ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, pp. 49-62. http://www.scpe.org © 2007 SWPS

o,..

A TOP DOWN APPROACH FOR DESCRIBING THE ACQUAINTACE ORGANISATION
OF MULTIAGENT SYSTEMS*

JOAQUIN PENAT, RAFAEL CORCHUELO? AND ANTONIO RUIZ-CORTEST

Abstract.

When the protocol of a complex Multi-Agent System (MAS) needs to be developed, the top-down approach emphasises to
start with abstract descriptions that should be refined incrementally until we achieve the detail level necessary to implement it.
Unfortunately, there exist a semantic gap in interaction protocol methodologies because most of them first, identify which tasks
has to be performed, and then use low level description such as sequences of messages to detail them.

In this paper, we propose an approach to bridge this gap proposing a set of techniques that are integrated in a methodology called
MaCMAS (Methodology for Analysing Complex Multiagent Systems). We model MAS protocols using several abstract views of
the tasks to be performed, and provide a systematic method to reach message sequences descriptions from task descriptions. These
tasks are represented by means of interactions that shall be refined systematically into lower-level interactions with the techniques
proposed in this paper (simpler interactions are easier to describe and implement using message passing.) Unfortunately, deadlocks
may appear due to protocol design mistakes or due to the refinement process that we present. Thus, we also propose an algorithm
to ensure that protocols are deadlock free.

Key words. Top-down approach, agent protocol descriptions, interaction refinements, and deadlock detection.

1. Introduction. Agent-Oriented Software Engineering (AOSE) is paving the way for a new paradigm
in the Software Engineering field. This is the reason why a large amount of research papers on this topic are
appearing in the literature. One of the main research lines in AOSE arena is devoted to developing methodologies
for modelling interaction protocols (hereafter protocols) between agents.

1.1. Motivation. When a large system is modeled, its complexity becomes a critical factor that has to be
managed properly to achieve clear, readable, reusable, and correct specifications [8, 24, 30]. In the literature,
there exist various techniques to palliate this problem. The most important are the top down and the bottom up
approachs. The top down approach, which is the focus of this paper, first tries to describe software from a high
level of abstraction, and then goes into further details until they are enough for implementing the system [32].

When the protocol of a large MAS has to be developed, it is desirable to start with an abstract description
that can be refined incrementally according to the top down approach. In our opinion, there exist two drawbacks
in most existing methodologies:

e On the one hand, most of them provide top-down approaches for modeling and developing these sys-
tems. These methodologies, general or protocol-centric, agree on using abstract messages and sequence
diagrams to describe protocols [3, 19, 37, 15]. Although these messages represent a high level view of a
protocol, which shall be refined later, the tasks that are performed are formulated as a set of messages.
This representation implies that the abstraction level falls dramatically since a task that is done by
more than two agents requires several messages to be represented. This occurs even if we consider a
task between two agents. For instance, an information request between two agents must be represented
with two messages at least (one to ask, and another to reply). This introduces a semantic gap between
tasks to be performed identified at requirements and its internal design since it is difficult to identify
the tasks represented in a sequence of messages. This representation becomes an important problem
regarding readability and manageability of large MAS.

e On the other hand, abstractions of protocols (interactions) that allow designers to encapsulate pieces of
a protocol that is executed by an arbitrary number of agents has been proved adequate in this context
[3, 4, 19, 20, 38]. Unfortunately, interactions are generally used to hide unnecessary details about some
views of the protocol. This improves readability and promotes reusability of protocol patterns, but they
are not used for bridging the existing semantic gap between tasks and its representation.

1.2. Contributions. In our proposal, we present a different approach to use interactions, which is based
on the ideas presented in [4, 26, 38]. This approach is integrated on a methodology called MaCMAS that covers
top-down and bottom-up. The top down software process is sketched in Figure 1.1. As shown, our goal is to

*This work has been partially supported by the European Commission (FEDER) and Spanish Government under CICYT project
Web-Factories (TIN2006-00472) and T1C200302737C0201
TUniversity of Seville, {joaquinp, corchu}@lsi.us.es, aruiz@us.es

49

50 Joaquin Pefia, Rafael Corchuelo and Antonio Ruiz-Cortés

‘./Z'(i_

Requirements Goal Acq. Org.

