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pe.org ISSN 1895-1767© 2007 SWPSCOMPUTATIONALLY ADJUSTABLE AUTONOMYHENRY HEXMOOR∗ AND BRIAN MCLAUGHLAN∗Abstra
t. Reasoning about autonomy is an integral 
omponent of 
ollaboration among 
omputational units of distributedsystems. This paper introdu
es an agent-level algorithm that allows an agent to 
ontinuously update its autonomy with respe
t tore
urring asyn
hronous problems with the aim of system-wide 
ollaboration e�
ien
y. The algorithm is demonstrated in a relevants
enario involving NASA spa
e station-based Personal Satellite Assistants, whi
h 
an handle dynami
 situation management thatfrustrates global 
ollaboration proto
ols.Key words. Agents, Autonomy, portable satellite assistant.1. Introdu
tion. Computer-
ontrolled systems feature prominently in large-s
ale proje
ts 
urrently un-der development by the military, 
ommer
ial, and s
ienti�
 agen
ies. Examples of these proje
ts in
lude theUS military's Network-Centri
 Warfare do
trine, IBM's Autonomi
 Computing initiative, and NASA's spa
estation proje
t. As these systems have in
reased in 
omplexity, self-governing 
omponents have 
ome to featureprominently in their design and 
ontrol. This 
hange in paradigm from dire
t human 
ontrol to indire
t humanoversight has for
ed designers to address issues involving the autonomy of these sub-systems.Autonomy is de�ned and used in multi-agent system resear
h [6, 7, 11, 12, 13℄ and other dis
iplines in
ludingso
iology [10℄ and philosophy [14, 15℄. It is important in multiagent intera
tions sin
e it relates the abilities ofan agent to its freedoms and 
hoi
es. The understanding and quanti�
ation of an agent's autonomy is requiredfor 
oherent interagent intera
tion.The 
on
ept of autonomy is 
losely related to the 
on
epts of power, 
ontrol, and dependen
e [5, 7℄. Thenotion of autonomy has been used in a variety of senses and has been studied in di�erent 
ontexts. It generallypresupposes some independen
e or restri
ted dependen
e. However, it 
an des
ribe many di�erent but related
on
epts. An agent 
an be autonomous with respe
t to another agent if it is beyond the in�uen
es of 
ontroland power of that agent. It 
an also be used to des
ribe quality of 
hoi
e and 
an even en
ompass self-imposed�sense of duty� 
on
epts.While autonomy 
an be intuitively understood, it unfortunately is a 
omplex topi
 whose exa
t de�nitionand implementation is rather elusive. However, by identifying �types� or �sub
lasses� of autonomy, spe
i�
aspe
ts of the 
on
ept 
an be de�ned and quanti�ed. The multiagent system designer 
an then utilize thesemodels to fo
us on the parti
ular attributes of autonomy that would be most bene�
ial for the parti
ularimplementation.Autonomy is de�ned in [6℄ as the agent's degree to whi
h its de
isions depend on external sour
es in
ludingother agents. This form of autonomy 
an be 
alled Cognitive Autonomy. This 
on
ept has been explored furtherin [7℄. This paper utilizes this de�nition of autonomy and promotes the relativisti
 view introdu
ed in [3, 4℄.Adjustable autonomy is a related notion that 
aptures the idea of a human operator intervening and guidinga
tions of a ma
hine [8℄. Another example of the work on adjustable autonomy is [1℄ with quantitative measureproposed in [2℄. In this, the degree of autonomy is de�ned as an agent's relative voting weight in de
ision-making.This approa
h has several advantages in
luding the allowan
e for expli
it representation and adjustment of agentautonomy.The remainder of this paper presents our work regarding 
omputation and determination of adjustableautonomy levels for 
ollaborative, problem-solving agents in a multi-agent system. Se
tion Two des
ribes ourapproa
h, in
luding the generalized algorithm. Se
tion Three portrays an implementation of this algorithm forNASA's PSA program. Experiments performed on this system are 
hroni
led in Se
tion Four. Se
tion Fivepresents the 
on
lusions drawn from this work.2. Approa
h. This paper addresses adjustable autonomy in a distributed system where agents dis
over,announ
e, and 
omplete asyn
hronously o

