty) : Ty < T (39)
H(tell(P, I, inform-result(R, S), D), T) — (3.10)
E(tell(I, P, accept-proposal(R,Q), D), T1) : Ty < T '
H(tell( P, I, failure(R), D), T) — (3.11)

E(tell(I, P, accept-proposal(R,Q), D), Ty) : Ty < T

SICs (3.12), (3.13) and (3.14) express mutual exclusion between inform-done, inform-result and failure.

3

H(tell(P, I, inform-done(R), D), T) —
EN(tell( P, I, failure(R), D), Ty) : Ty <T A (3.12)
EN(tell( P, I, inform-result( R, S), D), Ty): Ty <T

H(tell( P, I, inform-result(R,S), D), T) —
EN(tell(P, I, failure(R), D), T1) : Ty <T A (3.13)
EN(tell( P, I, inform-done(R), D), Ty) : Ty <T

H(tell(P, I, failure(R), D), T) —
EN(tell( P, I, inform-done(R), D), Ty) : Ty <T A (3.14)
EN(tell( P, I, inform-result(R,S), D), Ty): Ty <T
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Forward SICs. SIC (3.15) says that, after receiving a c¢fp, a Participant is expected to issue a propose or a
refuse by 200 time units.?

H(tell(I, P, cfp(R), D), T) —
E(tell(P, I, propose(R,Q), D), Ty) : Ty < T + 200 Vv (3.15)
E(tell(P, I, refuse(R), D), Ts) : To < T + 200

SIC (3.16) states that the Initiator is expected to reply to a propose with an accept-proposal or a reject-proposal
by 200 clock ticks.

H(tell(P, I, propose(R,Q), D), T) —
E(tell(I, P, accept-proposal(R, Q), D), Ty) : Ty < T + 200V (3.16)
E(tell(I, P, reject-proposal(R, Q), D), Ts) : To < T + 200

SIC (3.17) states that a Participant is expected to reply to an accept-proposal with an inform-done, an
inform-result or a failure by 200 clock ticks.

H(tell
E(tell
E(tell
E(tell

—~

I, P, accept-proposal(R,Q), D), T) —

P, I, inform-done(R), D), Ty) : Ty < T + 200V

P, I, inform-result(R, S), D), Ts) : To < T + 200V
P, 1, failure(R), D), Tz) : Ty < T + 200

(3.17)

—~ —~

Note that, in all the three cases, backward SICs make the alternative expectations mutually exclusive.

4. Specification of a semi-open society access protocol. According to [11], societies can be classified
into 4 groups, each characterized by a different degree of openness. In the following, we give an example of how
our framework can model a semi-open society, i. e., a society that can be joined by an agent executing an access
protocol. In this example we imagine that a special gatekeeper agent is in charge of receiving joining requests,
and it requests agents willing to enter to fill in some registration form.

The access protocol is defined by the following SICs, in which C represents the name of an agent willing to
join in:

H(tell(C, gatekeeper, ask(register), D), T) —
E(tell(gatekeeper, C, ask(form), D), Ty) : Ty < T + 10

H(tell(C, gatekeeper, ask(register), D), T)A
H(tell(gatekeeper, C, ask(form), D), Ty) NT < Ty — (4.2)
E(tell(C, gatekeeper, send(form, F), D), Ty) : To < Ty 4+ 10

(tell
(tell
(tell
(tell

gatekeeper, C, ask(form), D), T1)A\

C, gatekeeper, send(form, F), D), To) NTy < Ty —

gatekeeper, C, accept(register), D), T5) : Ts < To + 10 V
D), Ty): T3 < To + 10

H
H

=~ =

B (4.3)

E

/=~ =

gatekeeper, C,reject(register),

SIC (4.1) says: if C' asks gatekeeper to join the society (register), then the gatekeeper should ask for a
registration form; SIC (4.2) imposes that, after the first two messages, the agent should provide the form;
and SIC (4.3) says that, after receiving the form, the gatekeeper should either accept or reject the registration
request.

2Time unit is an abstract concept, whose instantiation actually depends on the application. A time unit may represent for
example a clock tick, or a transaction time.



