
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org
© 2025 SCPE. Volume 26, Issues 2, pp. 517–530, DOI 10.12694/scpe.v26i2.3942

ENHANCING CLOUD DATA SECURITY THROUGH AN ENCRYPTED AND EFFICIENT
CONNECTION MODEL BASED ON BLOCKCHAIN TECHNOLOGY

SONALI SHARMA∗, SHILPI SHARMA†, AND TANUPRIYA CHOUDHURY ‡

Abstract. Centralized file storage systems are widely used for sharing data and services, offering oversight capabilities to
governing bodies. Despite their prevalence, these systems raise significant concerns about potential data misuse by authorities
and control over internet information dissemination. The vulnerability of centralized systems has been highlighted by security
breaches that exposed user data. To counteract these issues, researchers have proposed blockchain-based solutions for enhanced
data protection. This research work highlights an innovative approach utilizing the services of Interplanetary File System (IPFS),
a secure and encrypted connection framework accessible via web browsers that supports global data storage and distribution
on a decentralized peer-to-peer network. This model ensures privacy, accuracy of information, and eliminates additional service
fees or software requirements. However, even decentralized networks like IPFS have faced cyber threats compromising user data.
In response to this challenge, the presented research outlines a model incorporating AES-256 encryption to protect files before
uploading them onto IPFS nodes. Secure transmission is achieved through WebRTC technology which facilitates the exchange of
encrypted file hashes and keys with recipients. The key takeaways from this study include an optimized method for file storage and
distribution designed to thwart cyber-attacks targeting stored or shared files while also providing economic benefits by removing
extra storage costs associated with large files in centralized systems. Overall, the research offers a robust solution aimed at
safeguarding user privacy without sacrificing functionality or incurring high costs.

Key words: IPFS, AES-256, Web RTC, Blockchain Technology, Decentralized, Distributed

1. Introduction. The current version internet comprises of the widespread usage of services provided
by the Web2 environment. The online transactions including- sharing of data, communication of information,
confidential file storage and end to end transfer of content is governed by the centralized systems. The significant
drawbacks of accelerating transactions of data and information through the Web2 environment include- services
in exchange of personal data of end users, centralized data monitoring by the governing bodies where the end
users often mistake themselves to be the owner of shared information and limited control of the metadata
produced on the Web2 environment [1]. Web3 is the new generation of internet which attracts attention due
to its decentralization abilities. This also means that the privileges of artificial intelligence and cyber security
can be implemented to make the internet more secure and empower the individuals to have complete control
over the content they create or share online [2]. Web3 is often termed as semantic or spatial web that leverages
decentralization capabilities. A distinct concept from Web 3 which focuses on capabilities of 3D virtual realm
and augmented reality is termed as Metaverse. Metaverse is an environment wherein the three dimensional
objects interact and provide better interface for human engagement. Therefore, Web3 and Metaverse can be
used together for providing a more interactive environment for the users but they are not interchangeable [2].
Decentralized applications (DApp) that operate on the concept blockchain technology and other distributed
platforms play a crucial role in making the Web3 environment permission less, secure and private. Under
the proposed approach, the files are uploaded on the web using the potential of the Web3 environment and
are distributed using interplanetary file system (IPFS) to ensure security and ownership of the content by
the creators. However, the modern day malicious software including the zero day attacks can infiltrate any
device. To safeguard our system from the viruses, we can scan the files before uploading/downloading them by
any efficient anti-virus software available. However, the malicious files cannot damage the file storage system

∗Amity University, Uttar Pradesh, India (sonali.260893@gmail.com).
†Department of computer Science and Engineering, Amity University, Uttar Pradesh, India (ssharma22@amity.edu).
‡School of Computer Sciences, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India

(tanupriya@ddn.upes.ac.in).

517



518 Sonali Sharma, Shilpi Sharma, Tanupriya Choudhury

implemented using IPFS but can potentially harm any user system who downloads such files from IPFS. Our
research aims to propose a model that can facilitate the transition between the Web2 and Web3 seamlessly.

1.1. Contribution. Cloud based platforms are crucial for files and data storage. However, they raise
security concerns which impact the integrity and confidentiality of the data shared on the centralised platforms.
They are expensive and susceptible to man in the middle attacks. The proposed and implemented model
presented in this paper ensures data security of the stored and shared data over the network. To achieve the
server less architecture we have designed a user interactive framework using React and Next.js. To establish
a secure connection between the sender and receiver WebRTC has been used and decentralisation is achieved
using IPFS. The framework incorporates the data sharing mechanism using AES-256 file encryption method.
The research paper presents two novel algorithms, which have been implemented to ensure data confidentiality
and integrity. The proposed framework has been compared with the existing frameworks to demonstrate its
efficiency and cost-effectiveness.

