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QUALITY ANALYSIS AND PREDICTION METHOD OF SMART ENERGY METER
BASED ON DATA FUSION

SIWEI WANG∗, JI XIAO†, YINGYING CHENG‡, YU SU§, AND WENLI CHEN¶

Abstract. In order to study the quality analysis method of key links in smart energy meters, the author proposes a data fusion
based quality analysis and prediction method for smart energy meters. This method is based on the relevant data of key links in the
electric energy meter, and selects the data of the electric energy meter in research and development design, material procurement,
production and manufacturing, acceptance testing, installation and operation, dismantling and scrapping as the sample data for
model construction. The XGBoost algorithm classification method is used to establish an intelligent electric energy meter quality
analysis model. Taking the dismantled electricity meter data of a certain power company as an example, this paper conducts
modeling analysis and prediction of various quality issues of smart electricity meters, and conducts on-site verification. Based
on the verification results, the model is continuously optimized. The results indicate that: The model was optimized using cross
validation and grid search methods, and the final model achieved an accuracy rate of 0.74 and a recall rate of 0.82 on the validation
set. This method can meet the actual needs of power grid business and objectively reflect the quality situation of key links in
smart energy meters.
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1. Introduction. With the development of human living standards and society, more and more power
electronic components are being applied to the power system. With the integration of national photovoltaic
poverty alleviation projects, the proportion of distributed photovoltaic grid connection is increasing. These
devices have relatively superior performance, but they have caused an impact on the power quality, making
the problem of power quality in the low-voltage platform area increasingly severe. How to comprehensively
monitor and evaluate the power quality of low-voltage substation areas has become one of the hot topics for
power supply enterprises and researchers [1].

Excellent power quality is an important guarantee for the safe and economic operation of the power grid.
Power quality issues not only cause losses to electricity consuming enterprises and customers, but also seriously
affect the power supply service indicators of power supply enterprises. Even serious power quality problems
will impact the brand image of power supply enterprises [2]. If there is a voltage quality issue, excessive
voltage can cause damage to equipment such as transformers, energy meters, and electrical appliances used by
customers; Low voltage can bring huge obstacles to social production and human life, and serious low voltage
problems may cause machines to malfunction and cause economic losses [3]. For example, the three-phase
imbalance problem in the low-voltage substation area can slightly reduce the efficiency of low-voltage lines and
distribution transformers, but in severe cases, it may cause serious consequences such as wire overload burning,
switch burning, and even single-phase burning of distribution transformers [4]. How to carry out power quality
monitoring in low-voltage substations is the primary issue in analyzing power quality issues. The power quality
monitoring device can provide real-time data monitoring for power supply enterprise staff, and assist them in
recording and analyzing the basic situation of power quality in low-voltage substation areas. The monitored
operational data can also be used to analyze the problems of electricity customers and provide effective solutions
for grassroots grid managers [5].

∗State Grid Chongqing Electric Power Company Marketing Service Center, Chongqing, 400023, China. (Corresponding author,
SiweiWang5@163.com)

†State Grid Chongqing Electric Power Company Marketing Service Center, Chongqing, 400023, China. (JiXiao13@126.com)
‡State Grid Chongqing Electric Power Company Marketing Service Center, Chongqing, 400023, China. (YingyingCheng65@

163.com)
§State Grid Chongqing Electric Power Company Marketing Service Center, Chongqing, 400023, China. (YuSu32@126.com)
¶State Grid Chongqing Electric Power Company Marketing Service Center, Chongqing, 400023, China. (WenliChen59@163.com)

663



664 Siwei Wang, Ji Xiao, Yingying Cheng, Yu Su, Wenli Chen

Fig. 1.1: Quality Analysis of Intelligent Energy Meters Based on Data Fusion

The power quality monitoring device can also record the type and geographical location of faults in power
supply equipment, which helps to carry out power supply repair services and improve the efficiency of restoring
power supply. With the deployment of digital transformation strategies for power supply enterprises, more and
more perception devices are being applied to power supply, and a plethora of new technologies (big data, cloud
platforms) are gradually being applied to various fields of power supply enterprises. Like the right wing front
flag of Horqin, the power supply service resource scheduling and control system covers the entire area, and the
perception ability of power grid equipment has been greatly improved [6]. The promotion and construction of
business systems such as electricity information collection, online power grid, and power supply service resource
scheduling and control provide strong data support for comprehensive monitoring of the operation status of the
power grid. According to the author’s statistics, all provincial companies of State Grid Corporation of China
have established data service platforms and massive data platforms, but progress in data value mining, data
analysis applications, data cleaning and integration is relatively slow [7] (Figure 1.1).