Specification and Verification of Agent Interaction Protocols 7

For the sake of simplicity, in the sequel we assume that member agents do not leave the society. Then, the
presence in the history of an event of type:
H(tell(gatekeeper, C, accept(register), D), T)

can be regarded as C’s “formal” act of “membership”, and it can be used in SICs as a condition for generating

expectations.
For instance, SIC (3.15) from the FIPA-CNP (Sect. 3.1) could be modified as follows to take membership
into account:

H(tell(gatekeeper, I, accept(register), D), Tr)A
H(tell(I, P, cfp(R), D), T) —

E(tell(P, I, propose(R,Q), D), T1) : Ty < T + 200 V
E(tell(P, I, refuse(R), D), T3) : To < T + 200

(4.4)

5. Specification of the TCP protocol opening phase. In this section, we present a specification of the
open-connection phase of the TCP protocol. We will focus on the well known “three-way handshake” opening,
summarized below:

1. a peer A sends to another peer B a syn segment;’
2. B replies by acknowledging (with an ack segment) A’s syn segment, and by sending a syn segment in
turn;
3. A acknowledges B’s syn segment with a ack segment, and starts sending data.
The following two integrity constraints describe such a protocol:

H(tell(A, B, tep(syn, null, NSynA, AckNumber), D), T1) —
E(tell(B, A, tep(syn, ack, NSynB, NSynAAck),D),T2) : (5.1)
NSynAAck = NSynA+1AT2>T1.

SIC 5.1 says that if A sends to B a syn segment, whose sequence number is NSynA, then B is expected to
send to A an ack segment, whose acknowledgment number is NSynA + 1, at a later time.

H(tell(A, B, tep(syn, null, NSynA, AckNumber), D), T1)

AN H(tell(B, A, tep(syn, ack, NSynB, NSynAAck), D), T2) :

T2 >T1ANNSynAAck = NSynA+1— (5.2)
E(tell(A, B, tep(null, ack, NSynAAck, NSynBAck), D), T3) :

T3 >T2NNSynBAck = NSynB + 1.

SIC 5.2 says that, if the previous two messages have been exchanged, then A is expected to send to B an
ack segment acknowledging B’s syn segment, and with acknowledgement number is NSynB+ 1, where NSynB
is the sequence number of B’s syn.

A third integrity constraint has been added, to verify the interaction between peers with different response
time. A faster peer in fact could not wait enough for the acknowledge message, and try to resend a syn message
to a slower peer. This situation can lead to several problems in the slower peer, whose queue of the incoming
messages could easily get saturated by requests.

H(tell(A, B, tep(syn, null, NSynA, ANY), D), T1)
Nta(TA) —

EN(tell(A, B, tep(syn, null, NSynA, ANY), D), T2) :
T2<T1INT2>T1-TA.

(5.3)

SIC 5.3 says that, if A has sent to B a syn segment to open a connection, then A is expected not to send
another syn segment before T'A time units, where T'A is an application-specific constant, defined by the ta/1
predicate.

The above specification has been used to check the interaction between experimental mobile phones and a
server.

3The term “segment” is used in the TCP specification to indicate bit configuration or streams.
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TaBLE 6.1
State of an expectation

Type | Verified | Expired State
E yes fulfilled
E no no wait
E no yes violated

EN yes violated
EN no no wait
EN no yes fulfilled

6. Verification System. In this section, we describe a prototypical system that we have developed to
verify the compliance of the agent behaviour to interaction protocols specified by means of SICs.
The system checks for compliance by accomplishing two main tasks:
1. it fires (activates) SICs whose conditions become true as relevant events occurs;
2. it decides whether activated SICs are fulfilled or violated.
The system is designed to work during the evolution of the society, so it will only have, at each instant, a partial
history available, and it must take into account that new events may happen in the future. For instance, let us
consider again the sample expectation in Sect. 2:

E(accept(ay, aj, give(M),d2), T,) : M > 10,T, < 15.