Stateznent Hlerelirchy M?del Resources
Tl v T Dep. Model
S -~ PP
_____ ~
s " Rmm, _e- N
e ’!Efff=:=:_~ AN yes
s ~~_~:-_::::_§~:\
—3 Y . ST

Determining Select Boild

feasible decom Obtain order of ’ @
p.
decomp. - Decomposed decomp. mRIs ,"Build Role\’, — O no
\

\ e Role Model / Detect
i e E -V \ "l Modell Plan ’,/ deadlocks Deadlocks?
! Pid \ - ' \ e ' / 1 LY
' L P - v N/ v ’ ! o
, E ¢ K Pl
7 rd
g‘ , ’
Available
Feasible Selected Deadlock
sequences
decompositions Decomp. Role 1_/[?‘_31?1_) dgte cted Role Mo\d\ e} Plan States
_____________ S v
B LTS Y Y > @I
Compose
Acq. Org Acq. Org.
Mo del Model

Fia. 1.1. Software process of refinements.

bridge this gap using interaction abstractions to model the tasks to be performed, and Finite State Automata
(FSA), represented using UML 2.0, to model how to sequence them. Afterwards, we refine them systematically
into simpler ones iteratively. This decreases the level of abstraction so that the interaction we obtain are simpler.
Thus, they are described internally as message sequences easily, e.g. using AUML [3].

We have used a protocol abstraction called multi-role interaction (mRI), which was first proposed in [25].
An mRI is an abstraction that encapsulates a set of messages between an arbitrary number of agent roles.
Furthermore, the refinement process we use is based on the ideas presented in [10] since the interaction we use
is similar to such used in this work. The refinement process relies on analysing the knowledge used by each role
in an mRI and using this information to transform an mRI into several simpler mRIs automatically. An mRI
is simpler when both the number of participant roles and the computation made by it decreases. The main
advantages of refining mRIs are the followings:

e First, its internal description is easier since the computation to perform in the obtained tasks are

simpler.
e Second, it is easier to implement interactions with a low number of participant roles [12, page 206]
[2, 33, 21, 35].

e Finally, mRIs are critical deadlock free regions and they are mutually exclusive. Thus, if the number
of participant roles increases, the concurrency grain decreases, what is clearly not desirable [34].

The main drawback of such refinements is that they may lead to deadlocks. In this paper, we also propose

a technique to detect if a refinement may introduce deadlocks (see Figure 1.1); it also characterises them by

means of regular expressions that help finding the refinements that are not adequate in a given context. It is

based on analysing the FSA that represents the protocol of a role model and some previous work on deadlock

detection in the context of client/server interactions [5, 14, 36]. It improves on other results in that it can be

automated because it does not require any knowledge about the implied, intuitive semantics of the interactions
as other approaches.

This paper is organised as follows: in Section 2 we present the related work about protocol modeling in MAS

and about interaction refinements; in Section 3, we summarise the methodology where this work is integrated;

in Section 4 we present the example that we use to illustrate our approach; in Section 5 we present our ideas on

A Top Down Approach for Describing the Acquaintace Organisation of Multiagent Systems 51

protocol modeling and we show the refinement techniques applicable; in Section 6 we present our approach to
the automatic deadlock detection process; Section 7, we show our main conclusions. Finally, an appendix that
shows an implementation of the case study using IP.

2. Related work. In this section we cover the related work on protocol modelling and on refinements.

2.1. Protocol Modeling. As we showed in the previous section, we think that most approaches model
protocols at low level of abstraction since they require the designer to model complex cooperations as message-
based protocols. This issue has been identified in the Gaia Methodology [38], and also in the work of Caire
et. al. [4], where the protocol description process starts with a high level view based on describing tasks as
complex communication primitives (hereafter interactions). We think that the ideas presented in both papers are
adequate for this kind of systems where interactions are more important than in object-oriented programming.

On the one hand, in the Gaia methodology, protocols are modeled using abstract textual templates. Each
template represents an interaction or task to be performed between an arbitrary number of participants. Fur-
thermore, interactions are decorated with the knowledge they process and the permissions each role has, their
purpose, their inputs and outputs, and so on.

On the other hand, in [4], the authors propose a methodology in which the first protocol view is a static
view of the interactions in a system. Each interaction is used by a set of agent roles and they are decorated with
the knowledge each role uses/supplies. Later, the internals of these interactions are described using AUML |[3].

As the methodologies cited above, we also use interactions to deal with the first stage of protocol modeling.
Furthermore, we also represent a static view of interactions and the knowledge that each role consumes and
produces in each of them. Unfortunately, both methodologies do not provide an automatic method for refining
complex interactions into smaller interactions that are closer to the implementation level. In this paper, we
elaborate on such a method.

Furthermore, in methodologies that use sequence diagrams to model protocols, it has been also identified
the need for advanced multi-role interactions that encapsulate a piece of protocol. Unfortunately, in most of
them these interactions are used to define reusable patterns of interaction or for hiding details in some complex
views. Several examples of such use of interactions can be found in the literature: For instance, AUML nested
protocols [3] or micro-protocols [19]. These approaches provide the user with a set of tools to model complex
co-operations; however, most designers use message based descriptions.