2. Literature Review. The price of power quality monitoring devices is expensive, and considering
their cost, it is not possible to configure them in large quantities in the distribution network. Therefore,
the optimization goal of minimizing power quality monitoring points has always been a research hotspot for
power quality monitoring schemes. The goals of power quality monitoring are different, and the methods of
configuring power quality monitoring points are also different, making it difficult to form a unified standard.
Himeur, Y. proposed a monitoring device configuration scheme that takes into account the severity of voltage
sag in substations, taking into account the number and observability of substation monitoring, and taking into
account the number of monitoring points and the observability of voltage sag at each node of the entire network
as constraints [8]; Chen, Y. proposed an equipment configuration optimization scheme for monitoring the entire
network voltage using the fault point method, taking into account the number of monitoring points and the
observability of voltage dips at each node, in response to voltage dips caused by line short circuits [9]; Nakutis, Ž.
proposed in [10] a method of using particle swarm optimization algorithm to optimize equipment configuration
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for monitoring points with voltage sag; Spertino, F. proposed a monitoring point configuration algorithm using
an improved particle swarm optimization algorithm by reasonably setting the minimum number of monitoring
points [11]; Karngala, A. K. proposed an equipment configuration optimization plan that takes into account
the severity of voltage sag in substations, addressing the issue of existing power quality monitoring point layout
schemes not taking into account the type, management requirements, and equipment configuration sequence of
each monitoring point [12].

Electricity information collection data is usually stored as historical data in historical databases, and some
scholars have begun to explore the value of this data; Zhou, M. analyzed electricity information collection
data and proposed an electricity theft identification method based on electricity feature analysis, which can be
used to screen suspected electricity theft users [13]; Ma, J. studied the fast clustering and anomaly detection
techniques for power data flow in large-scale power information collection, and designed and implemented a
flow clustering algorithm based on the clustering characteristics of power behavior in vertical and horizontal
spaces, achieving fast clustering and anomaly detection [14,15].

The author reviews the quality related data of key links in electric energy meters and studies the method
of extracting quality impact features; Compare various big data analysis technologies and establish a quality
analysis model for smart energy meters; Use this model to predict and analyze potential quality hazards of
smart energy meters, and conduct on-site verification. Continuously optimize the model based on the verification
results.

3. Research Methods. The task of the electricity meter quality analysis model is to mine the patterns
of faults in dismantled electricity meters based on relevant data of key links of electricity meters, predict the
probability of faults in operating electricity meters with the same characteristics, and conduct on-site data
verification.

The research and development design, material procurement, production and manufacturing, acceptance
testing, installation and operation, and dismantling and scrapping processes that have a significant impact on
the quality of electric energy meters are defined as key links. The data situation of each link is sorted out to
facilitate subsequent data selection [16].

For key link data, use Pearson correlation coefficient and chi square test to conduct correlation analysis
on data fields. Based on the threshold reference given by business experts, delete some fields with correlation
coefficients greater than 0.5, and finally use the key link data of the electricity meter. After cleaning and
transformation, generate data that can be used for modeling and analysis. The sample data of the model
training set is based on historical data from Henan. In the data selection stage, a total of 130 fields were
selected from the original data.

Analyze the 132 original features based on the key links of the electricity meter according to the following
steps:

The first step is data visualization. In order to visually present the relationship between the characteristics
and whether the electricity meter is faulty, these 132 original features were used to draw the distribution graphs
of the faulty electricity meter and the normal electricity meter in each feature [17]. The distribution of fault
table and normal table on several typical features is shown in Figure 3.1. As shown in the figure, there is
no significant difference in the distribution of faults in each feature of the energy meter, and further feature
extraction is needed through quantitative indicators.

The second step is to select features based on the Gini impurity method. The calculation formula is shown
in equation 3.1.

IG(f) =

m∑
i=1

fi(1− fi) =

m∑
i=1

fi − f2
i = 1−

m∑
i=1

f2
i (3.1)

In the formula, m represents the total number of categories; fi is the probability that the sample points belong
to class i.

