ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, pp. 41-48. http://www.scpe.org © 2007 SWPS

o,..

COMPUTATIONALLY ADJUSTABLE AUTONOMY

HENRY HEXMOOR* AND BRIAN MCLAUGHLAN*

Abstract. Reasoning about autonomy is an integral component of collaboration among computational units of distributed
systems. This paper introduces an agent-level algorithm that allows an agent to continuously update its autonomy with respect to
recurring asynchronous problems with the aim of system-wide collaboration efficiency. The algorithm is demonstrated in a relevant
scenario involving NASA space station-based Personal Satellite Assistants, which can handle dynamic situation management that
frustrates global collaboration protocols.
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1. Introduction. Computer-controlled systems feature prominently in large-scale projects currently un-
der development by the military, commercial, and scientific agencies. Examples of these projects include the
US military’s Network-Centric Warfare doctrine, IBM’s Autonomic Computing initiative, and NASA’s space
station project. As these systems have increased in complexity, self-governing components have come to feature
prominently in their design and control. This change in paradigm from direct human control to indirect human
oversight has forced designers to address issues involving the autonomy of these sub-systems.

Autonomy is defined and used in multi-agent system research [6, 7, 11, 12, 13] and other disciplines including
sociology [10] and philosophy [14, 15]. It is important in multiagent interactions since it relates the abilities of
an agent to its freedoms and choices. The understanding and quantification of an agent’s autonomy is required
for coherent interagent interaction.

The concept of autonomy is closely related to the concepts of power, control, and dependence [5, 7]. The
notion of autonomy has been used in a variety of senses and has been studied in different contexts. It generally
presupposes some independence or restricted dependence. However, it can describe many different but related
concepts. An agent can be autonomous with respect to another agent if it is beyond the influences of control
and power of that agent. It can also be used to describe quality of choice and can even encompass self-imposed
“sense of duty” concepts.

While autonomy can be intuitively understood, it unfortunately is a complex topic whose exact definition
and implementation is rather elusive. However, by identifying “types” or “subclasses” of autonomy, specific
aspects of the concept can be defined and quantified. The multiagent system designer can then utilize these
models to focus on the particular attributes of autonomy that would be most beneficial for the particular
implementation.

Autonomy is defined in [6] as the agent’s degree to which its decisions depend on external sources including
other agents. This form of autonomy can be called Cognitive Autonomy. This concept has been explored further
in [7]. This paper utilizes this definition of autonomy and promotes the relativistic view introduced in [3, 4].

Adjustable autonomy is a related notion that captures the idea of a human operator intervening and guiding
actions of a machine [8]. Another example of the work on adjustable autonomy is [1] with quantitative measure
proposed in [2]. In this, the degree of autonomy is defined as an agent’s relative voting weight in decision-making.
This approach has several advantages including the allowance for explicit representation and adjustment of agent
autonomy.

The remainder of this paper presents our work regarding computation and determination of adjustable
autonomy levels for collaborative, problem-solving agents in a multi-agent system. Section Two describes our
approach, including the generalized algorithm. Section Three portrays an implementation of this algorithm for
NASA’s PSA program. Experiments performed on this system are chronicled in Section Four. Section Five
presents the conclusions drawn from this work.

2. Approach. This paper addresses adjustable autonomy in a distributed system where agents discover,
announce, and complete asynchronously occurring tasks. The tasks are generic and require multiple participant
collaboration to solve. The collaboration process is facilitated through a four-stage bidding process:

1. Announcement
2. Priority
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3. Permission
4. Acceptance

In addition to providing a mechanism for collaboration on tasks, the algorithm must be able to scale well
and handle dynamic and complex situations. That is, it must be able to handle multiple, conflicting tasks. It
must be able to handle changes to the problem topology such the introduction or removal of key agents or tasks.
Ideally, the algorithm will handle variations without excessive setback in its ongoing computations.

Announcement

Upon discovery of a new task, the discovering agent known here as the originating agent broadcasts the
discovery to the group. Each agent maintains a list of announced tasks. The task data structure is shown in
Figure 2.1.