2.2. Refinements. The need for such protocol primitives has also been identified in other areas such as
distributed systems [11, 7, 23]. In this context such interactions have been studied for long, and there exist
advanced techniques to refine them (synchrony loosening refinements [10]). Unfortunately, these refinements
can lead to deadlock. Although the theory of refinements has reached a rather elaborate state in other contexts,
cf. [1], there are not many results on interaction refinements or the characterisation of their anomalies. The
main reason is that classical refinements are context-free, whereas interaction refinements are context—sensitive.
Thus, the main problem is the establishment of their monotonicity properties [10], whereby their application to
subparts of a protocol preserves the correctness of the whole protocol with respect the set of valid synchronisation
patterns it describes.

The state—of-the—art technique that focus on design time properties was presented in [12]. It is based on
designing a formal proof system (cooperating proof) that allows to prove a sufficient condition for monotonicity
that ensures that a system composed of interactions is deadlock free. It is based on analysing linked interactions,
i.e., interactions that need to be executed in sequence, to avoid deadlocks, which was previously suggested in
[9, 18]. Unfortunately, this technique is quite difficult to apply in practice because it requires in-depth knowledge
of the implied, intuitive meaning of the interactions, and no automatic proof rules were designed for showing
the satisfaction of the sufficient condition.

Our proposal can detect if a refinement may lead to a deadlock situation automatically, and also characterises
the set of traces that lead to it by means of regular expressions. It is based on FSA analysis used by many
researchers in the context of client/server deadlock detection of interaction models [5, 14, 36].

3. Engineering MultiAgent Systems with MaCMAS. MaCMAs! is a methodology for engineering
complex multiagent systems that is integrated with several research fields, i.e. autonomic computing [31],
software product lines [27, 28] and evolving systems [29].

lsee james.eii.us.es/MaCMAS/ for further details on MaCMAS

52 Joaquin Pefia, Rafael Corchuelo and Antonio Ruiz-Cortés

Focus of
this paper
Macro-Level ‘ Requirements
\ Abst. Layer 1
C AN =
op Abst. Layer 2 ecomp./
Abst. — IR Ref.
o _g Abst. Layer 3 i
C" le) !
4 b
=5 @ = ?
o = ces
a =
Ld ,<
)
= @[Abst. Layer n-1 ?
Abst. Layer n |
Micro-Level Requirements

Fia. 3.1. Process Overview

MaCMAS covers carefully the five principles to deal with complexity in software engineering where top-down
and bottom-up are of high importance [16, 17, 30]: abstraction, decomposition/refinements, composition/ab-
straction, automation and reuse.

In Figure 3.1, we show an overview of the main concepts applied in MaCMAS from the software process
point of view. As shown, models of the system are structured into a set of abstraction layers. Top models are
the most abstract while bottom models are the most refined models. MaCMAS provides also a set of vertical
and horizontal transformations. Vertical transformations are applied to split models or to compose models, and
horizontal transformations are used to refine and abstract models in order to cover bottom-up and top-down
software processes.

As shown, for covering the rest of principles, traceability between models at different abstraction layers and
reuse of models and their abstractions/refinements is also provided.

In MaCMAS, two kind of refinements are proposed. One that is base on analyzing information on require-
ment documents, concretely system goals hierarchies, to recommend the user of the CASE tool which models
can be refined and which is the best decomposition recommended. The other refinement, which is the focus of
this paper, is based on analyzing the dependencies between the elements in a model to recommend a refinement.

3.1. Models. In other to engineer MASs, MaCMAS provides a rich set of UML2.0-based models that can
be summarized in:
a) Static Acquaintance Organization View: This shows the static interaction relationships between roles
in the system and the knowledge processed by them. It comprises the following UML models:

Role Models: shows an acquaintance sub-organization as a set of roles collaborating by means of
several mRIs. As mRIs allow abstract representation of interactions, we can use these models
at whatever level of abstraction we desire. We use role models to represent autonomous and
autonomic properties of the system at the level of abstraction we need.

Parameterized Role Models : A parameterised role model permits us to represent reusable collab-
oration patterns parameterising some of their elements.

Resources dependency model: A resources dependency model provides means for documenting the
dependencies between knowledge entities and services provided by roles in the context of an mRI
and for documenting the dependencies between the knowledge of mRIs.

Relating role models model: As a result of using decomposition and composition and of instanti-
ating parameterised role models, we usually manage role models that are obtained from others.
This model show the relationships between several role models.

Ontology: shows the ontology shared by roles in a role model. It is used to add semantics to the
knowledge owned and exchanged by roles.

