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MODELING AN INTELLIGENT FRAMEWORK FOR OPTIMIZING UAV PATH
PLANNING AND ANTI-COLLISION IN AGRICULTURE

VIJAYA CHANDRA RAO V∗, KARTHIKEYAN M P†, DR SAVITA‡, VENKATA SAIRAM KUMAR N§, ANUBHAV
BHALLA¶, AND LAKSHYA SWARUP∥

Abstract. Unmanned aerial vehicles (UAV) are increasingly utilized for monitor expansive farming to their effectiveness in
observation and data gathered. Efficient path planning and collision prevention are critical for optimizing UAV operation in such
settings. The efficiency can be controlled by the quality and declaration of UAV sensed data, as well as the difficulty of real world
ecological variables that could impact path optimization and collision prevention. This research introduce a novel technique, the
customizable dung beetle search tuned random forest (CDBS-RF) method, designed to improve UAV route planning. The CDBS-
RF method integrated the dung beetle search (DBS) algorithm, known for its robust optimization capabilities, with random forest
(RF) to enhance optimal path security and effectiveness. This method dynamically adjusts path safety and effectiveness. This
approach dynamically adjusts path planning parameter to make sure optimal route selection and collision prevention. The suggested
technique was evaluated utilizing UAV-sensed data and implement in python based virtual environment. Experimental consequences
demonstrate that the CDBS-RF approach considerably enhances UAV path planning performance, provide safer and more efficient
navigation for self and more efficient navigation for self-sufficient tarp monitoring. The performance evaluation techniques include
the planning time (0.789) and path length (21.526). By utilize advanced optimization and anti-collision algorithms, this technique
offer a promising solution for improving UAV operations in agricultural surveillance.

Key words: Agriculture, UAVs (unmanned aerial vehicles), path planning, obstacles, anti-collision, customizable dung beetle
search-tuned random forest (CDBS-RF)

1. Introduction. Unmanned aerial vehicle s(UAVs) are suitable additional established and utilized in
several different sectors, such as profitable deliveries, farming, and emergency relief. worldwide, there have
been a lot UAV flying operation. The anti-collision approaches of UAVs have garnered important attention
because of their wide utilizes, to avoid UAVs from collide with other objects [1].

1.1. UAVs Path Planning. UAVs are superior demand between civilians for uses such as aerial investi-
gation, search and rescue operations, and military uses. According to, UAVs have shown to be quite helpful in
the agricultural sector, particularly for monitoring palm oil plantation, which gives farmers on how to super-
vise their plantation [2]. One additional advantage of using UAVs is that they can equipped with a range of
measuring devices that can assist in eliminating fixed position constraints and enable real-time, unrestricted
measurement in three dimensions.

The quick expansion of many aircraft types, particularly UAVs has been fueled by the increasing liber-
alization of low-altitude airspace and the quick growth of the general aviation sector [3].UAVs are becoming
an important part of the worldwide commercial industry. Depending on their intended applications, civilian
drones can be classified as patrol, agricultural, meteorological, exploratory, or disaster relief drones. Based on
this, nations substantial sums of money have been invested globally in the study and creation of UAVs with
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greater integration, improved processing efficiency, and faster reaction times [4].

1.2. Advancements in Agricultural UAV Applications. Plant protection, farmland information, pre-
cision agriculture, and agricultural insurance UAV use is increasing in businesses that include pesticide spraying,
fertilization, and seeding. UAVs are currently being used to monitor and control illnesses and pests in local
areas and are encouraged by the governments of various countries since agriculture is becoming more and more
popular. Plant protection UAVs provide several benefits over traditional pesticide spraying methods, including
superior labor efficiency, excellent mobility, consistent and modest pesticide dose per unit area and a vertical
takeoff and landing capability [5].