An agent will update the information about a task as it receives relevant information. For simplification,
this paper assumes that all agents have some method of hearing announcements and other bidding related
information, whether through direct or indirect means. If this simplification is not the case, the algorithm will
yield as best a solution as is possible with the information available.

Task 1D

Location

Discovery Time
Originator

Worker Count Request
Priority List
Permission List,
Acceptance List

Fig. 2.1. Task Data

Priority

Upon receiving and archiving the task announcement, an agent will reason about its objective suitability
to address the task. The agent may include several attributes, e.g., necessary skills, energy usage, and the time
that the task has been active. It incorporates these factors in assigning some meaningful priority to the task.
It is important to note that, at this stage, the agent will not account for alternative tasks. That is, it will not
rank a task higher or lower according to its personal preferences. Reasoning along subjective considerations will
occur later. Upon determining its priority for the task, the agent will announce the score to the other agents.
In the most basic version of this system, only the originator needs to maintain all the priorities. However, as
will be described later, some enhancements are possible in which agents can adjust their acceptance based on
the priority scores made by other agents.

Permission

The originating agent collects these priority scores and generates a permission list. In its simplest form, the
permission list is an ordered list of the priority scores. However, the algorithm utilized by the originating agent
can be much more complex, taking into account abstract concepts such as trust and affinity the originating agent
has towards particular agents or even known synergies among bidding agents. Ultimately, this permission list
contains the bidding agents in the order of most to least desirable for joining the task. Although the originating
agent only needs a specific number of agents to perform the task, it will create an ordered list containing all
bidding agents in the event that some of the most desirable agents will be unable or unwilling to participate.
The originating agent publishes this list to the group.

Acceptance

Unlike many contemporary systems such as online auctions, a bid does not constitute a contract in this
system. Each agent is allowed to tentatively accept or reject the permission granted by the originating agent.
Additionally, a tentative acceptance is not enforceable. If an agent finds a task for which it is more suitable, it
is free to abandon its current task. As will be shown later, it is assumed that the agent has taken into account
any disruption its action would make on its current task if it were to act. Thus, the acceptance becomes an
announcement of which task the agent is currently considering to perform.
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The bidding agent makes her acceptance determination by accounting for several factors including its desire
or suitability for this relative to other tasks, the level of permission granted by the originating agent for this
and other tasks, and the priority of alternative agents should the agent decline to perform the task.

The bidding agent takes into account competing tasks at this stage rather than in the priority stage so
that it can provide benevolence for the system. For example consider an agent X that has placed bids on two
tasks, Task 1 that has been announced by agent A and Task 2 that has been announced by agent B. Agent X
determines its priority for Task 1 to be quite low, but sees its priority for Task 2 to be high. Both agents A and
B have published permission lists in which agent X is among the top choices. If agent X were to take a greedy
stance, it would accept the task for which it gave the highest priority, in this case Task 2. However, if it further
inspects the permission lists, it may discover that the agents that would be forced to perform Task 1 in agent
X’s absence are not particularly well-suited for the task and would struggle, while the alternative agents for
Task 2 are only slightly less-suitable than agent X and could still perform adequately. To provide for optimal
system performance, agent X could choose to accept Task 1 even though it would personally prefer Task 2.

There are three caveats to accepting tasks. First, an agent may only give its acceptance to one task. If it
has already accepted a previous task, it must announce its withdrawal from that previous task.

Second, an agent cannot accept a task that has been locked. A task is locked if n higher-ranked agents have
accepted the task, where n is the requested number of agents for the task'.

Third, an agent cannot accept a task where it is not ranked in the first n non-rejecting agents in the
permission list where n is the number of agents required to perform the task. That is, if a task needs three
agents, and agent X is ranked fourth, it cannot accept the task unless one of the first three decline it. Conversely,
any agent may decline a task regardless of its ranking in the permission list. These scenarios are shown in
Figure 2.2.

Task 1:

# Agents Requested: 3
Permission: {C, D, A, E, X, Y, Z}
Acceptance: { A, R, 7,7, 7 R, 7}

Fic. 2.2. Agent X cannol accept the task until either agent A or E rejects it.