Calculate the Gini importance of each feature by taking the reciprocal of Gini impurity, as shown in equation
3.2, and the results are shown in Table 3.1.

gini =
1

IG(f)
(3.2)
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Fig. 3.1: Comparison of distribution of fault table and normal table on various features

Table 3.1: Feature Importance (Partial)

Name Characteristic Importance
The number of days the
electric energy meter ran during DAYS_BEFORE_FIRST_FA 122
the first abnormal collection
The region code of the payment terminal AREA_CODE 102
Running time of electric energy meter OPS_MONTHS 88
Asset model MODEL_CODE 76
Manufacturing unit MANUFACTURER 64

Table 3.2: Preserved Features

Feature Name describe
A1 The number of days the electric energy meter ran during the first abnormal collection
A2 The region code of the payment terminal
A3 Running time of electric energy meter
· · · · · ·
An The wiring method of the electricity meter

We calculate the proportion of the importance of each feature in the total importance of all features as
shown in equation 3.3.

Pimportance =
ginij∑n
i=1 ginii

(3.3)

In statistics, events with a probability of less than 4% are generally considered as low probability events.
Here, 4% is selected as the proportion threshold for feature selection, and features with an importance greater
than 4% are retained [18]. Model by retaining 12 features through filtering. All features are shown in Table
3.2, represented by symbol A.

Step three, construct features. The construction feature is based on business and expert experience, con-
structing new features for warning records and abnormal code records of electric energy meters according to
business logic, and dividing the features into one vote veto feature and important feature [19].
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Table 3.3: Construction features (partial)

Feature Name describe
B1 Is there any abnormality in the electricity meter
B2 Does the abnormal setting of electricity meter rates occur
B3 Does voltage exceeding the limit occur
· · · · · ·
Bn Does the abnormality of phase B of the high supply and high meter occur

Table 3.4: Construction features (partial)

Feature Name describe
C1 Does the meter fly away
· · · · · ·
Cn Does the electricity meter stop running
ALARM_CODE_0201 Does voltage phase failure occur

If there is an abnormality corresponding to a veto feature in an electric energy meter, then the meter must
have malfunctioned; If there have been anomalies corresponding to important features in an energy meter, it is
possible that the meter has malfunctioned. The construction features include 13 veto features and 30 important
features. Some features are shown in Table 3.3, represented by symbol B.

Step 4 summarize a total of 55 feature fields mentioned above. This part of the features is shown in Table
3.4, represented by the symbol C, where C = A ∪B.

Based on the key links of the electricity meter, establish a fault rate prediction model according to the above
characteristic data, and complete the batch fault prediction of the electricity meter. There are two solutions
to predicting batch failure rates: One is to directly predict the failure rate of batch energy meters; The second
is to predict whether a single meter has failed, and then calculate the failure rate of the batch of electricity
meters based on the number and total number of failures in the batch.

The direct prediction of failure rate can be achieved by: (1) Using a regression model to fit the linear
relationship between the features obtained and the batch failure rate. This method can obtain the optimal
weight relationship between the batch failure rate and each feature; (2) By using the data from the split table
to obtain failure rate data at different times, and applying a time series model, the trend prediction of batch
failure rate on the timeline can be obtained.

Another approach is to first predict single table failures, and then divide the number of failures by the total
number of batches to obtain the failure rate of the batch [20]. Predicting whether a single table is faulty is a
binary classification problem, and simple classifier models such as decision trees, SVM, Bayesian, etc. can be
used. The results of these models are easy to interpret, but their accuracy is average and they are prone to
overfitting; Ensemble learning models can also be used, including random forest algorithm, XGBoost algorithm,
lightgbm algorithm, etc, such models are integrated on the basis of simple models. Compared with a single
model, they are often more accurate and can effectively avoid over fitting. However, the calculation rules are
complex, and the interpretability of the model is poor.

Recording the process of random event changes and developments in chronological order constitutes a time
series. Observing and studying the time series, searching for its patterns of change and development, and
predicting its future trends is called Time Series Analysis.

Time series prediction only requires a set of historical data of the variables to be predicted. Compared
with regression prediction models, this method does not require the effort to determine the causal relationship
between variables, but only needs to extend the historical trend determined by the time series model outward
to predict future changes. Time series prediction is often suitable for situations where the independent variable
data required for regression models is relatively scarce, and the historical data of the variables to be predicted
is relatively complete, which is sufficient to reflect their changing trends.
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Regression analysis is a statistical analysis method aimed at determining the quantitative relationship of
interdependence between two or more variables. According to the type of relationship between the independent
and dependent variables, it can be divided into linear regression analysis and nonlinear regression analysis. In
big data analysis, regression analysis is a predictive modeling technique that studies the relationship between
the dependent variable (target) and the independent variable (predictor) [21]. This technique is commonly used
for predictive analysis, time series modeling, and discovering causal relationships between variables.