Robotic systems have become more and more common in the past ten years as a means of handling la-
borious agricultural jobs in field operations. Numerous robotic systems have been created to address the
complexity of agricultural field tasks, including harvesting, spraying, fertilizing, sowing, weeding, and harvest-
ing [6].Civilizations centered on trees for many nations, europea L. represent a significant source of income. The
quality of the product is affected when the fly female deposits in the fruits that developing larvae eat. Pesticides
are used to combat this type of infestation, but environmental issues and the resulting financial expenses make
the development of innovative strategies to minimize their usage necessary [7].Recent technical breakthroughs
regarding farming have led to a rise in the usage of Robots in the industry. A cheap alternative is provided by
the UAV, a mobile robot for conventional detecting technologies and data analysis methods. UAVs come in a
range of variety, and inexpensive UAVs are competent of gathering high-resolution images from a lot of location
in space. Even while UAVs aren’t at the present utilized in the majority of accuracy farming application, are
becoming additional concerned in the business in terms of beneficial and sustainable farming techniques. The
UAV, which is utilized in farming, offers dimension accuracy and drastically lower the need for human resources.
When the data from the UAV are appropriately assessed and analyze, they can increase crop efficiency and
develop crop yield [8].

UAVs have a great possible to enhanced crop, water, and pest management effectiveness, and they can be
especially useful for precision agricultural applications.They are also capable of doing a variety of agricultural
tasks, such as monitoring soil health, applying fertilizer, and analyzing weather. A UAV with a camera and agile
motions can supplement human labor in scenario evaluation and surveillance tasks by offering basic assistance.
Additionally, the UAV may utilize numerous sensors at once, and sensor fusion can boost analysis. Farmers
may continually monitor crop variability and stress levels by using UAVs to obtain vegetation indicators [9].

1.3. The challenges of path planning and collision avoidance. It is a critical challenge in UAV
operations, particularly in complex agricultural environments. UAV must navigate dynamic and cluttered
landscape, which can include varying terrain, tall vegetation, and unpredictable weather conditions. Effective
path planning involves not only finding the most efficient route but also dynamically adjusting to obstacles that
can appear suddenly such as other UAV. Collision avoidance further complicated the task by requiring real-
time detection and response to potential threats, which can be hindered by limited sensor range oorr processing
power. Additionally, the need to balance optimal path efficiency with safety considerations adds another layer
of complexity. Recent advancements in algorithms and sensor technologies are addressing these challenges, but
achieving robust and reliable performance remains a significant hurdle. As UAV are increasingly deployed for
agricultural tasks, developing sophisticated path planning strategies and collision-avoidance systems is essential
for enhancing operational safety and effectiveness [10].

Aim of the study. The principal aim of this undertaking is to produce a path collision avoidance and path
planning system for a UAV that will be used to check apple fly traps.This study aims to improve an online
adaptive method of UAV route planning based on the Customizable dung beetle search-tuned random forest
(CDBS-RF) approach.

The remainder of the paper. Section 2 contains related works. There was a comprehensive methodology
within Section 3. An analysis of the findings is provided in Section 4, and a conclusion is provided in Section 5.

2. Related work. According to the author [11]examined the variety of navigation situations with in-
creasing complexity and static obstacle density are applied to evaluate two of the most popular search path
planning methods for geometrical simulations: the (A* and D*) algorithms. It executes intricate situations
with outstanding outcomes in terms of computation time, collision avoidance abilities, and length of path.
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Study [12] explored the safe Blockchain-based communication between UAVs and wireless unmanned aerial
vehicles (WUAV).Because the position is subjected to change in an unexpected environment, base station
transfer will be delayed. UAVs are more likely to be the target of security breaches. The use of a flocking con-
trol method inspired by starling behavior, a large-scale UAV swarm working in a dynamic and unpredictable
three-dimensional environment can increase the efficacy, security, and dependability of obstacle avoidance [13].
The motion model is constructed by examining the systematic and quick obstacle avoidance behavior of the
starlings. Current examples of RF data transfer and visual processing to integrate leader-follower UAVs are
provided in this study. This system uses embedded electronics, visual processing, and controls to provide the
simple deployment of several quadrotor UAVs under the control of a single operator in search and rescue sce-
narios [14].According to [15] the paper provided a thorough overview of UAV anti-collision systems. To prevent
collisions at the policy level, we must propose legislation and regulations on UAV safety. Furthermore, from
the standpoint of quick obstacle detection and quick wireless networking in UAV anti-collision technology are
discussed. The coverage issues that might come up while monitoring and when implementing agro-technical
interventions are in this article [16]. The proposed method, mhCPPmp, utilizes a genetic algorithm to plan
flight paths for various UAV types while they are refueling and charging on a moving ground platform. The
suggested multigene, enhanced anti-collision RRT* and Iterative Adaptive Configuration-Rapidly Exploring
Random Tree (IAC-RRT*) algorithms modify the probability of mutation and crossover. UAVs can efficiently
cut down on energy use and task completion time because of their multigene and IAC-RRT* algorithms [17].