The research paper is arranged as Literature Review in section 2, Motivation in section 3, Methodology in
section 4, Proposed Framework in section 5, Implementation of Framework in section 6, Results and conclusion
in section 7 and Future Work in section 8.

2. Literature Review. The centralised systems work on the capabilities of the client-server approach
powered by HTTP (Hyper Text Transfer Protocol) due to its well implemented architecture to meet the
industry standards for communication of data. Here are some drawbacks of accessing data and information
using the potential of the HTTP architecture.
Limited Bandwidth: Channelising information through single server to multiple clients.
Paid services: Global access to the shared data requires a server to be setup or the services provided by the

central storage application is paid.
Ephemeral: Failure of the centralized server, will lead to data loss.
Data Duplication: Files having similar information, name and metadata can be found at multiple servers.

IPFS on the other hand provides better access to the data by decentralizing it, so that even if one node
breaks down, the data must be present with many other nodes. IPFS has high bandwidth as the data is
not downloaded from single server, it is accessed by many nodes having that information [3]. Similar to the
centralized data storage mechanisms IPFS also maintains a cache or a list of frequently accessed files, if the user
wants a file to be available for quick access then cryptocurrencies can be used to incentivize the information or
there is a cost free mechanism of file pinning which allows quick access to the frequently requested files. Using
the mentioned method the file will be consistent and available in a network whenever required. To prevent
data redundancy IPFS uses the concept of content based addressing where the files with same name and data
cannot be stored even on different locations [4]. It is important to note that both HTTP and IPFS protocols
provide data sharing and accessibility mechanisms and but have very distinct structure:
Content addressing: HTTP locates the stored information by the help of URL (Uniform Resource Locator),

whereas IPFS uses content-based addressing for locating the stored resources through the cryptographic
hash of the content regardless of its location.

Decentralization: HTTP relies on centralized servers to host and distribute content, while IPFS is a decentral-
ized network where content is distributed across many different nodes [5]. This means that IPFS can
be more resilient to network failures and censorship.

Performance: HTTP typically relies on a client-server architecture, where a client requests data from a server
and the server responds with the requested data [5].

Persistence: To gather information through HTTP architecture, it relies on the centralized server up time and
as long as it is available for data retrieval. Whereas, IPFS structure depends on the availability of
nodes hosting the data on network.

While HTTP and IPFS both serve the purpose of sharing and accessing content over the internet, IPFS
offers some unique advantages over HTTP, particularly in terms of decentralization, content addressing, and
persistence [6]. However, HTTP is still widely used and has a well-established infrastructure that many websites
and applications rely on. Fig. 2.1 shows average analysis on the research work published worldwide from the
year 2018 to 2024 on IPFS protocol. The analysis has been done using VOSviewer with input data from the



Enhancing Cloud Data Security Through an Encrypted and Efficient Model based on Blockchain Technology 519

Fig. 2.1: Analysis of average documents published from 2018 to 2024 on the study of IPFS

OpenAlex API. The results showcase links for 3430 documents published worldwide. The maximum research
work has been initiated in the United States followed by United Kingdom and Germany.

Service availability is one of the major concerns when we implement distributed/decentralised framework
and mechanisms. Traditional methods of calculating the uptime of service is measured by percentage of available
time, explained by the below mentioned equation [7][8].

Availability =
MTTF

MTTF +MTTR
(2.1)

MTTF: Mean Time Failure of service
MTTR: Mean Time to Repair the service

However, the above equation does not explain the reason of service failure. In case of IPFS or decentralised
frameworks, there can be many reasons for service failure like downtime of requested node, network congestion,
and unavailability of requested of data. To better describe the data or service availability, Giwon On, et al.
[7, 8] have mentioned an optimised definition of service and data availability of IPFS:

AvailService = AvailDataXAvailSystem (2.2)

AvailSystem = AvailNodeXAvailLink (2.3)

AvailNode = AvailDynamicXAvailIntrinsics (2.4)

We elaborate the availability matrix on the basis of our proposed framework using IPFS.
AvailService: The available service of our proposed framework is directly proportional to data availability and

system availability. Therefore, service completion depends on available data and system uptime.
AvailData: This refers to availability of updated data for user access and use. IPNS (Interplanetary Name

System) and dynamic links explained in further sections are implemented in IPFS to ensure updated
data availability.



520 Sonali Sharma, Shilpi Sharma, Tanupriya Choudhury

Table 3.1: BitTorrent vs IPFS

BitTorrent IPFS
BitTorrent does not have the capabilities of using DHT
(Distributed Hash Table), therefore a torrent and meta-
data file is required to start downloading the file.