Algorithm

An algorithm has been developed to facilitate this bidding scheme. This algorithm is implemented at the
agent level and runs continuously. The pseudo code for this algorithm is shown in Algorithm 1.

Some notes regarding this algorithm. In the final If statement, the agent does nothing if its chosen task
could be filled by more qualified agents. This forces the agent to wait to see if the desired task will become
available. As an alternative, the agent could change this to a rejection and recalculate a “second best choice”.
Then, if the desired task becomes available due to top-ranked agents rejections, it can change its acceptance
back to the original task. This alternative keeps all agents busy, but it may cause additional start-up costs from
changing tasks

It is the task originator’s responsibility to ensure that the task does not get lost in the shuffle. To this end,
the originating agent will periodically broadcast the current state of the task.

Rather than rigidly define the four phases of the bidding process, the algorithm allows each agent to
proceed independently. This precludes the need for coordination of phase changes that may be difficult in some
environments. However, this could cause the originating agent to publish a permission list before all agents have
given their priority scores. With the publication of this list, the agents are free to begin the acceptance process
before potentially ideal agents announce their priority. To prevent unnecessary shuffling as new agents bump
out less ideal workers, the agents should take potential shuffling into account when bidding. Alternatively, if the
agents can communicate with all other agents in the system, then the originating agent can delay publishing
the permission list until all agents have announced their priorities.

To illustrate the algorithm, consider the following scenario. To simplify the illustration, the scenario will
be shown from the perspective of the tasks.

IIn the PSA application, “n” is three. T.e., three robots are required to triangulate source of the problem.
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Algorithm 1 Bidding Scheme Pseudocode
while 1 do
Sense surroundings
Task List update
Append new discovered tasks
Append new heard tasks
Update existing tasks
for Each task t in Task List do
Calculate and announce t,,iority
if toriginator —— self then
Calculate tpermission List
Announce task t
end if
end for
Calculate best non-locked task
for Each task t in Task List do
if t # best then
Announce rejection
else
if Self rank < n** non-rejecting then
Announce acceptance
else
Do nothing
end if
end if

end for

end while

Agents A and B have discovered and announced Tasks 1 and 2, respectively. Agents A, B, C, and D are
within responding distance to these tasks. Figure 2.3 shows the state of the tasks after the agents have begun
to respond with their priority to the tasks and the originating agents have published permission lists. For
simplicity, permission is granted based solely on announced priority.

Task 1 Task 2

# Agents Needed: 2 # Agents Needed: 2

Priority: {A,7},{B,3}, {C,8},{D,9} Priority: {A,1},{B,8}, {C,2},{D,7}
Permission: D, C, A, B Permission: B, D, C, A
Acceptance: 7,7, 7,7 Acceptance: 7,7, 7,7

Fia. 2.3. Permission List Publication

With the publishing of the permission lists, agents are now free to begin accepting or rejecting the tasks as
shown in Figure 2.4. Agents C and D are the most ideal candidates for Task 1. C will accept this task as B
accepts Task 2. They will quickly reject the alternate tasks.

However, D has been accepted for both tasks. Greedily, it could accept Task 1, but its rejection of Task 2
would force Task 2 to be performed by A, a very unsuitable agent. It must decide on a course of action—greedy
or benevolent.

Agent A cannot announce its acceptance of Task 1 despite its likely preference toward it. Rather, it will
wait to see what Agent D announces so that it will not have to begin its inept performance of Task 2 and then
possibly switch mid-execution to Task 1.

Next, consider how the algorithm will react to a dynamic situation. For this we introduce another agent,
agent E. This agent hears the updates given by the two task originators and determines its priority for the
tasks. Additionally, agent C detects a new task, Task 3. This situation is shown in Figure 2.5.
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Task 1 Task 2

# Agents Needed: 2 # Agents Needed: 2

Priority: {A,7},{B,3}, {C,8},{D,9} Priority: {A,1}{B,8}, {C,2},{D.7}
Permission: D, C, A, B Permission: B, D, C, A
Acceptance: 7, A, 7, R Acceptance: A, 7, R, ?