Study [18] suggested a way for autonomously assigning tasks and making decisions for numerous cooperative
quad copters to design a coverage path. The best solution for the given issue was found by applying the
Sequential Quadratic Programming (SQP) approach. Next, using the Stateflow approach, MATLAB Graphical
User Interfaces (GUIs) construct a simulation platform, and numerous the real flying experiments were carried
out using ZY-UAV-680 quadrotor UAVs . Article [19] proposed the use of an intelligent logistics UAV as a
courier substitute for minor goods deliveries. The quad copter was controlled by a mobile application that was
linked with a webcam and an ultrasonic ground proximity warning system (GPWS). Improved PID (proportion-
integral-derivative) controllers and LQR(linear quadratic regulator) were used in its light control system. The
article employs the ant colony method and dynamic route planning, which could quickly determine the ideal
path of a UAV in challenging terrain when compared to the classic an algorithm and artificial potential field
technique. Study [21] examined the use of ML techniques to predict crop yields using a large dataset from
Indian agriculture that includes variables such as soil composition, seasonal variations, and fertilizer use. Ten
machine learning methods were evaluated for performance. The paper examined the vital topic of enhancing
agricultural decision-making and guaranteeing food security, which are essential components of the sustainable
development goal (SDG).

2.1. Problem statement. The problem addressed in the reviewed studies is the optimization of path
planning, collision avoidance, and efficient communication for UAV operating in dynamic and complex envi-
ronments. The examination of various navigation algorithms, such as A* and D* reveals their effectiveness
in different scenarios, yet challenges remain in enhancing computation time and collision avoidance capabil-
ities. UAV face increased risks of security breaches and operational delays due to their variable positioning
and environmental unpredictability. To address these issues, several advanced approaches are explored flocking
control inspired by starling behavior to improve swarm coordination, integration of RF data transfer and visual
processing for leader- follower UAV systems, and multi gene algorithms for optimizing flight path and reduc-
ing energy consumption. Additionally autonomous task assignment and converge path planning are achieved
through sequential quadratic programming (SQP) and real flight experiments. The use of intelligent logistics
UAVs for small deliveries highlights the need for improved route optimization to overcome challenging terrain
and enhance overall UAV performance.

3. Methods. The quality and resolution of UAV sensed data, together with the complexity of real-world
environmental factors that may affect path optimization and collision avoidance, might limit the efficacy. In
order to improve UAV route planning, this research presents a unique method called the customizable dung
beetle search tuned random forest (CDBS-RF) the technique displayed in Figure 3.1.
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Fig. 3.1: Block schematic illustrating the intended workflow

3.1. Dataset. A UAV is utilized to images the fly traps that are attached to the tree crop along a growing
zone to perform an apple as part of the fly trap inspection procedure. Due to its unstructured nature, this type
of space needs the ability to identify and prevent collisions to ensure process security. An image of a region
used for apple cultivation. To obtain the trap images, the UAV has to fly at a height that falls between the
tree crops that is not much higher than the mean of the tree diameters.

The intricate flying zone, with a few branches that reach beyond the tree canopy, is depicted in the
illustration. When the UAV is moving, other dynamic objects in this area, such as people, animals, and
vehicles that can be seen. In certain cases, the flight controller must intervene to prevent them. This image
depicts the UAV’s possible behavior during its relocation to arrive at a point of inspection. The UAV makes
use of light detection and ranging (LIDAR) to its surroundings as it travels toward its goal after obtaining
the route program. Upon arriving at the trap location, the UAV takes an image before moving on to the next
target point. The following criteria are used to evaluate the proposed solution in this paper: There are five
traps per tree, arranged in a random pattern across the areas

• The minimum distance required to take an image of the trap is 3.0 meters.
• The UAV’s planar LIDAR, which has a360-degree scanning angle, can be used to identify obstructions

in space.
• Every trap has a preset position that is utilized to provide the route planner with target locations.
The LIDAR scanning methodology led the UAV to decide against using the vertical collision avoidance.