Let us now suppose that, at time 12, no matching event has yet occurred. So, while this expectation has
not been fulfilled, neither it has (yet) been violated: since a matching event could still happen at time 13, 14
or 15. It will actually be violated instead, in case a matching event fails to occur by time 15, because the CLP
constraint on the time variable becomes unsatisfiable as of time 16.
More generally, it may not be possible to state whether a SIC is fulfilled or violated at the same time it
fires; thus, we identify three possible states for an activated SIC:
e fulfilled, if the SIC is fulfilled;
e violated, if the SIC is violated;
e wait, if the SIC is still neither fulfilled nor violated.
The initial state for an activated SIC is wait; happening events will eventually change its state to fulfilled or
violated.
If we process events in the correct order in time, in the case of backward SICs, the transition from a wait
state to a fulfilled or violated state is immediate, because expectations in a backward SIC regard events that
should have (not) happened in the past and, thus, they can be immediately checked for fulfillment.

6.1. Runtime identification of the state of a SIC. In the following, we explain how the state of a
SIC changes at runtime.

The activation of a SIC causes the creation of an instance of its “head” (organized in priority levels, each
being a disjunction of conjunction of expectations, as explained in Sect. 2). Afterwards, the state of each single
expectation is defined, followed by the state of the priority levels, and finally by the state of the SIC.

State of an expectation. An expectation is called “verified” if there exists a matching event in the society his-
tory. The state of a verified positive expectation is fulfilled; the state of a verified negative expectation is violated.

An expectation is called “expired” if CLP constraints over its time variable cannot be any longer satisfied
(typically, this is the case with constraints representing deadlines which have expired). The state of an expired
and not verified expectation is violated if the expectation is positive and fulfilled if the expectation is negative;
the state of a not expired and not verified expectation is instead wait.

Table 6.1 summarises all these cases.

State of a conjunction of expectations. The state of a conjunction of expectations is defined by the following
rules:

1. if the state of at least one expectation in the conjunction is wviolated, then the state of the conjunction
is violated;

2. if the state of all expectations in the conjunction is fulfilled, the state of the conjunction is fulfilled;

3. otherwise, the state is wait.
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State of a priority level. A priority level is a disjunction of conjunctions of expectations. The state of a
priority level is then defined by the following rules:
1. if the state of at least one of the disjuncts is fulfilled, then the state of the priority level is fulfilled;
2. if the state of all of the disjuncts is wviolated, then the state of the priority level is violated;
3. otherwise, the state is wait.
State of a SIC. If all the priority levels of a SIC are violated, then the SIC is violated; otherwise, the state
of the highest non-violated priority level of the SIC defines the state of the SIC.

6.2. Verification of Compliance. As shown in Sect. 3.1 in relation to the FIPA CNP, backward SICs
can express that events are only allowed if some other events have (not) happened before; since their state can
be immediately resolved to fulfilled or violated, backward SICs can be used to verify that an event is allowed
as soon as it occurs. In designing our system, we made a choice to ignore the events that are not allowed.
However, the system captures the violation: in a richer social model, we can imagine some authority to react
to the violation.

The set of forward SICs associated with a legal action is then used to generate expectations about the future
events in the society (i. e., the heads of associated forward SICs will be checked for fulfillment).

In order to verify the fulfillment of SICs, we have defined two different phases: the FEvent Driven phase and
the Clock Driven phase.

Event-driven phase. An event-driven phase starts each time a new event occurs. The system activates all
backward SICs associated with the event; if they are all fulfilled, then the event is recognized to be allowed and
thus marked as “legal” and added to the history of the interaction. If some of the backward SICs are violated,
then the event is marked as “illegal”, since it is not allowed, and it is not recorded in the history of the society.

If the event is marked legal, the system processes the new updated history by activating the forward SICs
associated with the new event. Forward (activated) SICs define the expected future behaviour of the society,
and they will be checked for fulfillment.

Clock-driven phase. The clock-driven phase starts whenever a special event called “clock,” or “current time,”
is registered by the society. The system processes the set of activated forward SICs identifying the state of each
one. If the state of a SIC is fulfilled, the SIC is removed from the list of pending (waiting) SICs. If the state
of a SIC is violated, the SIC is removed but a violation is raised. If the state is wait, the SIC is kept pending
until the next clock-driven phase or the next event-driven phase. Note that the time associated to events and
the “current time” event which fires a clock-driven phase must synchronize.

6.3. Implementation. The verification system has been implemented on top of SICStus Prolog’s Con-
straint Handling Rules (CHR) library [22].