Ensemble learning is a framework of machine learning that combines multiple models to improve their
overall generalization ability. There are three types of ensemble learning: Bagging, Boosting, and Stacking.
The XG � Boost algorithm is an improved gradient boosting learning algorithm, which is a method in Boosting.
The algorithm principle is different from the traditional GBDT algorithm. Traditional GBDT only utilizes first-
order derivative information during the training process, while the XG � Boost algorithm performs second-order
Taylor expansion on the loss function and adds a regularization term outside the loss function to obtain the
optimal solution. This not only ensures model accuracy but also limits the complexity of the model, avoiding
overfitting. The XGBoost algorithm is based on a tree model. The XGBoost algorithm is an additive model
composed of k base models. Assuming that the tree model we want to train in the t-th iteration is ft(x), the
prediction result widehaty

(t)
i of sample i in the t-th iteration satisfies equation 3.4. The model loss function

satisfies the equation
∑n

i=1 l(ŷi, yi). In the formula, n represents the number of samples.

ŷ
(t)
i =

n∑
i=1

fk(xi) = ŷ
(t−1)
i + ft(xi) (3.4)

The definition of the model objective function is shown in equation 3.5. In the formula, t represents the
number of trees, and Ω represents the regularization term.

Obj =

n∑
i=1

l(ŷi, yi) +

t∑
i=1

Ω(fi) (3.5)

Performing a second-order Taylor expansion on equation 3.3 and removing the constant term yields the
objective function for the t-th iteration as shown in equation 3.6. In the formula, gi is the first derivative of
the loss function, and hi is the second derivative of the loss function.

Obj(t) ⋍
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft) (3.6)

According to equation 3.6, it can be seen that the XGBoost algorithm’s loss function can be customized
(there must be first and second derivatives), and the use of second derivatives makes gradient convergence faster
and more accurate.

Establish linear regression, time series, and XGBoost algorithm models using existing Henan split table
data. The hyperparameters of the three models are set to default values, and 98% is selected as the fault
probability threshold. If the prediction result exceeds the threshold, it is judged as a fault Table, among them,
linear regression and time series are used to determine batch fault tables, while XGBoost algorithm is only
used for single Table fault determination. The model selected a total of 1190582 data from the first quarter
of 2021 for training. Take archive information, R&D design data, material procurement data, production and
manufacturing data, collected abnormal data, and measurement abnormal data as independent variables, and
dismantle the sorting data to determine whether the electricity meter is faulty as the dependent variable to
input into the XG � Boost algorithm and linear regression model; Model batch failure rate as a time series.
The model obtains the optimal joint probability distribution of the data through training, and applies this
distribution to determine whether the smart energy meter is faulty in operation, achieving quality analysis of
key links in the smart energy meter.

Under the same judgment criteria, the accuracy comparison of the three models is shown in Figure 3.2.
The XGBoost algorithm model has much higher prediction accuracy than other models, so the XGBoost

algorithm model is chosen for subsequent analysis and prediction of electricity meter quality.
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Fig. 3.2: Comparison of Model Accuracy

Table 4.1: Model Validation Results

Index Value/piece Proportion /%
Total 973621
Actual number of faults 289178 8.00
Predict the correct quantity 695527 71.62
Number of prediction errors 276136 28.35
Predict the fault table as a fault Table(TP) 39342 4.06
Predict the fault table as a normal Table(FP) 48075 4.94
Predict a normal table as a faulty Table(FN) 61542 6.32
Predict the number of faults 100802 10.37

4. Result analysis. Using a total of 21157686 historical faulty electricity meter data from May 2019 to
May 2021 in a certain area, a quality analysis model for intelligent electricity meters is established. The model
predicts the fault data for three quarters from May to December 2021 in a certain area, and compares and
verifies it with the actual dismantled data at the end of 2021.

The verification situation is as follows. The total number of electricity meters participating in the prediction
is 3251317, involving 6112 arrival batches. Each meter is predicted for failure and compared with the actual
results at the end of 2021 [22].

The validation data for the pre training stage of the model is that in the first quarter of 2021, there
were 973621 electricity meters and 2313958 correctly predicted ones, accounting for 71.62%; The number of
prediction errors is 917347, accounting for 28.35%. The detailed results are shown in Table 3.5.