Since the UAV lacks an integrated sensor to recognize objects on the aircraft’s upper side, it would be difficult
for the algorithm to work if vertical detection was included. To ensure a trajectory free of collisions, the RF will
create the path between the rows of apple trees. The robot is believed to be able to cohabit with other robots,
farm people, shifting tree branches, etc. when faced with dynamic impediments. The proposed CDBS-RF can
handle extremely dynamic and time-varying situations while achieving a map exploration speed.

3.2. Quadrotor model design. The four fundamental motions were controlled by four separate cascaded
proportional-integral (PI) controllers as shown in Figure 3.2. The inner loop and outer loop are two types of
PI controllers. When disturbances impact a quantifiable secondary variable input in the middle that is directly
related to influences the main outcome that has to be managed, there are benefits to this type of cascaded
controller.

Disorders that reach the second variable can have an unwanted effect that the cascaded control system
can lessen. This system’s outer loop works at a lower frequency than the inner loop to manage the system
bandwidth. Reference position data is received by the position control PI loop, and output data is received
by the PI loop for speed control. The speed loop generates the command to drive the motors. The inertial
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Fig. 3.2: Structure of UAV Quadrotor

measurement unit’s (IMU) gyroscope provides instantaneous feedback to the speed loop. The controller’s is
to change the four propellers’ speeds to obtain the intended quad-rotor orientation. One used a cascading
connection to connect the foundations (1), where l is the separation between the rotors that are in opposition
to one another.
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3.3. Path planning using Customizable dung beetle search-tuned random forest (CDBS-RF).
The Customizable dung beetle search-tuned random forest (CDBS-RF) is a path planning method that combines
the CDBS algorithm’s adaptive exploration capabilities with RF robust predictive modeling. This method opti-
mizes navigation in complex environments by dynamically adjusting the search strategy based on environmental
feedback. The algorithm refines path predictions through decision trees and accommodates real-time adjust-
ments to changing conditions, resulting in a more accurate, resource-efficient, and adaptable path planning
solution, offering significant improvements over traditional methods in computational efficiency and accuracy
in dynamic and complex scenarios.

3.3.1. Customizable Dung Beetle Search (CDBS). The fundamental CDBS is population-based and
principally inspired by the actions of the dung beetle including thieving, rolling balls, dancing, scavenging,
and procreating. Four kinds of search agents little dung beetles, brood balls, ball-rolling dung beetles, and
thieves—are used by the CDBS to divide the population. More specifically, every search agent has a unique set
of updating guidelines. Figure 3.3 displays the CDBS flow chart.

A. Ball-rolling dung beetle. To maintain a straight course for the rolling dung ball, dung bugs must
adhere to astronomical signals. Consequently, the rolling dung beetle’s location has been modified and can be
expressed as follows:

Wj (s+ 1) = Wj (s) + α× l ×Wj (s− 1) + a×△w (2)

△w = |Wj (s)−W x| (3)
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Fig. 3.3: Flow diagram of CDBS

where sis the number of iterations at this timewj(s)is the location data of the jthdung beetle across the tth

iteration, ais a fixed value that is a part of (0,1), l ∈ (0, 0.2]If the deflection coefficient represented by a
constant value, αis given a natural coefficient to 1 or −1, W xis the worst position in the world, and △w mimics
variations in light intensity.

When faced with obstacles that prevent from moving forward, a dung beetle will employ dance to discover
a new route. A tangent function provides a rolling direction by imitating the dance behavior. Thus, this is the
ball-rolling dung beetle was last seen:

Wj (s+ 1) = Wj (s) + tan(θ) |Wj (s)−Wj (s− 1)| (4)

where θ ∈ [0, π] is the angle of deflection.
B. Brood ball. For dung beetles to give their young secure environment, selecting an appropriate

spawning place is essential. To replicate the female dung beetle spawning region, a boundary selection approach
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is suggested in CDBS and is described as follows:

lb∗ = max(W ∗ × (1−Q) , lb) (5)

ub∗ = min(W ∗ × (1−Q) , lb (6)

where lb∗and ub∗ indicate the spawning area’s top and bottom bounds, and W ∗ represents the best spot in
the area at the moment:R = 1 − s/Smax where Smaxis the most iterations that can be made Lb and Ubare,
respectively, the upper and lower bounds of the search space.

