
Salable Computing: Pratie and ExperieneVolume 8, Number 1, pp. 41�48. http://www.spe.org ISSN 1895-1767© 2007 SWPSCOMPUTATIONALLY ADJUSTABLE AUTONOMYHENRY HEXMOOR∗ AND BRIAN MCLAUGHLAN∗Abstrat. Reasoning about autonomy is an integral omponent of ollaboration among omputational units of distributedsystems. This paper introdues an agent-level algorithm that allows an agent to ontinuously update its autonomy with respet toreurring asynhronous problems with the aim of system-wide ollaboration e�ieny. The algorithm is demonstrated in a relevantsenario involving NASA spae station-based Personal Satellite Assistants, whih an handle dynami situation management thatfrustrates global ollaboration protools.Key words. Agents, Autonomy, portable satellite assistant.1. Introdution. Computer-ontrolled systems feature prominently in large-sale projets urrently un-der development by the military, ommerial, and sienti� agenies. Examples of these projets inlude theUS military's Network-Centri Warfare dotrine, IBM's Autonomi Computing initiative, and NASA's spaestation projet. As these systems have inreased in omplexity, self-governing omponents have ome to featureprominently in their design and ontrol. This hange in paradigm from diret human ontrol to indiret humanoversight has fored designers to address issues involving the autonomy of these sub-systems.Autonomy is de�ned and used in multi-agent system researh [6, 7, 11, 12, 13℄ and other disiplines inludingsoiology [10℄ and philosophy [14, 15℄. It is important in multiagent interations sine it relates the abilities ofan agent to its freedoms and hoies. The understanding and quanti�ation of an agent's autonomy is requiredfor oherent interagent interation.The onept of autonomy is losely related to the onepts of power, ontrol, and dependene [5, 7℄. Thenotion of autonomy has been used in a variety of senses and has been studied in di�erent ontexts. It generallypresupposes some independene or restrited dependene. However, it an desribe many di�erent but relatedonepts. An agent an be autonomous with respet to another agent if it is beyond the in�uenes of ontroland power of that agent. It an also be used to desribe quality of hoie and an even enompass self-imposed�sense of duty� onepts.While autonomy an be intuitively understood, it unfortunately is a omplex topi whose exat de�nitionand implementation is rather elusive. However, by identifying �types� or �sublasses� of autonomy, spei�aspets of the onept an be de�ned and quanti�ed. The multiagent system designer an then utilize thesemodels to fous on the partiular attributes of autonomy that would be most bene�ial for the partiularimplementation.Autonomy is de�ned in [6℄ as the agent's degree to whih its deisions depend on external soures inludingother agents. This form of autonomy an be alled Cognitive Autonomy. This onept has been explored furtherin [7℄. This paper utilizes this de�nition of autonomy and promotes the relativisti view introdued in [3, 4℄.Adjustable autonomy is a related notion that aptures the idea of a human operator intervening and guidingations of a mahine [8℄. Another example of the work on adjustable autonomy is [1℄ with quantitative measureproposed in [2℄. In this, the degree of autonomy is de�ned as an agent's relative voting weight in deision-making.This approah has several advantages inluding the allowane for expliit representation and adjustment of agentautonomy.The remainder of this paper presents our work regarding omputation and determination of adjustableautonomy levels for ollaborative, problem-solving agents in a multi-agent system. Setion Two desribes ourapproah, inluding the generalized algorithm. Setion Three portrays an implementation of this algorithm forNASA's PSA program. Experiments performed on this system are hroniled in Setion Four. Setion Fivepresents the onlusions drawn from this work.2. Approah. This paper addresses adjustable autonomy in a distributed system where agents disover,announe, and omplete asynhronously ourring tasks. The tasks are generi and require multiple partiipantollaboration to solve. The ollaboration proess is failitated through a four-stage bidding proess:1. Announement2. Priority