urring tasks. The tasks are generi
 and require multiple parti
ipant
ollaboration to solve. The 
ollaboration pro
ess is fa
ilitated through a four-stage bidding pro
ess:1. Announ
ement2. Priority
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laughlan3. Permission4. A

eptan
eIn addition to providing a me
hanism for 
ollaboration on tasks, the algorithm must be able to s
ale welland handle dynami
 and 
omplex situations. That is, it must be able to handle multiple, 
on�i
ting tasks. Itmust be able to handle 
hanges to the problem topology su
h the introdu
tion or removal of key agents or tasks.Ideally, the algorithm will handle variations without ex
essive setba
k in its ongoing 
omputations.Announ
ementUpon dis
overy of a new task, the dis
overing agent�known here as the originating agent�broad
asts thedis
overy to the group. Ea
h agent maintains a list of announ
ed tasks. The task data stru
ture is shown inFigure 2.1.An agent will update the information about a task as it re
eives relevant information. For simpli�
ation,this paper assumes that all agents have some method of hearing announ
ements and other bidding relatedinformation, whether through dire
t or indire
t means. If this simpli�
ation is not the 
ase, the algorithm willyield as best a solution as is possible with the information available.Task IDLo
ationDis
overy TimeOriginatorWorker Count RequestPriority ListPermission ListA

eptan
e ListFig. 2.1. Task DataPriorityUpon re
eiving and ar
hiving the task announ
ement, an agent will reason about its obje
tive suitabilityto address the task. The agent may in
lude several attributes, e.g., ne
essary skills, energy usage, and the timethat the task has been a
tive. It in
orporates these fa
tors in assigning some meaningful priority to the task.It is important to note that, at this stage, the agent will not a

ount for alternative tasks. That is, it will notrank a task higher or lower a

ording to its personal preferen
es. Reasoning along subje
tive 
onsiderations willo

ur later. Upon determining its priority for the task, the agent will announ
e the s
ore to the other agents.In the most basi
 version of this system, only the originator needs to maintain all the priorities. However, aswill be des
ribed later, some enhan
ements are possible in whi
h agents 
an adjust their a

eptan
e based onthe priority s
ores made by other agents.PermissionThe originating agent 
olle
ts these priority s
ores and generates a permission list. In its simplest form, thepermission list is an ordered list of the priority s
ores. However, the algorithm utilized by the originating agent
an be mu
h more 
omplex, taking into a

ount abstra
t 
on
epts su
h as trust and a�nity the originating agenthas towards parti
ular agents or even known synergies among bidding agents. Ultimately, this permission list
ontains the bidding agents in the order of most to least desirable for joining the task. Although the originatingagent only needs a spe
i�
 number of agents to perform the task, it will 
reate an ordered list 
ontaining allbidding agents in the event that some of the most desirable agents will be unable or unwilling to parti
ipate.The originating agent publishes this list to the group.A

eptan
eUnlike many 
ontemporary systems su
h as online au
tions, a bid does not 
onstitute a 
ontra
t in thissystem. Ea
h agent is allowed to tentatively a

ept or reje
t the permission granted by the originating agent.Additionally, a tentative a

eptan
e is not enfor
eable. If an agent �nds a task for whi
h it is more suitable, itis free to abandon its 
urrent task. As will be shown later, it is assumed that the agent has taken into a

ountany disruption its a
tion would make on its 
urrent task if it were to a
t. Thus, the a

eptan
e be
omes anannoun
ement of whi
h task the agent is 
urrently 
onsidering to perform.