Aj (s+ 1) = W ∗ + a1 × (aj (s)− lb∗) + a2 × (aj (s)− ub∗) (7)

where a1 and a2are two separate, size-dependent random vectors 1 × C;Cis the sizeaj (s)represents the jth

sphere’s location at the sth iteration
C. Tiny dung beetles. A special kind of adult dung beetle that burrows into the earth in quest of food

is the tiny dung beetle. The following factors determine the boundaries of the optimal feeding region for little
dung beetles:

lb∗ = max(W b × (1−Q) , lb) (8)

ub∗ = min(W b × (1−Q) , ub (9)

where Lba and Ubaare the top of the perfect foraging area and lower bounds, correspondingly. andW a is the
ideal location on the planet. The little feces beetles have relocated to this area.

wj (s+ 1) = Wj (s) +D1 ×
Ä
Wj (s)− lbb

ä
+D2 ×

Ä
Wj (s)− ubb

ä
(10)

where D1is a normal distribution applied to the random number, D2is the arbitrary vector that falls between
(0,1), and wj(s) is the location of at the sth iteration the jth dung beetle.

D. Thief. Some bugs pilfer other bugs’ excrement balls; these are called thieves. The ideal food supply
is W a, as can be shown from Equation (5). W ais the best place for competing food, therefore let’s assume so.
The following is an update to the thief’s position information during the iteration process:

wj (s+ 1) = W a + T × h× ((Wj (s)− x∗|+ |W j (s)− xb|) (11)

There T is a fixed figure, h is a chance vector with a size of 1 ×C that is subject to a normal distribution, and
wj(s) discloses the location of the jth thief at the sth repetition.

3.3.2. Random forest (RF). RF is an algorithm that uses random sampling searches inside a predeter-
mined state space. Ensemble learning is the term used to describe the application of many models to a single
classification issue. When it comes to RF, the forecasts are made by a voting procedure over the results and
flow chart of RF as show in Figure 3.4

Each tree chooses at random a subset of the characteristics that are present in the data to produce different
distributions in the models, as well as random samples taken from the dataset. The Gini Index (GI) produces
greater precision in the experiments that are carried out, to assess the significance of the characteristics before
generating a new node

GI = 1−
∑D

j=1 o
2
j (12)

where oj , the probability of class j, is determined by its frequency of presence on the split under consideration,
and d is the number of classes. Using a Grid Search approach yields the RF architecture for training. We
construct a set of potential parameters for each job (landing and mid-range flights), and we use all conceivable
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Fig. 3.4: Structure of the RF

combinations to generate distinct forests. Every forest undergoes evaluation using a subset of the training data,
known as the validation set and the optimal parameter configuration is kept for the whole training process.

By combining the clever navigational techniques of dung beetles with cutting-edge machine learning algo-
rithms, CDBS-RF path planning effectively plans routes and implements anti-collision procedures as shown in
Algorithm 1.

Algorithm 1: CDBS-RF
Initialize parameters:
Define the number of UAVs (N)
Define the environment map (grid_size, obstacles, waypoints)
Set the maximum number of iterations (max_iter)
Initialize DBS parameters (e.g., population_size, search_radius)
Initialize RF parameters (e.g., number_of_trees, max_depth)
Generate initial population of paths:
For i = 1 to N :
Generate random path (start_point to end_point)
Evaluate path using RF model to calculate safety and efficiency
Perform DBS optimization:
For iteration = 1 to max_iter:
Evaluate fitness of each path in the population using the RF model
Update the best path based on fitness evaluation
Update paths using DBS algorithm:
Move each path based on Dung Beetle Search rules (e.g., attraction to better paths)
Apply random adjustments to paths for exploration
Refine paths using RF model:
For each path in the population:
Tune path parameters using RF model to optimize safety and efficiency
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Table 4.1: Experimental setup

Category Component Details
Hardware Operating System 64-bt Ubuntu18.04 bionic

CPU 2.7 Ghz core-i5-5200
RAM 8GB
Desktop environment LXDE

Software Python version Python 3.10
Simulation software Gazebo
Description of software Gazebo is comprehensive simulation software that enables the cre-

ation of realistic environments with dynamic features like gravity and
wind, enabling the addition of visual components.