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42 Henry Hexmoor and Brian Mlaughlan3. Permission4. AeptaneIn addition to providing a mehanism for ollaboration on tasks, the algorithm must be able to sale welland handle dynami and omplex situations. That is, it must be able to handle multiple, on�iting tasks. Itmust be able to handle hanges to the problem topology suh the introdution or removal of key agents or tasks.Ideally, the algorithm will handle variations without exessive setbak in its ongoing omputations.AnnounementUpon disovery of a new task, the disovering agent�known here as the originating agent�broadasts thedisovery to the group. Eah agent maintains a list of announed tasks. The task data struture is shown inFigure 2.1.An agent will update the information about a task as it reeives relevant information. For simpli�ation,this paper assumes that all agents have some method of hearing announements and other bidding relatedinformation, whether through diret or indiret means. If this simpli�ation is not the ase, the algorithm willyield as best a solution as is possible with the information available.Task IDLoationDisovery TimeOriginatorWorker Count RequestPriority ListPermission ListAeptane ListFig. 2.1. Task DataPriorityUpon reeiving and arhiving the task announement, an agent will reason about its objetive suitabilityto address the task. The agent may inlude several attributes, e.g., neessary skills, energy usage, and the timethat the task has been ative. It inorporates these fators in assigning some meaningful priority to the task.It is important to note that, at this stage, the agent will not aount for alternative tasks. That is, it will notrank a task higher or lower aording to its personal preferenes. Reasoning along subjetive onsiderations willour later. Upon determining its priority for the task, the agent will announe the sore to the other agents.In the most basi version of this system, only the originator needs to maintain all the priorities. However, aswill be desribed later, some enhanements are possible in whih agents an adjust their aeptane based onthe priority sores made by other agents.PermissionThe originating agent ollets these priority sores and generates a permission list. In its simplest form, thepermission list is an ordered list of the priority sores. However, the algorithm utilized by the originating agentan be muh more omplex, taking into aount abstrat onepts suh as trust and a�nity the originating agenthas towards partiular agents or even known synergies among bidding agents. Ultimately, this permission listontains the bidding agents in the order of most to least desirable for joining the task. Although the originatingagent only needs a spei� number of agents to perform the task, it will reate an ordered list ontaining allbidding agents in the event that some of the most desirable agents will be unable or unwilling to partiipate.The originating agent publishes this list to the group.AeptaneUnlike many ontemporary systems suh as online autions, a bid does not onstitute a ontrat in thissystem. Eah agent is allowed to tentatively aept or rejet the permission granted by the originating agent.Additionally, a tentative aeptane is not enforeable. If an agent �nds a task for whih it is more suitable, itis free to abandon its urrent task. As will be shown later, it is assumed that the agent has taken into aountany disruption its ation would make on its urrent task if it were to at. Thus, the aeptane beomes anannounement of whih task the agent is urrently onsidering to perform.



Computationally Adjustable Autonomy 43The bidding agent makes her aeptane determination by aounting for several fators inluding its desireor suitability for this relative to other tasks, the level of permission granted by the originating agent for thisand other tasks, and the priority of alternative agents should the agent deline to perform the task.The bidding agent takes into aount ompeting tasks at this stage rather than in the priority stage sothat it an provide benevolene for the system. For example onsider an agent X that has plaed bids on twotasks, Task 1 that has been announed by agent A and Task 2 that has been announed by agent B. Agent Xdetermines its priority for Task 1 to be quite low, but sees its priority for Task 2 to be high. Both agents A andB have published permission lists in whih agent X is among the top hoies. If agent X were to take a greedystane, it would aept the task for whih it gave the highest priority, in this ase Task 2. However, if it furtherinspets the permission lists, it may disover that the agents that would be fored to perform Task 1 in agentX's absene are not partiularly well-suited for the task and would struggle, while the alternative agents forTask 2 are only slightly less-suitable than agent X and ould still perform adequately. To provide for optimalsystem performane, agent X ould hoose to aept Task 1 even though it would personally prefer Task 2.There are three aveats to aepting tasks. First, an agent may only give its aeptane to one task. If ithas already aepted a previous task, it must announe its withdrawal from that previous task.Seond, an agent annot aept a task that has been loked. A task is loked if n higher-ranked agents haveaepted the task, where n is the requested number of agents for the task1.Third, an agent annot aept a task where it is not ranked in the �rst n non-rejeting agents in thepermission list where n is the number of agents required to perform the task. That is, if a task needs threeagents, and agent X is ranked fourth, it annot aept the task unless one of the �rst three deline it. Conversely,any agent may deline a task regardless of its ranking in the permission list. These senarios are shown inFigure 2.2. Task 1:# Agents Requested: 3Permission: {C, D, A, E, X, Y, Z}Aeptane: { A, R, ?, ?, ?, R, ?