A Top Down Approach for Describing the Acquaintace Organisation of Multiagent Systems 53

ﬁ Analysis

* System Analyst

P Build Intial Acg Org, ()
DQD Layer Completion ()

P Reuse ()
B Traceability maintenance ()

o

Static Acquaintance Traceability Dynamic Acquaintance
Organisation Models Model Organisation Models
Relating Parameterised Resources Role Model
Role Model Role Models Role Model Dependecies Ontology Role Plan
Model
Complexlty Top- down Ss. Decomp. Comp. Reuse Open Systems
Do Bottom-up Guidelines Gmdelmes Guidelines Guidelines

Guidelines Guidelines

Fia. 3.2. Acquaintance analysis discipline

b) Behavior of Acquaintance Organization View: The behavioral aspect of an organization shows the
sequencing of mRIs in a particular role model. It is represented by two equivalent models:

Plan of a role: separately represents the plan of each role in a role model showing how the mRIs of
the role sequence. It is represented using UML 2.0 ProtocolStateMachines [22, p. 422]. It is used
to focus on a certain role, while ignoring others.

Plan of a role model: represents the order of mRlIs in a role model with a centralized description. It
is represented using UML 2.0 StateMachines [22, p. 446]. It is used to facilitate easy understanding
of the whole behavior of a sub-organization.

c) Traceability view: This model shows how models in different abstraction layers relate. It shows how
mRIs are abstracted, composed or decomposed by means of classification, aggregation, generalization
or redefinition. Notice that we usually show only the relations between interactions because they are
the focus of modeling, but all the elements that compose an mRI can also be related. Finally, since
an mRI presents a direct correlation with system goals, traceability models clearly show how a certain
requirement system goal is refined and materialized. This is main what helps us to bridge the gap
between requirements and design.

For the purpose of this paper, we only need to detail role models, role model plans, which are shown in the
following sections.

4. The Example. The example we use hereafter is a debit card system. This problem can be viewed as
one of the basic coordination patterns in the agent e-commerce world, and it involves three different agent roles
(hereafter roles): a point of sales role (PS) which interacts with the user, a customer account manager role(CA),
and a merchant account manager role (MA). When a customer uses his or her debit card, the agent playing role
PS agrees with a CA agent and merchant account agent on performing a sequence of tasks to transfer the money
from the customer account to the merchant account, which shall also be charged the costs of the transaction. If

54 Joaquin Pefia, Rafael Corchuelo and Antonio Ruiz-Cortés

wRolen
Custormer_sAccount (CA)

+balance : float

PR getBalancefout return @ flo —_ =
- Approve_szale w, zetBalancelbalance :floatT - F"e’rform_hire_putcha?t-
S \‘\
s
Goal: \ \\\V Goal: \
! P attern: Fattern: \
!
| In: COut: In: Ohut:
\ CC.balance |CAbalance | MAbalance |MAbalance
PS.price 1} PS.costs
PSoprice
5 P
wGuards -
IFS. ok
e — «Ruolexs
= Start_next_saleﬂ‘ - - wRalen Merchant _fecount (ha)
Foint_of_Sales(F5) - T = |
Goal: \ o s Transfer_moneyh" +balance : float
+ok : boolean
L FPattemn: ‘ Pt 2 oeR Bk \ setBalancelbalance : float)
) = getBalance(out return :flo?
y (e Out- +costs ; float ! aut: \
) Userproducts | PS. price
! In: Out:
/{ | F5.price CA.balance
s CAbalance [(CAbalance
,“ \ MAbalance

Y MAbalance

FPS ok

Fic. 5.1. Static interaction view of the debit—card system.

:! Start_next_sale

Approve_sale

Transfer_maney Perfarm_hire_purchase

Transter_money [PS.ok] | ,APP1Ove_sale | Farorm_hire_purchaze [IPS.0k]

Ferform_hire_purchase | APprove_sale Transfer_money
Customer Account Merchant Account Point of Sales

Fic. 5.2. Plans of the roles in the debit—card system.

the customer account cannot afford the purchase because it has not enough money, the customer account agent
then pays on hire—purchase.

5. Modeling the Protocol with MaCMAS. As we showed above, our approach starts when the re-
quirements system goals to be performed have been already obtained. Then, we model each task as an mRI as
we show in the role model in Figure 5.1.

These system goals in our example are modeled as the following mRIs: approv is used by the CA role to
inform the other parties if it can afford a purchase; transfer is used to transfer money from the CA to the
MA by means of the PS; mRI hire_p is used to buy on hire-purchase; finally, there is a two-party mRI called
next sale, which is not further detailed, whose goal is to encapsulate the operations needed to read the sum to
be transferred and the customer data from his or her debit card. For further details on the knowledge processed
by each participants and in the mRI see the Appendix.