After initial training, the accuracy of the model reached 0.73 and the recall rate reached 0.38. After
verification, the model can recognize 44.65% of the fault tables, but there is also a 28.35% misjudgment situation.
The accuracy of the model needs to be improved, and the evaluation indicators of the model performance are
shown in Table 3.6 [23]. The definitions of model accuracy P and recall R are shown in equation 3.7:

P = TP/(TP + FP ) (4.1)

R = TP/(TP + FN) (4.2)

After the first introduction of the model, the evaluation of the model results of training and test set, the
accuracy of the training process is close to 1, while the accuracy of the test the index is stable around 0.70.
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Table 4.2: Model Performance Evaluation Indicators

Evaluating indicator Value
Accuracy 0.73
Accuracy 0.46
Recall 0.38

Finally, the validation process was evaluated and an accuracy of 0.46 was obtained. The results confirm that
the general model is weak and overfitting may occur, requiring the optimization of the model parameters.

In order to improve the training model’s performance, increase the generality, and reduce the risk of
overwork, the model is gradually added to the electronic damage test data. set in the third and fourth quarters
of 2021. pattern matching. Generalizability of the model to unknown data is verified using data augmented
validation. Follow the pattern in two steps below:

1. The basic idea of good modeling based on K-fold cross-validation method is to group the original data
in one way, one part is used as training set and the other factor is used as the test, and the classifier
is first trained using the training method, and then as a performance test to evaluate the model to
evaluate the training model using the test procedure. During the initial stage of model fitting, K-fold
cross validation was used to improve the generalizability of the model [24].
The main idea of K-fold cross-validation is to divide the original data equally into K sections, divide
the data into K sections, select section i as the test set for section 3, and use the section K-1. based
on the training set [25]. The average of the evaluation results of the K index was taken as the final
evaluation of the model. The model is limited by this parameter in order to find the best combination
for the model. Here, 5-fold cross-validation was used to select the correct one as the measurement
parameter.
With K-fold cross-validation, the precision of the training process was 0.66, the recall rate was 0.63,
the measurement precision was 0.56, the recall rate was 0.55, and the acceptance precision was 0.46,
and the reproducibility was increased. rate increased to 0.46. Up to 0.43, although the accuracy of
training and testing has improved, the accuracy of the system is below 0.50, which is difficult to meet
the needs, and it is necessary to take advantage of the model’s hyperparameters;

2. Optimize the model a second time according to the network search method. Use the grid search method
to optimize the hyperparameter values of the model.

The mesh search method involves partitioning the hyperparameters of the model into finite-valued elements.
The program iterates over the composite values of all hyperparameters and selects the best model parameters
based on parameter values as negative parameters.

Using the network search method, a precision of 0.82 for the training set, a recall rate of 0.84, a precision
rate of 0.81, and a best return value of 0.78 for the parameters were obtained. 0.74 for the validation process
and 0.82 for the recovery rate. A comparison of the effects before and after model development is shown in
Figure 3.3.

The validation data of the model for each quarter from Q2 to Q4 2021 are shown in Figure 3.4.
Through optimization and adjustment, the model’s parameters can quickly converge during the training

phase, demonstrating excellent fitting ability in the training set. The accuracy rate in the validation set reaches
0.74, and the overall evaluation effect is relatively ideal, which can meet the actual needs of power grid business.

5. Conclusion. The author mainly focuses on the quality data of key links in electric energy meters,
predicts the occurrence patterns of faults, and constructs an electric energy meter quality analysis model to
study the quality analysis methods of key links in intelligent electric energy meters. The main research content
includes the following two aspects:

1. Sort out the quality related data of key links in electric energy meters, study the key link data and
quality impact feature extraction methods that affect the quality of electric energy meters, extract the
regular features of faults in dismantled electric energy meters, use XG � Boost algorithm model to learn
the rules in dismantled electric energy meters, and construct a fault prediction model;
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Fig. 4.1: Comparison of model effects before and after optimization

Fig. 4.2: Monthly Model Validation Results

2. Use the quality analysis model to identify the quality problem of the smart meter, model using the
historical data, predict the explosion data at a specific location in April 2020, compare with the actual
split data, and check. In May 2020, the model is optimized according to the confirmed results. The
model was refined by using cross-validation and network research, and the final model achieved an
accuracy of 0.74 and a recall rate of 0.82 of the validation process, which can be based on the real
economy of the electricity project.

The author suggests a method to analyze and estimate the quality of smart meters during operation. This
method is based on the important information from the main connection of the energy meter, and the selection
of energy meter information for research and development, production, production, manufacturing, certification,
installation, operation, demolition and disposal. sample data for design. The classification method of XGBoost
algorithm is used to create intelligent models for the effective evaluation of power meters. After proving the
accuracy, the results show that the accuracy of this method reaches 0.74, which can show the true value of the
connection between smart meters.
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