Computationally Adjustable Autonomy 43The bidding agent makes her a

eptan
e determination by a

ounting for several fa
tors in
luding its desireor suitability for this relative to other tasks, the level of permission granted by the originating agent for thisand other tasks, and the priority of alternative agents should the agent de
line to perform the task.The bidding agent takes into a

ount 
ompeting tasks at this stage rather than in the priority stage sothat it 
an provide benevolen
e for the system. For example 
onsider an agent X that has pla
ed bids on twotasks, Task 1 that has been announ
ed by agent A and Task 2 that has been announ
ed by agent B. Agent Xdetermines its priority for Task 1 to be quite low, but sees its priority for Task 2 to be high. Both agents A andB have published permission lists in whi
h agent X is among the top 
hoi
es. If agent X were to take a greedystan
e, it would a

ept the task for whi
h it gave the highest priority, in this 
ase Task 2. However, if it furtherinspe
ts the permission lists, it may dis
over that the agents that would be for
ed to perform Task 1 in agentX's absen
e are not parti
ularly well-suited for the task and would struggle, while the alternative agents forTask 2 are only slightly less-suitable than agent X and 
ould still perform adequately. To provide for optimalsystem performan
e, agent X 
ould 
hoose to a

ept Task 1 even though it would personally prefer Task 2.There are three 
aveats to a

epting tasks. First, an agent may only give its a

eptan
e to one task. If ithas already a

epted a previous task, it must announ
e its withdrawal from that previous task.Se
ond, an agent 
annot a

ept a task that has been lo
ked. A task is lo
ked if n higher-ranked agents havea

epted the task, where n is the requested number of agents for the task1.Third, an agent 
annot a

ept a task where it is not ranked in the �rst n non-reje
ting agents in thepermission list where n is the number of agents required to perform the task. That is, if a task needs threeagents, and agent X is ranked fourth, it 
annot a

ept the task unless one of the �rst three de
line it. Conversely,any agent may de
line a task regardless of its ranking in the permission list. These s
enarios are shown inFigure 2.2. Task 1:# Agents Requested: 3Permission: {C, D, A, E, X, Y, Z}A

eptan
e: { A, R, ?, ?, ?, R, ?}Fig. 2.2. Agent X 
annot a

ept the task until either agent A or E reje
ts it.AlgorithmAn algorithm has been developed to fa
ilitate this bidding s
heme. This algorithm is implemented at theagent level and runs 
ontinuously. The pseudo 
ode for this algorithm is shown in Algorithm 1.Some notes regarding this algorithm. In the �nal If statement, the agent does nothing if its 
hosen task
ould be �lled by more quali�ed agents. This for
es the agent to wait to see if the desired task will be
omeavailable. As an alternative, the agent 
ould 
hange this to a reje
tion and re
al
ulate a �se
ond best 
hoi
e�.Then, if the desired task be
omes available due to top-ranked agents reje
tions, it 
an 
hange its a

eptan
eba
k to the original task. This alternative keeps all agents busy, but it may 
ause additional start-up 
osts from
hanging tasksIt is the task originator's responsibility to ensure that the task does not get lost in the shu�e. To this end,the originating agent will periodi
ally broad
ast the 
urrent state of the task.Rather than rigidly de�ne the four phases of the bidding pro
ess, the algorithm allows ea
h agent topro
eed independently. This pre
ludes the need for 
oordination of phase 
hanges that may be di�
ult in someenvironments. However, this 
ould 
ause the originating agent to publish a permission list before all agents havegiven their priority s
ores. With the publi
ation of this list, the agents are free to begin the a

eptan
e pro
essbefore potentially ideal agents announ
e their priority. To prevent unne
essary shu�ing as new agents bumpout less ideal workers, the agents should take potential shu�ing into a

ount when bidding. Alternatively, if theagents 
an 
ommuni
ate with all other agents in the system, then the originating agent 
an delay publishingthe permission list until all agents have announ
ed their priorities.To illustrate the algorithm, 
onsider the following s
enario. To simplify the illustration, the s
enario willbe shown from the perspe
tive of the tasks.
1In the PSA appli
ation, �n� is three. I.e., three robots are required to triangulate sour
e of the problem.
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laughlanAlgorithm 1 Bidding S
heme Pseudo
odewhile 1 doSense surroundingsTask List updateAppend new dis
overed tasksAppend new heard tasksUpdate existing tasksfor Ea
h task t in Task List doCal
ulate and announ
e tpriorityif toriginator == self thenCal
ulate tpermission ListAnnoun
e task tend ifend forCal
ulate best non-lo
ked taskfor Ea
h task t in Task List doif t 6= best thenAnnoun
e reje
tionelseif Self rank < nth non-reje
ting thenAnnoun
e a