CHR|[16] are essentially a committed-choice language consisting of guarded rules that rewrite constraints
in a store into simpler ones until they are solved. CHR define both simplification (replacing constraints by
simpler constraints while preserving logical equivalence) and propagation (adding new, logically redundant but
computationally useful, constraints) over user-defined constraints.

6.3.1. Activation of SICs. Each event happened in the system is represented by the CHR constraint
h/2, where the arguments are a Prolog ground term representing the happened event and an integer number
representing the time.

Positive (resp. negative) expectations are represented by the Prolog term e (resp. en). Its arguments are:
a Prolog term describing the event expected to happen (resp. not to happen), the time (typically non ground)
and a list of CLP constraints over the variables in the description.

A PriorityLevel is represented by the Prolog term pr, whose arguments are the list of alternative HeadDis-
juncts of the priority level and the integer number representing the priority (the lower the number, the higher
the priority). Priority levels generated by a SIC are collected as the list argument of a plist term.

The argument of the CHR constraint 1e/1 is the list of all activated plists (one for each activated SIC).

Each SIC is represented by a simpagation CHR. In general, simpagation rules have the form

Hl,...,Hl\Hl_;,_l,...,Hi<:>G1,...,Gj|Bl,...,Bk (6.1)

where [ > 0,4 > [, j > 0, k > 0 and where the multi-head Hy,..., H; is a nonempty sequence of CHR
constraints, the guard G, ..., G, is a sequence of built-in constraints, and the body B;, ..., By is a sequence of
built-in and CHR constraints. Operationally, when the constraints in the head are in the constraint store and
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the guard is true, Hy, ..., H; remain in the store, and Hjy1, ..., H; are substituted by By, ..., Bi. For instance,
the following CHR implements SIC (2.2):

h(event0,T0), h(eventl1,T1) \ le(LExp) <=> TO<T1 &
append (LExp,
[plist ([
pr(l
and([ e(event2,T2, [min(T2,T1)]) 1),
and([ en(event3,T3, [min(T3,T0)]) 1)
1,1,
pr(L
and([ e(event4,T4,[min(T4,T0)]) 1)
1,2)
1,id1)], LExpl)
| le(LExpl).

If event0 and event1 have occurred and are part of the “history,” the two CHR constraints h(event0,T)
and h(event1,T1) are in the constraint store; if the guard T<T1 is true, then the rule is activated. The store
(the LExp list) of the heads of activated SICs is updated appending a new plist(), which contains the list of
priority levels (two in this example) in the head of the SIC. The CHR constraint le/1, which contained the old
LExp before the activation of the rule, is removed by simpagation and replaced by the same constraint with the
new list LExpl as argument.

Note that two different symbols are used to represent the CLP constraint <: < if its arguments are the
times of two happened events?, and min if they are instead the times of two expectations.

The translation of a SIC into a simpagation CHR is rather straightforward, which makes it easy to implement
new protocols.

As further examples, we report below the CHR implementation of SIC (3.1) and SIC (3.15):

h(tell(P,I,propose(R,Q),D),T) \
le(LExp) <=>
true &
append (LExp,
[plist ([
pr(l
and ([
e(tell(I,P,cfp(R),D),T1, [min(T1,T)]1)
D
1,1
1)1, LExpl) | le(LExpl).
h(tell(I,P,cfp(R),D),T) \
le(LEv,LExp) <=>
Td is T+200 &
append (LExp,
[plist ([
pr(l
and ([
e(tell(P,I,propose(R,Q),D),T1, [min(T1,Td)])
D,
and ([
e(tell(P,I,refuse(R),D),T2, [min(T2,Td)])
D
1,1
D1,
LExpl) | le(LExpl).

4In this case, the times are certainly ground and the Prolog predefined predicate can be applied to them.
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Fig. 6.1. UML diagram

6.3.2. Identification of the state of SICs. The identification of the state of a SIC is coded in standard
Prolog. The system performs all the steps described in Sect. 6.1. It analyses all its stored plists, thus
implementing the event-driven and clock-driven phases described above.

6.3.3. Interface to the verification system. In order to use the system in concrete case studies, a
Java package (using the SICStus Prolog’s Jasper library [22]) has been implemented. This package has been
developed to be used as a Java wrapper for the verification system.