Choose the optimal course of action:
Select the route from the ultimate demographic that has the highest fitness score
Output the optimal path:
Display or save the best path for UAV navigation
End

With this novel method, dung beetle search patterns’ flexibility and random forest models’ predictive
capacity are combined to create a system that can safely navigate over obstacles while dynamically adapting
to changing circumstances. Through the imitation of natural navigation skills and the utilization of artificial
intelligence’s processing power, CDBS-RF provides a strong solution for efficient path planning in intricate
situations, improving autonomy and security in self-governing systems.

4. Results and Discussion.
4.1. Configuration of Environment and Hardware. The Table 4.1 summarizes the hardware and

software used for the simulations, including the specific versions and functionalities relevant to the experiments.
4.2. Simulation Resullts. The authors experimented with several CDBS-RF models, including the one

recommended by others, to improve results for an environment where [0, 0, 0] ≤ Z ≤ [10, 10, 10] and M=15.
Model 3 has a steady reaction than others, as can be seen in Figure 4.1.Compared to the previous models,
Model 3 appears to have a consistent reaction. Its exploration factor among the lowest, nevertheless. Though
it differs significantly throughout the exploitation phase, Model 1 produces almost equal outcomes. The model
is still exploring close states at that point.

These comparisons are explained, and a comparison based on the overall mean average is as shown in Figure
4.2. The model’s performance is shown by the black line following eight training cycles, the blue line marking
the violet line indicating modifications at the conclusion of the exploration phase in the stage of discovery during
the utilization phase. Based on their Total Mean Reward and Exploration Phase End event, three models are
compared in the table that is presented. At the twentieth exploration phase, Model 1 produced a Total Mean
Reward of -10.26. Model 2 had lengthier exploration duration, as seen by its lower reward of -10.30 at the
800th phase. With a payout of -10.20 at the 60th phase, Model 3 landed in the middle.

It is crucial to remember that the CDBS-RF algorithm’s path may not be collision-free because it knows
information about static objects. The suggested approach accomplishes the goal in every experiment. The
difference between the angular coefficient of CDBS-RF pathways and the header UAV angle throughout the
validation testing is shown in Figure 4.3. These deviations, on average, range from −10 to 10, and they deviate
when the agent must avoid moving impediments. The suggested technique was verified by the authors through
a run-time comparison experiment between the CDBS-RF model and alternative path-planning algorithms.

4.3. Performance evolution. The suggested performance metrics for the CDBS-RF algorithm are shown
in the Table 4.2. With a score of 90, the algorithm shows good path efficiency and successful route optimization.
With a notable high of 95 for collision avoidance, it demonstrates its capacity to reduce impediments during
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Fig. 4.1: Returns on investment for several models of CDBS-RF with 1500 events and 0.001 learning rate

Fig. 4.2: Evaluating the top three models’ performances in comparison
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Fig. 4.3: Disturbance in angle between UAV header and CDBS-RF route

Table 4.2: Outcomes of performance

Evaluation parameter CDBS-RF [Proposed]
Path Efficiency 90%
Collision Avoidance 95%
Computational Efficiency 80%
Accuracy 92%
Adaptability 85%

path planning. With an 80 score, computational efficiency indicates a well-balanced utilization of execution
time and processor power. With a score of 92, accuracy emphasizes how precisely the algorithm produces correct
results. The algorithm’s strong performance in adapting to dynamic and changing surroundings is indicated
by its adaptability score of 85. These numbers show the overall efficacy and dependability of the CDBS-RF
algorithm across a range of assessment criteria.