eptan
eelseDo nothingend ifend ifend forend whileAgents A and B have dis
overed and announ
ed Tasks 1 and 2, respe
tively. Agents A, B, C, and D arewithin responding distan
e to these tasks. Figure 2.3 shows the state of the tasks after the agents have begunto respond with their priority to the tasks and the originating agents have published permission lists. Forsimpli
ity, permission is granted based solely on announ
ed priority.Task 1 Task 2# Agents Needed: 2 # Agents Needed: 2Priority: {A,7},{B,3}, {C,8},{D,9} Priority: {A,1},{B,8}, {C,2},{D,7}Permission: D, C, A, B Permission: B, D, C, AA

eptan
e: ?, ?, ?, ? A

eptan
e: ?, ?, ?, ?Fig. 2.3. Permission List Publi
ationWith the publishing of the permission lists, agents are now free to begin a

epting or reje
ting the tasks asshown in Figure 2.4. Agents C and D are the most ideal 
andidates for Task 1. C will a

ept this task as Ba

epts Task 2. They will qui
kly reje
t the alternate tasks.However, D has been a

epted for both tasks. Greedily, it 
ould a

ept Task 1, but its reje
tion of Task 2would for
e Task 2 to be performed by A, a very unsuitable agent. It must de
ide on a 
ourse of a
tion�greedyor benevolent.Agent A 
annot announ
e its a

eptan
e of Task 1 despite its likely preferen
e toward it. Rather, it willwait to see what Agent D announ
es so that it will not have to begin its inept performan
e of Task 2 and thenpossibly swit
h mid-exe
ution to Task 1.Next, 
onsider how the algorithm will rea
t to a dynami
 situation. For this we introdu
e another agent,agent E. This agent hears the updates given by the two task originators and determines its priority for thetasks. Additionally, agent C dete
ts a new task, Task 3. This situation is shown in Figure 2.5.



Computationally Adjustable Autonomy 45Task 1 Task 2# Agents Needed: 2 # Agents Needed: 2Priority: {A,7},{B,3}, {C,8},{D,9} Priority: {A,1},{B,8}, {C,2},{D,7}Permission: D, C, A, B Permission: B, D, C, AA

eptan
e: ?, A, ?, R A

eptan
e: A, ?, R, ?Fig. 2.4. Partially A

eptedTask 1 Task 2 Task 3# Agents Needed: 2 # Agents Needed: 2 # Agents Needed: 2Priority: {A,7},{B,3}, Priority: {A,1},{B,8}, Priority: {A,7},{B,3},{C,8},{D,9}, {E,0} {C,2},{D,7}, {E,5} {C,9},{D,8}, {E,5}Permission: D, C, A, B, E Permission: B, D, E, C, A Permission: C, D, A, E, BA

eptan
e: ?, R, ?, R, R A

eptan
e: A, ?, ?, R, ? A

eptan
e: C, ?, ?, ?, ?Fig. 2.5. New Task and AgentIn this situation, C 
hooses its own task and reje
ts its previous a

eptan
e of Task 1. Additionally, Eimmediately sends reje
tion to Task 1 due to its absolute inability to perform the task as demonstrated fromits priority announ
ement of 0.This leaves several issues to be resolved. First, it allows A to a

ept its ideal Task 1 as it is now in the �rst2 non-reje
ting agents and does not need to wait for D's reje
tion.Agent D is now desired by all three tasks. It still has some determination to make before 
hoosing. Forinstan
e, D's 
hoi
e 
ould depend upon whether agent A 
hooses Task 1 or Task 3. It also depends upon whetherimportant tasks will be left without adequate workers.The exa
t method utilized for determining its 
hoi
e depends on how mu
h 
omplexity the system designerimbues in the agents' de
ision-making pro
ess. Ideal e�
ien
y is a di�
ult problem that is most likely beyondthe pra
ti
al s
ope of real-world agents regardless of the algorithm. However, the agent 
ould play the prisoner'sdilemma game to se
ond-guess what other agents may 
hoose. Perhaps the simplest and most 
omputationallye�
ient method when fa
ed with su
h in
omplete information would be for Agent D to take the greedy 
hoi
eand let the other agents adjust to maximize the remaining system performan
e.Additionally, this example illustrates a problem with all task allo
ation algorithms�maximizing utilitywhen not enough workers are present. If su
h a s
enario is likely in the system, the designer 
ould in
lude atask priority that would modify the agents' behavior su
h that they would be more likely to a