Once the mR1Is are identified and linked with their participant roles, we represent their possible sequences by
means of FSAs (see Figure 5.2). When an mRI is executed by more than one role it must appear a transition in all
the roles that perform it. Each of these transitions represents the part of the mRIs that a role perform. Whereby,

A Top Down Approach for Describing the Acquaintace Organisation of Multiagent Systems 59
Knowledge used by transfer Knowledge used by transfer,

|

T T T T T S TN
)
. v

F////////////////////////// //W/////////////////////’I

[///// 7 ////// 2

N\

GRS, g —_
2 o i MaEMTaOROaOaOaGSG e
e ////;f;f;f;f;f;/////y%%gfw/ — ///// A e I e
Knowledge Knowledge Knowledge Knowledge Knowledge Knowledge
of PS of CA of MA of PS of CA of MA
Knowledge used by transfer,
a) Before refinement b) After refinement

Fic. 5.3. Decoupling mRI transfer.

to execute an mRI we must transit from one state to another in all the roles that participate on it. Furthermore,
with the algorithms presented in [25], which we outline in section 6, we can automatically infer a single FSA that
represents the role model protocol as a whole. This alternative representation can be used for better readability.

Finally, each mRI have to be decorated with some additional information: such as the dependencies between
they knowledge it process, a guard for each role, and so on. The knowledge dependency, as we show in the
next section, can be analysed in order to refine mRIs. Furthermore, the guard of mRIs allows each role to
decide if it want to execute the mRI or not, which has been proved adequate to deal with proactivity of agents
[7, 19, 25].

5.1. Refinements. The model we presented in previous section takes advantage of complex three—party
mRIs, which provides a high level design of the protocol. However, it should be refined in an attempt to
transform its mRIs into a set of simpler ones that are closer to message sequences description. That is to say,
describing them internally shall be easier. This is the next step in our approach.

The refinements are based on analysing the dependencies between the knowledge that roles use from others
in a particular mRI. In order to automate the refinement process the designer has to build a dependency graph
(see Figures 5.3, 5.4 and 5.5) which shall be analysed with the algorithms proposed in [18, 10]. To illustrate
how our technique works we applied it to our example.

The first refinement we can apply is decoupling [12]. It can transform certain n party mRIs into an m party
mRI (m < n) followed by an mRI with n —m + 1 participants. We can illustrate it by means of mRI transfer
in our example. Figure 5.3 shows a diagram in which we have depicted the knowledge of its roles and their
dependencies. As shown, both the MA and CA need to update their balances according to some information
in the knowledge of the PS. The idea is thus to decouple mRI transfer into two binary mRIs so that the CA
updates its balance before the MA. Thus, as we can see in Figure 5.3 mRI transfer; will executed by PS and
CA, and transfers by PS and MA (see Figure 5.7 for the new sequences of execution). We have applied this
refinement to the mRI hire p, as well.

The second refinement we can apply is participant elimination [12]. It consists of eliminating those roles
from the set of participant roles of an mRI whose knowledge is not referred to by other roles and do not refer
to the knowledge of any other role. Figure 5.4 shows a diagram in which we have depicted the knowledge of
the roles participating in mRI approv and their relationships. Obviously, role MA can be eliminated from this
mRI.

Another refinement called splitting, which cannot be apply to our example, consist in breaking an mRI into
two mRIs if the knowledge accessed by several groups of roles are disjoint as is depicted in Figure 5.5 with a
fictitious mRI.

The resulting role plans after applying all refinements are presented in Figure 5.7. Apparently, they works
well but we can discover that the refinements have introduced a deadlock situation if we take a closer look.
Consider a trace in which the following mRIs are executed: next sale,approv,transfery, and hire_p;. This
execution deadlocks because of an unfortunate interleaving in which, after approving a sale and charging the
CA, this role is ready to interact with the PS by means of transfers; however, the MA is readied then to

56 Joaquin Pefia, Rafael Corchuelo and Antonio Ruiz-Cortés

Knowledge used by aprob Knowledge used by aprob

Knowledge Knowledge Knowledge
of PS of CA of MA

Knowledge Knowledge Knowledge
of PS of CA of MA

a) Before refinement b) After refinement

Fic. 5.4. Eliminating role from approv.

Knowledge used by 1 Knowledge used by 1,

y
7 ///%/é////ﬁ
0O

/
/ /;a

G
77

7
7

7

e

Knowledge
of

Knowledge \ Knowledge/ | Knowledge
of of of

Knowledge used by I,
a) Before refinement b) After refinement

Fia. 5.5. Splitting fictitious mRI I.

execute both transfer; and hire p;. If hire_p; is executed now, it leads to a situation in which no role can
continue because PS is readying transfers and waits for the CA to ready it, the CA is readying approv and
waits for the PS to ready it, and the MA is waiting for any of them to ready transfer; or hire p;. This
situation can be avoided if we use a guard for transfer; and hire p; that ensures that when one of these mRI
is executed the guard of the others shall be evaluated as false, but unfortunately this is not possible in general.