Hash of the file is required to start downloading the file
from IPFS. This is due to Kademlia- a lookup mechanism
by IPFS which supports DHT.

There is no mechanism of leveraging the CID (Content
Identifier) and DHT of the file content. Therefore, the
content of the files cannot be compared while it is be-
ing uploaded from different sources. This leads to data
redundancy.

Files having same CID will be detected as soon as they are
uploaded on IPFS. Files having same metadata, content,
file name, byte level compression and encryption will not
be uploaded on IPFS due to their similar CID.

AvailSystem: The system availability depends on availability of dynamic IPFS nodes, their configuration, and
data-link availability.

AvailLink: Available link means that the node link between the user and server is within the reachable limit
with considerable delay to provide service using high bandwidth resource.

AvailNode: This indicates the service node strength, bandwidth and performance to support the service com-
pletion and data delivery.

AvailDynamic: Stability in node uptime is dynamic node availability, to help and process the request within a
tolerable time limit.

AvailIntrinsics: Node Intrinsic availability refers to the bandwidth, storage capacity, system configuration and
processing power of the IPFS nodes in the distributed framework.

WebRTC is based on open standards consisting of several APIs (Application Programming Interfaces) to
enable standalone structure for video and audio calls, chat, and file sharing mechanism so that the developers can
use it to build real-time communication applications. For fast, secure and efficient communication it uses peer-to-
peer connections between the devices allowing the usage of advanced features such as encryption, which ensure
private connection [9]. It therefore consulates as the building block of decentralized applications based on real-
time connections. Due to the persistence and resilience of WebRTC structure there is no single point of failure,
which enables its adaptability to the changing modern standards [10]. To enable low latency communication:
WebSockets or signalling servers powered by WebRTC ensure device discovery and connection. Upon successful
connection establishment, the information can be easily exchanged without the centralised servers. Overall,
WebRTC is a powerful technology to ensure real-time communication for decentralized environment.

Another aspect of conflict is to understand the difference between IPFS and blockchain. They both serve
the purpose of decentralisation with different use cases. IPFS however, showcases capabilities to overcome the
limitations of blockchain [11]. One of the major limitations of blockchain include scalability, where the size of
network may affect the synchronization between the blockchain nodes resulting in slow processing time and
higher price. To overcome this issue IPFS works on the mechanism of storing the large files off-chain. This
reduces the size of network making it more manageable, easy to verify and scalable [12].

IPFS enables the developers to create applications where blockchain based solutions to store large data
can be provided without any additional cost as storing large amounts of data on-chain can be expensive. In
summary, the limitations of cost, decentralization, scalability can be overcome by using the capabilities of
IPFS [13].

3. Motivation. In the era of innovation, the decentralization mechanisms have led to invention of many
file sharing protocols. One such popular file sharing mechanism is BitTorrent which enables the users to share
the files through peer-to-peer mechanism over the internet. A group of swans (hosts) is used to download
the information through BitTorrent instead of centralized servers [10]. Table3.1 shows differences between
the functionalities of BitTorrent and IPFS. The file accessibility speed is similar to IPFS, where the most
requested/visited file is available for faster access or download by the users.

BitTorrent and IPFS are based on data security while sharing between the users, although they do not
use content based encryption. Additionally, the Content Identifier(CID) can be accessed in public domain due



Enhancing Cloud Data Security Through an Encrypted and Efficient Model based on Blockchain Technology 521

Fig. 3.1: Properties of IPFS

to the usage of public Distributed Hash Tables by IPFS [14]. Similarly, the IP addresses are public in the
Bit Torrent architecture. This affects the confidentiality of the data as the hackers can constantly monitor
the sources and destination of file sharing. To overcome this Filecoin, SiaCoin, SafeCoin, Internxt and Storj
along with many other DApp (Decentralized applications) are recently being used as peer to peer file sharing
mechanisms which aim at addressing the issues of BitTorrent and IPFS.

IPFS being an extension to the traditional and popular HTTP protocol is efficient with high bandwidth
and no single point of failure. Fig. 3.1shows the properties and advantages of using IPFS in our implemented
framework for ensuring security and integrity of data. Our proposed framework does not use the capabilities
of an Ethereum blockchain to implement the framework using the peer to peer network since data storage is
expensive.

4. Methodology. Interplanetary File system, widely known as IPFS is a content based decentralized
storage protocol which can be used to store, access and retrieve files and data of any form [15]. IPFS stores
the contents in two main parts:
(i) An unstructured binary data block of size 256 KB. When the file size is more than 256 KB then a list

containing links of file chunks small in size are maintained.
(ii) An array having links to IPFS objects associated with the same directory.

Fig. 4.1 shows the fundamental principles of understanding the working of IPFS. Let’s closely look at these
features.