}Fig. 2.2. Agent X annot aept the task until either agent A or E rejets it.AlgorithmAn algorithm has been developed to failitate this bidding sheme. This algorithm is implemented at theagent level and runs ontinuously. The pseudo ode for this algorithm is shown in Algorithm 1.Some notes regarding this algorithm. In the �nal If statement, the agent does nothing if its hosen taskould be �lled by more quali�ed agents. This fores the agent to wait to see if the desired task will beomeavailable. As an alternative, the agent ould hange this to a rejetion and realulate a �seond best hoie�.Then, if the desired task beomes available due to top-ranked agents rejetions, it an hange its aeptanebak to the original task. This alternative keeps all agents busy, but it may ause additional start-up osts fromhanging tasksIt is the task originator's responsibility to ensure that the task does not get lost in the shu�e. To this end,the originating agent will periodially broadast the urrent state of the task.Rather than rigidly de�ne the four phases of the bidding proess, the algorithm allows eah agent toproeed independently. This preludes the need for oordination of phase hanges that may be di�ult in someenvironments. However, this ould ause the originating agent to publish a permission list before all agents havegiven their priority sores. With the publiation of this list, the agents are free to begin the aeptane proessbefore potentially ideal agents announe their priority. To prevent unneessary shu�ing as new agents bumpout less ideal workers, the agents should take potential shu�ing into aount when bidding. Alternatively, if theagents an ommuniate with all other agents in the system, then the originating agent an delay publishingthe permission list until all agents have announed their priorities.To illustrate the algorithm, onsider the following senario. To simplify the illustration, the senario willbe shown from the perspetive of the tasks.
1In the PSA appliation, �n� is three. I.e., three robots are required to triangulate soure of the problem.



44 Henry Hexmoor and Brian MlaughlanAlgorithm 1 Bidding Sheme Pseudoodewhile 1 doSense surroundingsTask List updateAppend new disovered tasksAppend new heard tasksUpdate existing tasksfor Eah task t in Task List doCalulate and announe tpriorityif toriginator == self thenCalulate tpermission ListAnnoune task tend ifend forCalulate best non-loked taskfor Eah task t in Task List doif t 6= best thenAnnoune rejetionelseif Self rank < nth non-rejeting thenAnnoune aeptaneelseDo nothingend ifend ifend forend whileAgents A and B have disovered and announed Tasks 1 and 2, respetively. Agents A, B, C, and D arewithin responding distane to these tasks. Figure 2.3 shows the state of the tasks after the agents have begunto respond with their priority to the tasks and the originating agents have published permission lists. Forsimpliity, permission is granted based solely on announed priority.Task 1 Task 2# Agents Needed: 2 # Agents Needed: 2Priority: {A,7},{B,3}, {C,8},{D,9} Priority: {A,1},{B,8}, {C,2},{D,7}Permission: D, C, A, B Permission: B, D, C, AAeptane: ?, ?, ?, ? Aeptane: ?, ?, ?, ?Fig. 2.3. Permission List PubliationWith the publishing of the permission lists, agents are now free to begin aepting or rejeting the tasks asshown in Figure 2.4. Agents C and D are the most ideal andidates for Task 1. C will aept this task as Baepts Task 2. They will quikly rejet the alternate tasks.However, D has been aepted for both tasks. Greedily, it ould aept Task 1, but its rejetion of Task 2would fore Task 2 to be performed by A, a very unsuitable agent. It must deide on a ourse of ation�greedyor benevolent.Agent A annot announe its aeptane of Task 1 despite its likely preferene toward it. Rather, it willwait to see what Agent D announes so that it will not have to begin its inept performane of Task 2 and thenpossibly swith mid-exeution to Task 1.Next, onsider how the algorithm will reat to a dynami situation. For this we introdue another agent,agent E. This agent hears the updates given by the two task originators and determines its priority for thetasks. Additionally, agent C detets a new task, Task 3. This situation is shown in Figure 2.5.