Fia. 2.4. Partially Accepted

Task 1 Task 2 Task 3

# Agents Needed: 2 # Agents Needed: 2 # Agents Needed: 2
Priority: {A,7},{B,3}, Priority: {A,1},{B,8}, Priority: {A,7},{B,3},
{C,8}.{D.9}, {E.0} {C21,1D,7}. {E5) {C9LID3}. {E5)
Permission: D, C, A, B, E  Permission: B, D, E, C; A Permission: C, D, A, E, B
Acceptance: 7, R, ?, R, R Acceptance: A, ?, 7 R, ?  Acceptance: C, 7,7, 7,7

Fic. 2.5. New Task and Agent

In this situation, C chooses its own task and rejects its previous acceptance of Task 1. Additionally, E
immediately sends rejection to Task 1 due to its absolute inability to perform the task as demonstrated from
its priority announcement of 0.

This leaves several issues to be resolved. First, it allows A to accept its ideal Task 1 as it is now in the first
2 non-rejecting agents and does not need to wait for D’s rejection.

Agent D is now desired by all three tasks. It still has some determination to make before choosing. For
instance, D’s choice could depend upon whether agent A chooses Task 1 or Task 3. It also depends upon whether
important tasks will be left without adequate workers.

The exact method utilized for determining its choice depends on how much complexity the system designer
imbues in the agents’ decision-making process. Ideal efficiency is a difficult problem that is most likely beyond
the practical scope of real-world agents regardless of the algorithm. However, the agent could play the prisoner’s
dilemma game to second-guess what other agents may choose. Perhaps the simplest and most computationally
efficient method when faced with such incomplete information would be for Agent D to take the greedy choice
and let the other agents adjust to maximize the remaining system performance.

Additionally, this example illustrates a problem with all task allocation algorithms—maximizing utility
when not enough workers are present. If such a scenario is likely in the system, the designer could include a
task priority that would modify the agents’ behavior such that they would be more likely to accept critical tasks
and leave less vital tasks understaffed.

Despite the problems, this example demonstrates how the algorithm can adapt to changes made mid-
calculation. Rather than toss out the bidding process and start over or exclude new agents and tasks from the
proceedings, the agents make some quick adjustments and continue.

3. An application: The Personal Satellite Assistant (PSA). A PSA is a small (basketball-sized)
flying robot that is under development at NASA Ames (at the Moffet field AFB?) for deployment on the
international space station. These robots are an outgrowth of a need to free astronauts from routine tasks of
inventory control, safety checks, and fault detection and isolation. PSAs are loaded with a variety of sensors
including equipment for gas and pressure sensing. In the remainder of this section we describe an implementation
of our algorithm that allows PSAs to perform several appropriate tasks such as fire and gas leak (i. e., on- and
off-gassing) detection while reasoning about their autonomy and level of collaboration.

As per the algorithm, the PSA that detects the problem formulates a broadcast alert to send to the other
PSAs. This is initiated when a PSA locates an abnormality in its environment. The abnormality could be
a variation in the ambient temperature or an atmospheric imbalance such as high or low pressure, or excess
oxygen, carbon dioxide, or nitrogen. The PSA sends the alert containing the type of problem and type of room
in which the problem is located to persuade other agents to help it pinpoint the source of the problem more
accurately. This process is similar to the method used in radio signal triangulation.

2We thank Yuri Gawdiak for a tour and discussions in 2002.



46 Henry Hexmoor and Brian Mclaughlan

To determine its suitability for this task, the PSA must account for its energy resources. Each PSA has a
limited battery power that will be consumed during transit as well as during the task execution. It is assumed
that the PSA has a means of evaluating its resources R, which in this case is its battery charge. It will then
calculate its cost C to perform the task.

C is initially computed by calculating the distance to travel to the task and the subsequent distance to a
power recharge station. It does the system little good for a PSA to assist in locating a problem only to run out
of energy and shut down. The total distance to be moved is multiplied by the energy consumption rate. An
estimation of the amount of energy required to perform the task is added to get the total cost C.