These refinements allow us to execute several mRIs at the same time since the the knowledge they computed
before refinements is now computed separately in different mRIs. In addition, they simplify the number of
participant roles that each mRI uses, which lead us to easier implementations (the protocol to coordinate n
parties is more difficult that such for two parties) [12, page. 206][2, 33, 21, 35]. Finally, another advantage is
that the amount of knowledge to be processed in each mRI decreases thus easing their internal design.

For instance, the mRI transfer has been broken into two simpler mRIs: transfer; and transfers.
transfer; computes the balance of the CA and transfers computes the balance of the MA. Thus, simpler
computations are performed. Furthermore, the original mRI had three participant roles, and the new mRIs
have only two, whose coordination/negotiation protocol is simpler to implement. The refined role model is
presented in Figure 5.6.

6. Ensuring Deadlock Free Refinements. Our approach to detect deadlocks is based on building an
FSA and analysing its paths. Next, we present some results we need, and then we show how to construct the
FSA and how to analyse it.

A Top Down Approach for Describing the Acquaintace Organisation of Multiagent Systems

_ — = iz uards B
g e IPS ok
-

= _—T
- . " | - -
4 P erform _hire_purchase_ref 1 " i ~ Aprove_sale_ref |~
|
. 4
7 CaEk h : «Roles Goal: X
! Pattem: %— Custormer_Acoourt (0.4) ' I ‘
4 Ire Out: ; +halance l Ire Out
) cA D MA.pay_mre_purmaae(cCA.lD/] +D PSprice |PS.ok
S A
", T
o~ .
-\--l"“‘--‘k‘-‘l._a__ _\- =
«Roles —— —
q -
Poirt_of_sales(P 5
- - (P=) # Transfer_mon ey_ref_‘i\
e +0k
7 Startnext_sale Ty +price ; Goal: \l
+ooss P attern:
4 Goal ; =5
b -]
/ I I | In: _ Oout:
[PS . price | CAbalance
Oout «Guards %
N PSprice «Roles P Sk N
~ .
- Merchant_Account (W A) s
+balance
g = -
+pay_hire_purchase() “Transfer_money_ref_2 ~
e -~ < / Goal: l"
! P attern:)
/P erform_hire_purchase _ref_2 ™, t
| In: Out:
1 oal: 11 Y P S price MA balan oz
» Pattern: Synchronization / PS5 costs
" 5
T
H‘L""-'__

FiG. 5.6. Role model of the debit—card system after refinements.

Start_next_s al Transter_maney_ref 2
_next sale

4
Transfer_money_ref_2 1 /] r

_

Aprove_sale_ef

Perform_hire_purchase_ref_1 [F3.0k] Aprove_s ale_ref Transfer_meney_ref_1
Parform_hire_purchase_ref_ 2

(=]
___J

Perfarm_hire_purchase_ref 2 Perfarm_hire_purchase_ref 1

ransfer_money_ref_1 [PS.0k]

’ I

[

Point of Sales Customer Account Merchant Account

FiG. 5.7. Role plans after refinement.

As we can see in Figure 5.7, the definition of the protocol of each role is done by means of FSAs. They can
be characterised as follows:

DEFINITION 6.1 (Finite State Automaton). A finite state automaton (FSA) is a tuple of the form
(S,%,6,5°, F), where S is a set of states, ¥ is a set of mRIs (the vocabulary in FSA theory), § : S x ¥ — S is

a transition function that represents an mRI execution, s € S is an initial state, and F C S is a set of final
states.

Thus, let A; = (S;,%:,0;, 8%, F;) (i = 1,2,---,n) be the set of FSAs that represents each role in a role

model. Starting from this information we can build a new FSA C' = (S, 3, 0, so, F') that represents the protocol
as a whole, where

e S=51x--x8,
o X=UiL, %
o S(a,{s1,...,sn})={s1,...,s) it Vie[ln] - (¢« €ZiNsi=5;)V(a€X;,Nd(a,s;) =5,

58 Joaquin Pefia, Rafael Corchuelo and Antonio Ruiz-Cortés

o co={el,.... e

e F={F,....,F,}
This algorithm has been presented in [25] and builds the new FSA exploring all the feasible executions of mRI.
Their states are computed as the cartessian product of all state in FSA of roles. Then, for each new state
(composed of one state of each role) we check if an mRI may be executed (all their roles can do it from that
state), and if so, we add it to the result. The FSA we obtain in our example is shown in Figure 6.1.

6.1. Analysing the Resulting FSA. The final step consists in analysing the resulting FSA by searching
for deadlock states, i.e., states from which a final state cannot be reached.