ept 
riti
al tasksand leave less vital tasks understa�ed.Despite the problems, this example demonstrates how the algorithm 
an adapt to 
hanges made mid-
al
ulation. Rather than toss out the bidding pro
ess and start over or ex
lude new agents and tasks from thepro
eedings, the agents make some qui
k adjustments and 
ontinue.3. An appli
ation: The Personal Satellite Assistant (PSA). A PSA is a small (basketball-sized)�ying robot that is under development at NASA Ames (at the Mo�et �eld AFB2) for deployment on theinternational spa
e station. These robots are an outgrowth of a need to free astronauts from routine tasks ofinventory 
ontrol, safety 
he
ks, and fault dete
tion and isolation. PSAs are loaded with a variety of sensorsin
luding equipment for gas and pressure sensing. In the remainder of this se
tion we des
ribe an implementationof our algorithm that allows PSAs to perform several appropriate tasks su
h as �re and gas leak (i. e., on- ando�-gassing) dete
tion while reasoning about their autonomy and level of 
ollaboration.As per the algorithm, the PSA that dete
ts the problem formulates a broad
ast alert to send to the otherPSAs. This is initiated when a PSA lo
ates an abnormality in its environment. The abnormality 
ould bea variation in the ambient temperature or an atmospheri
 imbalan
e su
h as high or low pressure, or ex
essoxygen, 
arbon dioxide, or nitrogen. The PSA sends the alert 
ontaining the type of problem and type of roomin whi
h the problem is lo
ated to persuade other agents to help it pinpoint the sour
e of the problem morea

urately. This pro
ess is similar to the method used in radio signal triangulation.
2We thank Yuri Gawdiak for a tour and dis
ussions in 2002.



46 Henry Hexmoor and Brian M
laughlanTo determine its suitability for this task, the PSA must a

ount for its energy resour
es. Ea
h PSA has alimited battery power that will be 
onsumed during transit as well as during the task exe
ution. It is assumedthat the PSA has a means of evaluating its resour
es R, whi
h in this 
ase is its battery 
harge. It will then
al
ulate its 
ost C to perform the task.C is initially 
omputed by 
al
ulating the distan
e to travel to the task and the subsequent distan
e to apower re
harge station. It does the system little good for a PSA to assist in lo
ating a problem only to run outof energy and shut down. The total distan
e to be moved is multiplied by the energy 
onsumption rate. Anestimation of the amount of energy required to perform the task is added to get the total 
ost C.
C =(Distan
e to target+Distan
e from target to re
harge) × Energy Consumption Rate

+ Energy required for taskIf C > R then an unfavorable priority is return indi
ating unavailability. Otherwise, when C ≤ R, thePSA 
an su

essfully help lo
ate the problem and still re
harge itself. In this 
ase, priority P is 
al
ulated by�rst 
onsidering what type of room in whi
h the problem is lo
ated. This is done sin
e some lo
ations areinherently more important than others. For instan
e, laboratories are relatively less important than the 
ontrol
enter. Additionally, the parti
ular anomaly dete
ted 
an in�uen
e the priority for a parti
ular room. Forexample, o�-gassing of oxygen in a equipment storage module would be less disastrous than the same problemin a habitation module. Conversely, high levels of magneti
 interferen
e may be dangerous for the equipmentbut 
ould be of little 
onsequen
e to humans inhabiting their quarters. The determined value, whi
h we denoteas Q, is used for 
al
ulating the job weight and is used in the �nal priority 
al
ulation for P.
Q = ln(Time + RoomProblemFactor)The natural log is used for this equation be
ause it 
auses Q to 
hange along a predi
table 
urve as either Timeor RoomProblemFa
tor in
reases.P is 
omputed by using distan
e as a s
alar and 
omparing the new job weight to the old job weight.