4.1. CID (Content Identifier). CID is a hash unique to the content of the file. Generally used in the
URL to access the file by its content. This also means that if the content of the file changes then the CID will
also change. In some instances changing the URL every time the content of the file is updated might not be
feasible, for this IPFS has a concept of mutable pointers also known as Interplanetary Name System (IPNS).
In this case the address of the pointer which is pointing to a CID is shared and every time there is any update
in the content of the file the CID is updated but the address of the pointer remains the same [14]. IPFS uses
DHT (Distributed Hast table) for providing efficiency and to make the file retrieval process robust. DHT is
responsible for the information of all the CIDs. Therefore when a CID is requested by the user, the IPFS
nodes send queries to the DHT for finding the nearest nodes which can help you retrieve the requested CID
[15]. The CIDs which are requested frequently are available in the DHT for a limited time and they can also be
pinned if you never want them to be garbage collected. This information about which CIDs are being requested
frequently and by which nodes is publicly available.

4.2. DAG (Directed Acyclic Graph). IPFS uses the advantages of DAG data structure to split the
files into blocks. All files are broken down into blocks which can be later retrieved from different sources, each



522 Sonali Sharma, Shilpi Sharma, Tanupriya Choudhury

Fig. 4.1: Fundamental Principles of IPFS

Fig. 4.2: DAG construction for file storage in IPFS

block receives a unique CID based on its content as discussed in the previous section. The CID of the file is a
hash of the CID’s of the blocks. Therefore, a folder containing many files has a CID which will be made by the
hashes of the CID’s of the files stored inside it [16]. Fig. 4.2 explains the working of the DAG.

The advantages of using DAG is that even if there are similar files in a system then different DAG’s can
reference to same subset of data [17]. This can be helpful if some part of the bigger folder is being updated then
all other parts can continue to refer the same destinations and only the updated file can change its reference
as per the requirement.

4.3. DHT (Distributed Hash Table). A hash table is the one which maps the keys to values. A
distributed hash table however is split across the network and is used to connect different peers [18]. Once the
content to be requested is identified using the previous two steps, location of the content and where to find the
content is taken care by the DHT. Therefore DHT is responsible for:

• Identification of the peers who have the requested content
• Location of the Content

IPFS uses a data exchange protocol called Bitswap which is responsible for fetching the content from a peer
and sending it to another [19]. The designing of this protocol aims at balancing the latency and throughput



Enhancing Cloud Data Security Through an Encrypted and Efficient Model based on Blockchain Technology 523

Fig. 4.3: Working of BITSWAP

of the entire system. Bitswap is a simple protocol which can receive and transfer blocks up to size 2MB for
achieving maximum compatibility.

Fig 4.3 shows the working of BITSWAP protocol which helps in fetching the data without any latency real
time.

If the blocks are to be retrieved from the peers then a WantList can be created which has the details of the
request blocks [20]. Hash of the received contents can be verified upon retrieval of blocks from the peers using
Bitswap. Verification can be done by hashing the contents to fetch CID of the received blocks and match them
with the CID of the request blocks. If both match then they can be sent to the other peers who have requested
the blocks.

5. Proposed Framework. IPFS is a peer to peer protocol and a globally distributed server which is used
for data storage and delivery. CIDs can easily be used to reference the distributed server and the nodes that
are communicating with each other. Let’s closely look at the attributes of IPFS which are publicly declared to
be referenced by nodes.

• Although the communication between the nodes is encrypted but the metadata produced by nodes
which is shared with the DHT is public.

• DHT contains a variety of information produced by the IPFS nodes which is public- CID of data and
PeerIDs (Unique node identifier).

• Retrieval and request of CIDs by the nodes.
There are two types of encryption schemes that can be used for data protection: Transport encryption and

Content encryption. IPFS uses transport encryption so that anyone cannot view the files/data while they are
being transported between nodes but the content is not protected as anyone who as the CID can download
and view the contents of the file. The additional security measures therefore are required to be taken for data
protection. The framework proposed in this paper aims at achieving privacy, confidentiality and security of
data while it is shared using IPFS.

1. Browser Application: Build using TypeScript because it has the capabilities of specifying the type
of data being passed into the code but in JavaScript this facility is not there as the variables and
parameters don’t give any information. The compile time type checking is possible by using the
TypeScript. For user interaction Next.js and React is used so that the browser application can be
easily accessed using web and no extra server storage is required to run this.