We use a transition relation called —p to calculate these states. It is applied on tuples of the form
(C,N, X), where C denotes an FSA, N denotes the set of states to be analysed, and X denotes the set of
deadlock states found so far. We formalise — p by means of the following inference rule:

seNANs¢g X AP =pred(s,C)
(C,N,X) —p (C,N\P,XUP)

Where the predicate pred is defined as follows:
DEFINITION 6.2 (Predecessors). Let A be an FSA and s € S a state. We denote its set of predecessors by
pred(s, A) and define it as follows:

pred(s, A) =
{€S|3oeX i 0)=s}

This transition relation allows us to explore the set of states of an FSA starting at its final states and going
back to its predecessors until no new unexplored state is found. The set of unexplored states at that step is the
set of deadlock states because there is no path in the FSA that links them to a final state. Therefore, we can
define a function deadlock that maps an FSA into its set of deadlock states as follows:

deadlock(C) = Cs \ N it N C CgA

X CCs A (C,Cr,0) —'5 (C,N, X)
Here, —>!B denotes the normalisation of —p, i.e., its repeated application to a given tuple until it can
not be further applied to the result. Formally,

T—'T'&T—pTANAT T —pT"

If deadlock returns an empty set, then the refinements we have applied do not introduce any deadlocks.
Otherwise, we need to characterise the execution paths that may lead to them.
Consider that deadlock(C) = {b1,bs,...,bx}, thus, we can build a new set of FSAs

B; = (Cs, Cs,Cs,Cyo, {bz})(l =1,2,.. .,k).

Notice that these FSAs have only a final state that is a deadlock state in the original FSA. Thus, if we use the
algorithms presented in [14] for transforming an FSA into its corresponding regular expression, we can obtain
the set of regular expressions that characterise the execution paths that lead to deadlocks.

If we analyse the FSA in Figure 6.1, we can easily check that its set of deadlock states is a singleton of the
form {(3,4,7)}. Thus, if we make this the only final state, we can obtain the following regular expression that
characterises the execution paths that lead to deadlocks:

A Top Down Approach for Describing the Acquaintace Organisation of Multiagent Systems 59

next_sale

transfer,

transfer,

Fia. 6.1. Resulting FSA.

(next_sale | approv - transfi-
‘transfa | approv - hire _py - hire _ps)* -
-approv - transfy - hire_py

Thus, when a set of refinements are applied we can use the technique presented above to search for deadlocks,
and if they appear, we characterise it by the deadlock regular expression. Then, we can use this characterization
to apply a different set of refinements and repeat this process until getting a deadlock free protocol. Finally,
we obtain a set of new simpler mRIs that can be described internally and implemented easier. In our example
the deadlock appears between mRI transfer and hire, and the problem can be easily solved not refining one
of them or applying another set of refinements.

7. Conclusions. The description of interaction protocols in complex MASs may be a difficult, tedious
process due to the large number of complex tasks that agents must perform coordinately. Thus, in order to
palliate this problem, we have proposed a refinement technique integrated in a methodology that is based on
an interdisciplinary technique that builds on MAS and distributed systems research results.

Our technique improves previous research in that we add some protocol views between requirements analysis
and the description of a protocol by means of message sequences; we use interactions as first class modeling
elements. Furthermore, these descriptions are easily refined to reach the needed abstraction level to be described
internally. Thus, we provide a progressive method to proceed from requirements analysis to message sequences
descriptions. Furthermore, we have provided an automatic method to detect deadlocks.

REFERENCES

[1] R. Back, A calculus of refinements for program derivations. Acta Informatica, 25(6):593 624, 1988.

[2] R. Bagrobpia, Synchronization of asynchronous processes in CSP. Transactions on Programming Languages and Systems,
11(4):585 597, Oct. 1989.

[3] B. Bauger, J. MuLLER, AND J. OpELL, Agent uml: A formalism for specifying multiagent interaction. In M. Wooldridge
and P. Ciancarini, editors, Proceedings of 22nd International Conference on Software Engineering (ISCE), LNCS, pages
91 103, Berlin, 2001. Springer-Verlag.

[4] G. CaIrg, F. LeaL, P. Cuainno, R. Evans, F. Garuo, J. Gomez, J. Pavon, P. KEARNEY, J. STARK, AND P. MASSONET,
Agent oriented analysis using MESSAGE/UML. In Proceedings of Agent-Oriented Software Engineering (AOSE’01),
pages 101-108, Montreal, Canada, May 2001.

[5] J. C. CorBETT, Evaluating deadlock detection methods for concurrent software. IEEE Transactions on Software Engineering,
22(3):161-180, March 1996.