4.4. Comparison phase. From the starting sites to the final location, the route that A* path planning
algorithm creates often follows the edges of obstacles as it moves across the scene. It evaluates the performance
of the CDBS-RF with existing methods like Optimized RRT [20], Generalized Wave front [20], and A* [20]
Metrics like planning time and path length are used for assessment.

4.4.1. Planning time (s). The amount of time needed for any method to calculate a path for UAVs,
representing its efficiency, is referred to as planning time. The planning timeframes for the different strategies
are compared in Table 4.3 and Figure 4.4. The suggested CDBS-RF, A*, Generalized Wavefront, and Optimized
RRT and the outcomes show that CDBS-RF is the most efficient in creating pathways rapidly, with the least
planning time of 0.789 seconds. It shows the path created by the suggested method CDBS-RF is smoother and
significantly farther from obstructions.

4.4.2. Path length (M). The distance of the route produced by each method for UAV navigation is
represented by path length (M). The path lengths for the various techniques optimized RRT, Generalized
Wavefront, A*, and the suggested CDBS-RF are displayed in Table 4.4 and Figure 4.5. According to the data,
CDBS-RF produces the shortest path length (21.526 meters), suggesting a more direct, effective, and obstacle-
avoidance method. It shows the path created by the suggested method CDBS-RF is smoother and significantly
farther from obstructions.
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Table 4.3: Results ofplanning time (S)

Methods Planning time (S)
Optimized RRT [20] 0.857
Generalized Wavefront [20] 1.008
A* [20] 1.685
CDBS-RF [Proposed] 0.789

Fig. 4.4: Comparison of planning time (S)

Table 4.4: Path length (M)

Methods Path length (M)
Optimized RRT [20] 27.85
Generalized Wavefront [20] 23.892
A* [20] 26.845
CDBS-RF [Proposed] 21.526

Fig. 4.5: Comparison of Path length (S)

4.5. Discussion. The limitations of the optimized RRT, generalized wave front, and A* algorithms are
primarily related to their path efficiency and computational complexity. Optimized RRT, while effective for
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high dimensional spaces, can produce suboptimal paths that can be longer and less smooth, generalized wave
front offers smooth paths but can be computationally intensive and slow, especially in complex environments,
A* is known for its optimally and completeness but can suffer from high computational costs and slower
performance in large-scale or dynamic environments. Each algorithm faces challenges in balancing path length,
smoothness, and computational efficiency, impacting their overall effectiveness in practical applications. The
CDBS-RF method addresses these issues by integrating dung beetle search optimization with RF techniques,
which enhances path efficiency and smoothness while reducing computational complexity. This approach ensures
shorter, smoother paths with faster planning times compared to traditional algorithms.

5. Conclusion. The primary aim of the study was to optimize UAV path planning and collision avoidance
in agricultural surveillance by introducing a novel technique, the CDBS-RF method. The objective was to
enhance UAV route planning by integrating the DBS algorithm with the RF model, thus improving path safety
and operational efficiency. The proposed method dynamically adjusted path planning parameters to ensure
optimal route selection and effective collision avoidance, thereby addressing the complexities of real-world
environmental variables that impact UAV operations. The CDBS-RF technique was implemented in a python
based virtual environments and evaluated using UAV sensed data. Experimental results demonstrated that this
approach significantly improves UAV path planning performance, leading to safer and more efficient navigation.
The integration of advanced optimization and anticollision algorithms within the CDBS-RF framework offers a
promising solution for enhancing UAV operations in agricultural surveillance, particularly in monitoring large,
complex agricultural landscapes. The performance evaluation techniques include the planning time (0.789) and
path length (21.526).

5.1. Limitations and future scope. Limitations: Despite the promising results, the study faced limi-
tations related to the quality and resolution of UAV sensed data, which could constrain the effectiveness of
the CDBS-RF technique in real-world applications. Additionally, the model performance can be influenced by
environmental variability that was not fully captured in the virtual testing environment.

Future scope: Future research should focus on validating the CDBS-RF method in diverse real-worls
agricultural settings with varying environmental conditions to assess its robustness and adaptability. Further
improvements could involve integrating more advanced sensors and data fusion techniques to enhance data
quality as well as exploring Ml models beyond RF to potentially increase path planning precision and collision
avoidance capabilities.
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