C =(Distance to target + Distance from target to recharge) x Energy Consumption Rate

+ Energy required for task

If C > R then an unfavorable priority is return indicating unavailability. Otherwise, when C < R, the
PSA can successfully help locate the problem and still recharge itself. In this case, priority P is calculated by
first considering what type of room in which the problem is located. This is done since some locations are
inherently more important than others. For instance, laboratories are relatively less important than the control
center. Additionally, the particular anomaly detected can influence the priority for a particular room. For
example, off-gassing of oxygen in a equipment storage module would be less disastrous than the same problem
in a habitation module. Conversely, high levels of magnetic interference may be dangerous for the equipment
but could be of little consequence to humans inhabiting their quarters. The determined value, which we denote
as Q, is used for calculating the job weight and is used in the final priority calculation for P.

Q = In(Time + RoomProblemFactor)

The natural log is used for this equation because it causes Q to change along a predictable curve as either Time
or RoomProblemFactor increases.
P is computed by using distance as a scalar and comparing the new job weight to the old job weight.

P = Qnew <1 ~ MAXDISTANCE MAXDISTANCE

Distance to new target Distance remaining to old target
) — Qola X (1 - )

MAXDISTANCE is the maximum distance a PSA can move through the entire station. The distance plays an
important role in the calculation of P. This is due to the observation that the PSA with the smallest distance
to move will be the most likely to arrive quickest. Thus, the time to complete the task is lower with this PSA.

As the PSAs proceed through the bidding process priority declaration, permission, and acceptance and
the chosen PSAs begin to arrive at the problem location, they will take a prism on the face of the search space
and begin scanning. This will allow PSAs that arrive quicker to begin the search process, while PSAs that
arrive later can help refine the results. Thus, a measure of completion can be taken at any point in time during
the triangulation.

4. Experiments. Experiments were performed utilizing the PSA scenario. The locations of problems and
PSAs were arranged such that the system was relatively balanced. The Q value of each problem was randomly
generated. The number of PSAs in the system was sufficient in each test to meet the demands.

The exact method of acceptance was performed under two strategies. In strategy 1, agents chose to accept
the task in which they were highest ranked for permission. Note that this does not necessarily mean that the
PSA greedily chooses the task for which it attributed the highest priority. Rather, it will choose the task of
the originator that most values the PSA’s assistance. For instance, if a PSA is listed as first in the permission
list, it will accept that over a task where it is listed second. In strategy 2, PSAs perform as described in the
algorithm—they choose to accept a task such that the sum of all priorities chosen is maximized. This strategy
should spread the quality of help across the problems.

The results of the experiments are shown in Figure 4.1 and shows that the two strategies produce very
similar results. However, the first strategy gives slightly better performance in this particular simulation and is
computationally less intensive in general.

The reason for this decrease in performance lies in the nature of the decision making in the system as a
result of the additional process. By decentralizing the decision-making, choices are being made based upon less
than the total amount of information in the system.
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Fia. 4.1. Quality of help for two strategies

From the perspective of autonomy, the first strategy restricts the agents to a greater degree. The individual
PSAs have less freedom in mobility and choice of tasks. Priority only plays a role in the very first stage of the
process. After that, it is up to the originating PSA. The second method allows the bidding PSAs to undertake
whichever task is both best fitting to them and compliant to the greater needs of the system.

5. Conclusion. As computer controlled systems increase in complexity, automated collaboration of sub-
systems becomes more relevant and critical to system efficiency. Utilizing the concept of adjustable autonomy—
reasoning about commitments in particular—is a critical component to solving this problem. This work has
shown how reasoning about autonomy can form the basis of moment-to-moment commitment making.

We have shown an algorithm that can be utilized for dynamic decision-making that is flexible enough to
handle agents that join or leave before tasks are completed, as well as being able to handle tasks that appear
during the execution of other tasks.

We have shown how this algorithm can be implemented in a relevant and current problem—that of task
management of NASA’s Personal Satellite Assistants on board the international space station. The domain of
PSAs is a dynamic environment where multiple and possibly concurrent problems may develop, and is an area
that will benefit from the teamwork made possible by this algorithm.

Future work in this area can take many directions. For instance, we could consider subjective attributes
such as qualities of relationships and satisfaction of agents with the task assignment process. Additionally, we
can look at the application of autonomy determination in reasoning about teams [3, 16] and its effect on this
algorithm.
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