P = Qnew ×

(

1 −
Distan
e to new target

MAXDISTANCE

)

− Qold ×

(

1 −
Distan
e remaining to old target

MAXDISTANCE

)MAXDISTANCE is the maximum distan
e a PSA 
an move through the entire station. The distan
e plays animportant role in the 
al
ulation of P. This is due to the observation that the PSA with the smallest distan
eto move will be the most likely to arrive qui
kest. Thus, the time to 
omplete the task is lower with this PSA.As the PSAs pro
eed through the bidding pro
ess�priority de
laration, permission, and a

eptan
e�andthe 
hosen PSAs begin to arrive at the problem lo
ation, they will take a prism on the fa
e of the sear
h spa
eand begin s
anning. This will allow PSAs that arrive qui
ker to begin the sear
h pro
ess, while PSAs thatarrive later 
an help re�ne the results. Thus, a measure of 
ompletion 
an be taken at any point in time duringthe triangulation.4. Experiments. Experiments were performed utilizing the PSA s
enario. The lo
ations of problems andPSAs were arranged su
h that the system was relatively balan
ed. The Q value of ea
h problem was randomlygenerated. The number of PSAs in the system was su�
ient in ea
h test to meet the demands.The exa
t method of a

eptan
e was performed under two strategies. In strategy 1, agents 
hose to a

eptthe task in whi
h they were highest ranked for permission. Note that this does not ne
essarily mean that thePSA greedily 
hooses the task for whi
h it attributed the highest priority. Rather, it will 
hoose the task ofthe originator that most values the PSA's assistan
e. For instan
e, if a PSA is listed as �rst in the permissionlist, it will a

ept that over a task where it is listed se
ond. In strategy 2, PSAs perform as des
ribed in thealgorithm�they 
hoose to a

ept a task su
h that the sum of all priorities 
hosen is maximized. This strategyshould spread the quality of help a
ross the problems.The results of the experiments are shown in Figure 4.1 and shows that the two strategies produ
e verysimilar results. However, the �rst strategy gives slightly better performan
e in this parti
ular simulation and is
omputationally less intensive in general.The reason for this de
rease in performan
e lies in the nature of the de
ision making in the system as aresult of the additional pro
ess. By de
entralizing the de
ision-making, 
hoi
es are being made based upon lessthan the total amount of information in the system.
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Fig. 4.1. Quality of help for two strategiesFrom the perspe
tive of autonomy, the �rst strategy restri
ts the agents to a greater degree. The individualPSAs have less freedom in mobility and 
hoi
e of tasks. Priority only plays a role in the very �rst stage of thepro
ess. After that, it is up to the originating PSA. The se
ond method allows the bidding PSAs to undertakewhi
hever task is both best �tting to them and 
ompliant to the greater needs of the system.5. Con
lusion. As 
omputer 
ontrolled systems in
rease in 
omplexity, automated 
ollaboration of sub-systems be
omes more relevant and 
riti
al to system e�
ien
y. Utilizing the 
on
ept of adjustable autonomy�reasoning about 
ommitments in parti
ular�is a 
riti
al 
omponent to solving this problem. This work hasshown how reasoning about autonomy 
an form the basis of moment-to-moment 
ommitment making.We have shown an algorithm that 
an be utilized for dynami
 de
ision-making that is �exible enough tohandle agents that join or leave before tasks are 
ompleted, as well as being able to handle tasks that appearduring the exe
ution of other tasks.We have shown how this algorithm 
an be implemented in a relevant and 
urrent problem�that of taskmanagement of NASA's Personal Satellite Assistants on board the international spa
e station. The domain ofPSAs is a dynami
 environment where multiple and possibly 
on
urrent problems may develop, and is an areathat will bene�t from the teamwork made possible by this algorithm.Future work in this area 
an take many dire
tions. For instan
e, we 
ould 
onsider subje
tive attributessu
h as qualities of relationships and satisfa
tion of agents with the task assignment pro
ess. Additionally, we
an look at the appli
ation of autonomy determination in reasoning about teams [3, 16℄ and its e�e
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