Computationally Adjustable Autonomy 45Task 1 Task 2# Agents Needed: 2 # Agents Needed: 2Priority: {A,7},{B,3}, {C,8},{D,9} Priority: {A,1},{B,8}, {C,2},{D,7}Permission: D, C, A, B Permission: B, D, C, AAeptane: ?, A, ?, R Aeptane: A, ?, R, ?Fig. 2.4. Partially AeptedTask 1 Task 2 Task 3# Agents Needed: 2 # Agents Needed: 2 # Agents Needed: 2Priority: {A,7},{B,3}, Priority: {A,1},{B,8}, Priority: {A,7},{B,3},{C,8},{D,9}, {E,0} {C,2},{D,7}, {E,5} {C,9},{D,8}, {E,5}Permission: D, C, A, B, E Permission: B, D, E, C, A Permission: C, D, A, E, BAeptane: ?, R, ?, R, R Aeptane: A, ?, ?, R, ? Aeptane: C, ?, ?, ?, ?Fig. 2.5. New Task and AgentIn this situation, C hooses its own task and rejets its previous aeptane of Task 1. Additionally, Eimmediately sends rejetion to Task 1 due to its absolute inability to perform the task as demonstrated fromits priority announement of 0.This leaves several issues to be resolved. First, it allows A to aept its ideal Task 1 as it is now in the �rst2 non-rejeting agents and does not need to wait for D's rejetion.Agent D is now desired by all three tasks. It still has some determination to make before hoosing. Forinstane, D's hoie ould depend upon whether agent A hooses Task 1 or Task 3. It also depends upon whetherimportant tasks will be left without adequate workers.The exat method utilized for determining its hoie depends on how muh omplexity the system designerimbues in the agents' deision-making proess. Ideal e�ieny is a di�ult problem that is most likely beyondthe pratial sope of real-world agents regardless of the algorithm. However, the agent ould play the prisoner'sdilemma game to seond-guess what other agents may hoose. Perhaps the simplest and most omputationallye�ient method when faed with suh inomplete information would be for Agent D to take the greedy hoieand let the other agents adjust to maximize the remaining system performane.Additionally, this example illustrates a problem with all task alloation algorithms�maximizing utilitywhen not enough workers are present. If suh a senario is likely in the system, the designer ould inlude atask priority that would modify the agents' behavior suh that they would be more likely to aept ritial tasksand leave less vital tasks understa�ed.Despite the problems, this example demonstrates how the algorithm an adapt to hanges made mid-alulation. Rather than toss out the bidding proess and start over or exlude new agents and tasks from theproeedings, the agents make some quik adjustments and ontinue.3. An appliation: The Personal Satellite Assistant (PSA). A PSA is a small (basketball-sized)�ying robot that is under development at NASA Ames (at the Mo�et �eld AFB2) for deployment on theinternational spae station. These robots are an outgrowth of a need to free astronauts from routine tasks ofinventory ontrol, safety heks, and fault detetion and isolation. PSAs are loaded with a variety of sensorsinluding equipment for gas and pressure sensing. In the remainder of this setion we desribe an implementationof our algorithm that allows PSAs to perform several appropriate tasks suh as �re and gas leak (i. e., on- ando�-gassing) detetion while reasoning about their autonomy and level of ollaboration.As per the algorithm, the PSA that detets the problem formulates a broadast alert to send to the otherPSAs. This is initiated when a PSA loates an abnormality in its environment. The abnormality ould bea variation in the ambient temperature or an atmospheri imbalane suh as high or low pressure, or exessoxygen, arbon dioxide, or nitrogen. The PSA sends the alert ontaining the type of problem and type of roomin whih the problem is loated to persuade other agents to help it pinpoint the soure of the problem moreaurately. This proess is similar to the method used in radio signal triangulation.