2. Encryption of file uploaded by the user: AES-256 is used for the encryption of files on the user system
before sending the file to IPFS. AES-256 encryption is not easy to decrypt because of the large key
size. It is even quantum safe because it requires 6600 logical, error-corrected qubits to break the
encryption of AES-256 but the latest quantum computer Osprey has 433 qubits achieved by IBM. The
computational powers of the presently used computers also cannot decrypt the files encrypted by AES-



524 Sonali Sharma, Shilpi Sharma, Tanupriya Choudhury

Fig. 5.1: Flowchart for file encryption and upload using the proposed framework

256 easily without the encryption key [21]. In this model the keys are being stored on the browser and
a single key is used for the encryption of files [17]. Fig.5.1 shows the process of uploading the encrypted
file using IPFS.

3. Uploading encrypted files to IPFS: For implementation and usage of IPFS environment we are using
the HTTP-client library which can work with both the Go and JS implementations of IPFS without
installing any extra software on the system [22]. As the files being shared with the IPFS nodes are
encrypted and are being shared directly there are very remote chances of many attacks such as the
man in the middle attack (MIMT)and brute force attacks. The API used for implementation of IPFS
is responsible for splitting the files into blocks and create hashes of the contents. The CID is not shared
with the nodes and the metadata is directly stored at the database and not in the server.

4. File sharing: Files uploaded to IPFS can be shared with the peers by creating and initializing a peer
object. Create peer object with connection to shared peer server and initialize the peer object. Initialize
an IPFS client to interact with the IPFS network. This is necessary for accessing and retrieving the
uploaded files. After initialization share the data with peer object [23]. To write clear and concise
instructions for sending files uploaded to IPFS to peers by creating and initializing a peer object, you
can follow these steps:
(i) Initialize a peer object to communicate with peers over a shared peer server. Make sure to provide

the necessary configuration options, such as the server URL, port, and any other required settings.
(ii) Set up callbacks to handle various events related to the peer connections, such as session timeout

or data transfer events. This ensures you can react appropriately to these events.
(iii) To share files or data with peers, you can use the connection object created in the event handler.

Send the data to the connected peer using the ‘send‘ method.
(iv) If session timeout or other connection-related events are important for your application, you can

implement callbacks for these events to handle them appropriately.
(v) If needed, you can also close connections gracefully when you’re done with them.

5. File Retrieval: The user request for file retrieval is processed by IPFS and information about the nodes
storing the CID of the requested file is shared by referring to the DHT. After the nodes having the
blocks of the requested file are identified, the encrypted file is send back along with its hash to the
browser application at the user end.



Enhancing Cloud Data Security Through an Encrypted and Efficient Model based on Blockchain Technology 525

Fig. 5.2: Flowchart for file decryption and download using the proposed framework

6. WebRTC employs encryption protocols like Datagram Transport Layer Security (DTLS) and Secure
Real-Time Protocol (SRTP) to ensure secure transmission of data. The user can decrypt the file using
the key stored on the browser and retrieve the original readable file. Fig. 5.2 shows the retrieval process
of the encrypted file.

6. Implementation of framework. The proposed framework aims to build a web based application
which does not require any external server for file storage. The framework consists of the following components:
IPFS Node: A local instance of the IPFS daemon that handles file storage, retrieval, and distribution.
Encryption/Decryption Module: Encrypts files before uploading them to IPFS and decrypts them upon re-

trieval using a symmetric encryption algorithm.
Key Management Module: Generates, stores, and manages encryption keys.
WebRTC Signaling Server: Facilitates the exchange of signaling data between peers, enabling the establishment

of a WebRTC connection.
WebRTC Data Channel: A secure communication channel for exchanging encryption keys between peers.

A user uploads a file to the system. The Encryption/Decryption module encrypts the file using a randomly
generated encryption key. The encrypted file is added to the local IPFS node and distributed across the network
[24]. The user shares the unique IPFS hash of the encrypted file and establishes a WebRTC connection with
the recipient using the signaling server. Algorithm 1 explains the procedure to encrypt the file using a secure
randomly generated password before sharing the file with the peers. The encryption key is securely transmitted
to the recipient via the WebRTC Data Channel. The recipient downloads the encrypted file from IPFS using
the hash and decrypts it using the received encryption key. Our proposed system ensures the following security
properties:

1. Confidentiality: File content is encrypted using a symmetric encryption algorithm, making it unreadable
to unauthorized parties.

2. Integrity: The content-addressed nature of IPFS ensures that the file content remains unaltered, due
to a different hash value for any changes made to the uploaded file.

3. Availability: IPFS’s distributed architecture ensures file availability even in the presence of network
failures or censorship attempts.

4. Secure Key Exchange: WebRTC’s encryption protocols (DTLS and SRTP) provide secure transmission
of encryption keys, preventing eavesdropping and man-in-the-middle attacks.