The UML diagram of the system is represented in Fig. 6.1. To use the system the user must create a histo-
ryGenerator object giving as parameter the path to a (compiled) Prolog file containing the protocol definition
expressed by SICs. The Java system implements the Event Driven phase receiving messages from the even-
tRecorderListener interface and the clock-driven phase receiving “current time” events from the timerListener
interface. The rest of the system implements the Java-Prolog interface.

7. Discussion and related work. The syntax of Social Integrity Constraints proposed in this paper is a
modified version of that proposed in [2] and in [5]. The modifications have been made in order to tackle both
expressiveness and implementation issues. Specifically:

e we added priority levels to SICs (see Sect. 2). This allows for a more flexible specification of protocols,
enabling the protocol designer to devise alternative protocol flows while being able to specify preferences
among them;
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e we imposed the restriction of having only either backward or forward expectation in a SIC (see Sect. 2).
While this improves efficiency, on the downside it prevents from writing SICs such as

H(a, Ty,)
—>E(b, Ty) Ty, < Ty, 1 (7.1)
=E(¢,T.): T. < T, + 1,2

which one might want to use to express that an event (b) that does not fulfill a backward expectation
can, with lower priority, still be allowed, provided that certain “backup” event (¢) occur at some point
in the future. However, in our experience, SICs such as (7.1) are generally not necessary to express
protocols of common use.

In [4] we have defined an abductive semantics for SICs, in the context of agent societies, and a more gen-
eral framework, in which the verification procedure is performed by an abductive proof procedure [6], whose
implementation has been integrated into a software component [3], interfaced to several multi-agent platforms
such as Jade [8], PROSOCS [9], and tuProlog [12]. Other authors have proposed alternative approaches to the
specification and in some cases animation of interaction among agents. Notably, in 7], Artikis et al. present a
theoretical framework for providing executable specifications of particular kinds of multi-agent systems, called
open computational societies, and they present a formal framework for specifying and animating systems where
the behaviour of the members and their interactions cannot be predicted in advance, and for reasoning about
and verifying the properties of such systems. A noteworthy difference with [7] is that we do not explicitly
represent the institutional power of the members and the concept of valid action. Permitted are all social events
that do not determine a violation, i. e., all events that are not explicitly forbidden are allowed.

In [24], Yolum and Singh apply a variant of Event Calculus [19] to commitment-based protocol specifica-
tion. The semantics of messages (i. e., their effect on commitments) is described by a set of operations whose
semantics, in turn, is described by predicates on events and fluents; in addition, commitments can evolve, in-
dependently of communicative acts, in relation to events and fluents as prescribed by a set of postulates. Such
a way of specifying protocols is more flexible than traditional approaches based on action sequences in that it
prescribes no initial and final states or transitions explicitly, but it only restricts the agent interaction in that, at
the end of a protocol run, no commitment must be pending. Agents with reasoning capabilities can themselves
plan an execution path suitable for their purposes (which, in that work, is implemented by an abductive event
calculus planner). Our notion of expectation is more general than that of commitment found in [24] or in other
commitment-based works, such as [15]: it represents the necessity of a (past or future) event, and is not bound
to have a debtor or a creditor, or to be brought about by an agent.

8. Conclusions. We have presented a framework for the specification and runtime verification of compli-
ance of agent interaction to protocols. The specification at a social level of interaction protocols constrains the
agent observable behaviour from the outside, rather than its internal state or structure. This is a characteristic
of social approaches to agent protocol specification, and it is particularly suited for usage in open agent soci-
eties. Protocol specifications use a computational logic-based formalism called social integrity constraints. The
system’s Java-Prolog- CHRbased implementation has been tested on different types of protocols [23]. In this
article, we have demonstrated the usage of SICs in three cases: the FIPA CNP, taken from the agent literature,
a made up protocol for joining semi-open societies, and the well known three-way handshake phase of the TCP
IP protocol for connection establishment. The verification system, implemented in Prolog and CHR, can be
used as a module in a Java-based system, thanks to the Java-Prolog interface of SICStus Prolog. The modular
structure of the system makes it (hopefully) easy to adapt it to new applications.
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