2We thank Yuri Gawdiak for a tour and disussions in 2002.



46 Henry Hexmoor and Brian MlaughlanTo determine its suitability for this task, the PSA must aount for its energy resoures. Eah PSA has alimited battery power that will be onsumed during transit as well as during the task exeution. It is assumedthat the PSA has a means of evaluating its resoures R, whih in this ase is its battery harge. It will thenalulate its ost C to perform the task.C is initially omputed by alulating the distane to travel to the task and the subsequent distane to apower reharge station. It does the system little good for a PSA to assist in loating a problem only to run outof energy and shut down. The total distane to be moved is multiplied by the energy onsumption rate. Anestimation of the amount of energy required to perform the task is added to get the total ost C.
C =(Distane to target+Distane from target to reharge) × Energy Consumption Rate

+ Energy required for taskIf C > R then an unfavorable priority is return indiating unavailability. Otherwise, when C ≤ R, thePSA an suessfully help loate the problem and still reharge itself. In this ase, priority P is alulated by�rst onsidering what type of room in whih the problem is loated. This is done sine some loations areinherently more important than others. For instane, laboratories are relatively less important than the ontrolenter. Additionally, the partiular anomaly deteted an in�uene the priority for a partiular room. Forexample, o�-gassing of oxygen in a equipment storage module would be less disastrous than the same problemin a habitation module. Conversely, high levels of magneti interferene may be dangerous for the equipmentbut ould be of little onsequene to humans inhabiting their quarters. The determined value, whih we denoteas Q, is used for alulating the job weight and is used in the �nal priority alulation for P.
Q = ln(Time + RoomProblemFactor)The natural log is used for this equation beause it auses Q to hange along a preditable urve as either Timeor RoomProblemFator inreases.P is omputed by using distane as a salar and omparing the new job weight to the old job weight.
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)MAXDISTANCE is the maximum distane a PSA an move through the entire station. The distane plays animportant role in the alulation of P. This is due to the observation that the PSA with the smallest distaneto move will be the most likely to arrive quikest. Thus, the time to omplete the task is lower with this PSA.As the PSAs proeed through the bidding proess�priority delaration, permission, and aeptane�andthe hosen PSAs begin to arrive at the problem loation, they will take a prism on the fae of the searh spaeand begin sanning. This will allow PSAs that arrive quiker to begin the searh proess, while PSAs thatarrive later an help re�ne the results. Thus, a measure of ompletion an be taken at any point in time duringthe triangulation.4. Experiments. Experiments were performed utilizing the PSA senario. The loations of problems andPSAs were arranged suh that the system was relatively balaned. The Q value of eah problem was randomlygenerated. The number of PSAs in the system was su�ient in eah test to meet the demands.The exat method of aeptane was performed under two strategies. In strategy 1, agents hose to aeptthe task in whih they were highest ranked for permission. Note that this does not neessarily mean that thePSA greedily hooses the task for whih it attributed the highest priority. Rather, it will hoose the task ofthe originator that most values the PSA's assistane. For instane, if a PSA is listed as �rst in the permissionlist, it will aept that over a task where it is listed seond. In strategy 2, PSAs perform as desribed in thealgorithm�they hoose to aept a task suh that the sum of all priorities hosen is maximized. This strategyshould spread the quality of help aross the problems.The results of the experiments are shown in Figure 4.1 and shows that the two strategies produe verysimilar results. However, the �rst strategy gives slightly better performane in this partiular simulation and isomputationally less intensive in general.The reason for this derease in performane lies in the nature of the deision making in the system as aresult of the additional proess. By deentralizing the deision-making, hoies are being made based upon lessthan the total amount of information in the system.