5. Cost effective: There is no cost required for sharing the files using the proposed framework.



526 Sonali Sharma, Shilpi Sharma, Tanupriya Choudhury

Table 6.1: Libraries, frameworks and technologies

Technology Version
IPFS Ipfs-desktop-0.24.1-mac.exe
React 18.2.0
Next.js Next.js 13
IPFS-http-client https://github.com/ipfs/js-ipfs.git
Web Crypto API https://github.com/mdn/content/blob/main/files/en-us/web/api/web_crypto_api/index.md?

plain=1

Fig. 6.1: Process diagram to upload the encrypted file using the proposed framework

6. Low space utilization: CID and hash are the only values stored for each file on each node, very limited
space utilization is required by our system as compared to other blockchain based solutions proposed
in the past.

7. Not searchable on web: The file is not searchable on the internet due to encrypted path information.
8. Eavesdropping and man in the middle attack is not possible: Unique peer ID is used for establishing

the secure connection between the sender and receiver.
9. Server less file upload/download and transportation: No server space is required for running the pro-

posed model.
10. Two way security: The established connection is verified through shared Peer ID communicated and

sent using WebRTC data channel.
The technology stack used to build the web application is discussed in Table 6.1.
In the proposed web application, the files are encrypted by using AES-256 and then the encrypted file

stored on the system by .enc extension can be uploaded on IPFS nodes. Fig. 6.1 and Fig.6.2 show the upload
and download procedure of encrypted files using the proposed mechanism. There is no cost of managing the
files as they are being uploaded on the web in a secured manner [25]. HTTPS is used for this purpose in the
current searches and file storage but due to centralized client server mechanism it is considered to be prone to
failure in the future. After installing the latest IPFS version on your system, for running the web application
on the browser of a PC or mobile run the following commands on the terminal to start IPFS client. Algorithm
2 explains the procedure to share the encrypted files securely. The two-way security mechanism to establish
the connection between sender and receiver ensures no cyber-attacks are possible while file transmission.

While establishing secure connection between the sender and receiver, a unique peer ID will be generated
the similar way we generate the one time stamp to open connection for the transaction to be successful. To
ensure the ease of use for the sender and receiver we have generated random IDs as a combination of adjectives
+ nouns + alphanumeric string. This will help in connecting and login to the connection without any delay.
Additionally, this peer ID will be valid for sharing only one set of file. For another file sharing option, we have



Enhancing Cloud Data Security Through an Encrypted and Efficient Model based on Blockchain Technology 527

Algorithm 1 Encrypt and upload file to IPFS
Input: IPFS API Address, File, User interaction through UI elements.
Output: Encrypted File, File CID, Stored file details in the browser.
1: Initialise Variables: Password, selectedFile, apiAddress, client, clientID, ipfsFile, encryptedFile, filesInDB.
2: Generate a password using alphanumeric characters
3: Create an IPFS client instance using the provided API address
4: while IPFS client is active do
5: Set the client instance and client details (ID)
6: for all selectedFile from input field do do
7: Set the ’password’ variable based on user input
8: for encryptedFile do do
9: Read the selected file as a Uint8Array

10: Create salt, key, and IV for encryption
11: Encrypt the file using AES-CBC and derived key
12: encrypteddata← salt
13: encryptedF ile← EncryptedData
14: Display an alert confirming successful encryption
15: end for
16: end for
17: for all encrptedFile do do
18: Upload the encrypted file to IPFS
19: ipfsF ile← FileCID
20: Display an alert confirming successful file upload
21: end for
22: if UploadF ile = PinFile then
23: Pin the file to IPFS
24: Display an alert confirming successful file pinning
25: end if
26: if ipfsFile, selectedFile, and password are available then
27: Create a PouchDB instance
28: Create a document with file details and store it in the local database
29: Display an alert confirming successful file details storage
30: end if
31: Call getFilesInDB to refresh the file list
32: end while

Fig. 6.2: Process diagram to download and decrypt the file from the proposed framework

to generate a different Peer ID. Due to this feature the model is secured from the brute force attacks and man
in the middle attacks.



528 Sonali Sharma, Shilpi Sharma, Tanupriya Choudhury

Algorithm 2 File sharing mechanism using the proposed framework
Input: Encrypted File, IPFS API address.
Output: File in database
1: Initialize Variables: lastPeerId, receiverId, peer, conn, status, filesInDB, selectedFiles
2: Create a PouchDB instance called db for the files database
3: Retrieve all documents from the files database
4: Handle Checkbox(event)
5: if The checkbox is checked then
6: Add the checkbox value to the selectedFiles list
7: else

Remove the checkbox value from the selectedFiles list
8: end if
9: Create an empty list selectedFilesDetails