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Fig. 4.1. Quality of help for two strategiesFrom the perspetive of autonomy, the �rst strategy restrits the agents to a greater degree. The individualPSAs have less freedom in mobility and hoie of tasks. Priority only plays a role in the very �rst stage of theproess. After that, it is up to the originating PSA. The seond method allows the bidding PSAs to undertakewhihever task is both best �tting to them and ompliant to the greater needs of the system.5. Conlusion. As omputer ontrolled systems inrease in omplexity, automated ollaboration of sub-systems beomes more relevant and ritial to system e�ieny. Utilizing the onept of adjustable autonomy�reasoning about ommitments in partiular�is a ritial omponent to solving this problem. This work hasshown how reasoning about autonomy an form the basis of moment-to-moment ommitment making.We have shown an algorithm that an be utilized for dynami deision-making that is �exible enough tohandle agents that join or leave before tasks are ompleted, as well as being able to handle tasks that appearduring the exeution of other tasks.We have shown how this algorithm an be implemented in a relevant and urrent problem�that of taskmanagement of NASA's Personal Satellite Assistants on board the international spae station. The domain ofPSAs is a dynami environment where multiple and possibly onurrent problems may develop, and is an areathat will bene�t from the teamwork made possible by this algorithm.Future work in this area an take many diretions. For instane, we ould onsider subjetive attributessuh as qualities of relationships and satisfation of agents with the task assignment proess. Additionally, wean look at the appliation of autonomy determination in reasoning about teams [3, 16℄ and its e�et on thisalgorithm. REFERENCES[1℄ K. S. Barber and C. Martin, Agent Autonomy: Spei�ation, Measurement, and Dynami Adjustment, In Proeedings ofthe Autonomy Control Software Workshop, Agents '99, May 1�5, Seattle, WA., 1999, pp. 8�15.[2℄ K. S. Barber, A. Goel, and C. Martin, Dynami Adaptive Autonomy in Multi-Agent Systems, In Journal of Experimentaland Theoretial Arti�ial Intelligene, 12(2), Taylor and Franis, 2000, pp. 129�147.[3℄ G. Beavers and H. Hexmoor, Teams of Agents, In Proeedings of the IEEE Systems, Man, and Cybernetis Conferene,IEEE, 2001.[4℄ S. Brainov, and H. Hexmoor, Quantifying Relative Autonomy in Multiagent Interation, In IJCAI-01 Workshop, Autonomy,Delegation, and Control, ACM, 2001.[5℄ K. S. Brainov and T. Sandholm, Power, Dependene and Stability in Multiagent Plans. In Proeedings of AAAI/IAAI1999, AAAI, 1999, pp. 11�16.[6℄ C. Castelfranhi,Guaranties for Autonomy in Cognitive Agent Arhiteture, In N. Jennings and M. Wooldridge, eds., AgentTheories, Arhitetures, and Languages, Spinger-Verlag, 1995, pp. 56�70.[7℄ C. Castelfranhi, Founding Agent's Autonomy on Dependene Theory, In proeedings of ECAI'01, Berlin, 2000, pp. 353�357.[8℄ G. Dorais, P. Bonasso, D. Kortenkamp, B. Pell, and D. Shrekenghost, Adjustable Autonomy for Human-CenteredAutonomous Systems on Mars, Presented at Mars Soiety Conferene, AIAA, 1998.[9℄ G. Dworkin, The Theory and Pratie of Autonomy, Cambridge University Press, 1988.[10℄ H. Hexmoor, A Cognitive Model of Situated Autonomy, In Proeedings of PRICAI-2000 Workshop on Teams with AdjustableAutonomy, Australia, 2000a.[11℄ H. Hexmoor, Case Studies of Autonomy, In proeedings of FLAIRS 2000, J. Etherege and B. Manaris, eds., Orlando, FL.,AAAI, 2000b, pp. 246�249.
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