10: for all Files in filesInDB do
11: if file.id is in selectedFiles then
12: selectedF ilesDetails← files
13: return selectedFilesDetails
14: end if
15: end for
16: Set receiverId to the value entered in the input field
17: Initialize a Peer Object
18: Create a peer object and connect to a shared PeerJS server
19: Create a new peer object and assign it to peer
20: while The peer object is successfully opened do
21: Assign the peer ID
22: Define event handlers for peer events, such as open, connection, disconnected, close, and error
23: Enter the peer ID of the receiver
24: Display the current connection status
25: Join a connection to the destination peer based on the provided peer ID
26: Select files to share
27: Allow the user to refresh the list of files available in the local database
28: Enable the user to select files for sharing using checkboxes
29: for all Selected file do do
30: if conn exists then
31: Send the details of selected files to ’conn’
32: Display a list of selected file CIDs that will be shared
33: Send the selected file CIDs to the receiver
34: else

display an alert indicating that the connection is closed
35: end if
36: end for
37: end while
38: Close connection

7. Results and Conclusion. In this paper, we have presented a secure mechanism for file storage and
peer-to-peer sharing which uses the decentralized capabilities of IPFS and the secure communication channel
provided by WebRTC. The proposed system encrypts files before uploading them to IPFS and securely shares
the encryption keys using WebRTC. Our approach provides confidentiality, integrity, and availability for shared
files, while secure key exchange architecture between peers. The limitation of the proposed framework is
that both the sender and receiver must have IPFS installed on their respective devices for communication of
information. This can however, be made easily adaptable for use and practice as we are adapting to various
new technologies for securing our file sharing systems. The robustness of the secure channel communication
enables to share any size of files across the network without paying for the services like server space for storage
and data encryption.



Enhancing Cloud Data Security Through an Encrypted and Efficient Model based on Blockchain Technology 529

Fig. 7.1: Comparative analysis for file uploading on cloud based platforms

Fig. 7.2: Comparative analysis for file downloading from cloud based platforms

To compare our proposed framework with the popular cloud based solutions built on centralized server we
use the React File Picker component that works with the Apideck (File Storage API). The results have been
recorded based on the time parameter with 48 data points. System information – M2 MAC with 16GB RAM;
tests were performed on fiber connection connected through ethernet on Safari browser. Files of different sizes
have been compared for both the download and upload procedure- 49 KB, 256 KB, 5.5 MB and 14.1 MB. The
proposed framework is the fastest as compared to OneDrive, DropBox, Google Drive, MediaFire and Filebase
platforms as shown in Fig.7.1 and Fig.7.2.

8. Future Work. Our proposed framework combines the potential of IPFS and WebRTC to implement
an encrypted, secure, decentralized peer-to-peer file sharing framework. The mechanism has the capability to
serve as a foundation for further research in decentralized file sharing and content distribution. However, the
further research and development can work around the following areas:
Scalability: Due to increase in the number of users, files shared across the nodes can increase and therefore its

performance should be enhanced accordingly.
Access Control: These policies can be implemented to provide users with more control over the users who can

access their shared files.
Key Management: Exploring more advanced key management techniques, such as key rotation, modification

and regular updates to enhance security and mitigate potential key sharing risks.
Mobile Support: Mobile application for file sharing using similar technology can be implemented, which can

extend the system to support mobile devices for a seamless cross-platform experience.



530 Sonali Sharma, Shilpi Sharma, Tanupriya Choudhury

REFERENCES

[1] Kuai, Le, Mary Lacity, and Jeffrey K. Mullins. Web 2 vs. Web 3 Paths to the Metaverse: Who Is Leading? Who
Should Lead?, The Journal of The British Blockchain Association, September 2023.

[2] W. C. Diehl Artificial Intelligence, Web 3, and the Future of Distance Education, American Journal of Distance Education,
vol. 37, no. 2, pp. 83-84, 2023.

[3] C. Patsakis and F. Casino Hydras and IPFS: a decentralised playground for malware, International Journal of Information
Security, vol. 18, pp. 787–799, 2019.

[4] S. Vimal and S. K. Srivatsa A new cluster P2P file sharing system based on IPFS and blockchain technology, Journal of
Ambient Intelligence and Human Computing, 2019.

[5] A. A. Battah, M. M. Madine, H. Alzaabi, I. Yaqoob, K. Salah, and R. Jayaraman Blockchain-Based Multi-Party
Authorization for Accessing IPFS Encrypted Data, IEEE Access, vol. 8, pp. 196813-196825, 2020.

[6] N. Nizamuddin, K. Salah, M. Ajmal Azad, J. Arshad, and M. H. Rehman Decentralized document version control using
Ethereum blockchain and IPFS, Computers & Electrical Engineering, vol. 76, pp. 183-197, 2019.

[7] Zeng R., You J., Li Y., Han R. An ICN-Based IPFS High-Availability Architecture, Future Internet, 2022.
[8] On G., Schmitt J., Steinmetz R., The Effectiveness of Realistic Replication Strategies on Quality of Availability for

Peer-To-Peer Systems, In Proceedings of the Third International Conference on Peer-To-Peer Computing (P2P2003),pp.
57–64, Linkoping, Sweden, 1–3 September 2003.

[9] M. Tomaiuolo, M. Mordonini, and A. Poggi A P2P Architecture for Social Networking in Applying Integration Techniques
and Methods in Distributed Systems and Technologies, IGI Global, 2019.

[10] V. Pattanaik, I. Sharvadze, and D. Draheim A Peer-to-Peer Data Sharing Framework for Web Browsers, SN COMPUT.
SCI., vol. 1, p. 214, 2020.

[11] W. P. scWardlaw The RSA public key cryptosystem in Coding theory and cryptography, Berlin: Springer, pp. 101–23, 2000.
[12] A. V. Sambra, E. Mansour, S. Hawke, M. Zereba, N. Greco, A. Ghanem, D. Zagidulin, A. Aboulnaga, and T.

Berners-Lee Solid: A platform for decentralized social applications based on linked data, Tech. rep., MIT CSAIL &
Qatar Computing Research Institute, 2016.

[13] A. Tenorio-Fornés, S. Hassan, and J. Pavón Open Peer-to-Peer Systems over Blockchain and IPFS: an Agent Oriented
Framework, 2018.

[14] G. Alagic, J. Alperin-Sheriff, D. Apon, et al. Status Report on the Second Round of the NIST Post-Quantum Cryptog-
raphy Standardization Process, NISTIR 8309, NIST, U.S. Department of Commerce, July 2020.

[15] S. El Adib and N. Raissouni AES Encryption Algorithm Hardware Implementation Architecture: Resource and Execution
Time Optimization, International Journal of Information & Network Security (IJINS), vol. 1, no. 2, pp. 110-118, June
2012.

[16] A. K. Das A random key establishment scheme for multi-phase deployment in large-scale distributed sensor networks,
International Journal of Information Security, vol. 11, pp. 189–211, 2012.

[17] C. Yang, T. Liang, N. Shi, B. Xu, Y. Cao, and K. Yu AuthPrivacyChain: A Blockchain-Based Access Control Framework
With Privacy Protection in Cloud, IEEE Access, pp. 1-1, 2020.

[18] G. Alagic, J. Alperin-Sheriff, D. Apon, et al. Status Report on the Second Round of the NIST Post-Quantum Cryptog-
raphy Standardization Process,NISTIR 8309, NIST, U.S. Department of Commerce, July 2020.

[19] X. Bonnetain, M. Naya-Plasencia, and A. Schrottenloher Quantum Security Analysis of AES,IACR Transactions on
Symmetric Cryptology, Ruhr Universität Bochum, 2019.

[20] M. K. C. Ledda, B. D. Gerardo, and A. A. Hernandez Enhancing IDEA Algorithm using Circular Shift and Middle
Square Method, ICT and Knowledge Engineering (ICT&KE) 2019 17th International Conference, pp. 1-6, 2019.

[21] Abbadini, M., Beretta, M., di Vimercati, S. D. C., Facchinetti, D., Foresti, S., Oldani, G., ... & Samarati, P. Sup-
porting Data Owner Control in IPFS Networks., In Proceeding of the IEEE International Conference on Communications
(IEEE ICC 2024).

[22] Dwivedi SK, Amin R, Vollala S.Smart contract and IPFS-based trustworthy secure data storage and device authentication
scheme in fog computing environment., Peer-to-Peer Networking and Applications. 16(1):1-21; Jan 2023.

[23] Medina J, Rojas-Cessa R. AMI-Chain: a scalable power-metering blockchain with IPFS storage for smart cities., Internet
of Things.1:101097; Feb 2024.

[24] AlKhader W, Jayaraman R, Salah K, Sleptchenko A, Antony J, Omar M. Leveraging blockchain and NFTs for quality
4.0 implementation in digital manufacturing., Journal of Manufacturing Technology Management. 24;34(7):1208-34; Oct
2023.

[25] Alam S, Bhatia S, Shuaib M, Khubrani MM, Alfayez F, Malibari AA, Ahmad S. An overview of blockchain and IoT
integration for secure and reliable health records monitoring., Sustainability. 23;15(7):5660; Mar 2023.

Edited by: Kavita Sharma
Special issue on: Recent Advance Secure Solutions for Network in Scalable Computing
Received: May 15, 2024
Accepted: Sep 1, 2024