60

[6]
[7]

[8]
[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
23]
[24]

[25]

[26]
27]

28]

[29]
30]

[31]

[32]
[33]

34]
[35]

[36]

E.
. ELrap anD N. Francez, Decomposition of distributed programs into communication-closed layers. Science of Computer

J o 0 zZ

Joaquin Pefia, Rafael Corchuelo and Antonio Ruiz-Cortés

CorcHUELO, D. Ruiz, M. Toro, aAND A. DURAN, Avances en la coordinacion de objetos activos. Nowdtica, 143:34 37,
Jan. Feb. 2000.

. C. Cruz, OpenCol.aS a coordination framework for Col.aS dialects. In Proceedings of COORDINATION 2002, York,

United Kingdom, 2002.
DuksTrRA, A Discipline of Programming. Prentice-Hall, 1976.

Programmaing, 2:55-173, 1982.

Francez anp 1. FormaN, Synchrony loosening transformations for interacting processes. In J. Baeten and J. Klop,
editors, Proceedings of Concurr’91: Theories of concurrency— Unification and extension, number 527 in LNCS, pages
27-30, Amsterdam, The Netherlands, Aug. 1991. Springer-Verlag.

. FraNcEz AND 1. ForMAN, Interacting processes: A multiparty approach to coordinated distributed programming. Addison

Wesley, 1996.

. Francez anDp 1. R. FormaAN, Interacting Processes. Addison Wesley, 1996.

A. R. Hoarge, Communicating sequential processes. In R. M. McKeag and A. M. Macnaghten, editors, On the construction
of programs an advanced course, pages 229 254. Cambridge University Press, 1980.

. E. HopcroFT AND J. D. UrLMAN, Introduction to Automata Theory, Languages, and Computation. Addison-Wesley,

Reading, Massachusetts, 1979.

. IaLEsias, M. GArr1JO, AND J. GONzALEZ, A survey of agent-oriented methodologies. In J. Miiller, M. P. Singh, and A. S.

Rao, editors, Proceedings of the 5th International Workshop on Intelligent Agents V : Agent Theories, Architectures,
and Languages (ATAL-98), volume 1555, pages 317 330. Springer-Verlag: Heidelberg, Germany, 1999.

. JENNINGS, An agent-based approach for building complex software systems. Communications of the ACM, 44(4):35-41,

2001.

KaragrOrRGOs aAND N. MrHANDJIEV, A design complexity evaluation framework for agent-based system engineering
methodologies. In A. Omicini, P. Petta, and J. Pitt, editors, Fourth International Workshop Engineering Societies in the
Agents World, volume 3071 of Lecture Notes in Computer Science, pages 258 274. Springer, 2004.

. Karz, I. Forman, aND W. EvangeLisT, Language constructs for distributed systems. In IFIP TC2 Working Conference

on Programming Concepts and Methods, Galilea, Israel, Apr. 1990.

Koning, M.HugrT, J. WEI, anp X. Wana, Extended modeling languages for interaction protocol design. In
M. Wooldridge, P. Ciancarini, and G. Weiss, editors, Proceedings of Second Internationa Workshop on Agent-Oriented
Software Engineering (AOSE’02), LNCS, Montreal, Canada, May, 2001. Springer—Verlag.

. J. LEvesQuE, P. R. CoHEN, anD J. H. T. NuNEs, On acting together. In Proceedings of the Eighth National Conference

on Artificial Intelligence (AAAI-90), pages 94-99, Boston, MA, 1990.

. NaTarajan, A distributed synchronisation scheme for communicating processes. The Computer Journal, 29(2):109-117,

Apr. 1986.
M. G. (OMG), Unified modeling language: Superstructure. version 2.0. Final adopted specification ptc/03-08-02, OMG,
August 2003. www.omg.org

. PapaporouLros aNDp F. ArBaB, Coordination models and languages. In Advances in Computers, volume 46. Academic

Press, 1998.
L. Parnas, On the criteria to be used in decomposing system into modules. Communications of the ACM, 15(12):1053—
1058, December 1972.

. PeENA, R. CorcHUELO, AND J. L. Arsona, Towards Interaction Protocol Operations for Large Multi-agent Systems. In

Proceedings of the 2nd Int. Workshop on Formal Approaches to Agent-Based Systems (FAABS 2002), volume 2699 of
LNAI pages 79 91, NASA-GSFC, Greenbelt, MD, USA, 2002. Springer Verlag.

. PeENA, R. CorcHUELO, AND J. .. ArRJONA, A top down approach for mas protocol descriptions. In ACM Symposium on

Applied Computing SAC’03, pages 45 49, Melbourne, Florida, USA, 2003. ACM Press.

. PENA, M. G. HINcHEY AND A. Ruiz-CorrEs, Multiagent system product lines: Challenges and benefits. Communications

of the ACM, 49(12), December 2006.

. PENA, M. G. HincHEY, A. Ruiz-CorTEs AND P. TrRINIDAD, Building the core architecture of a nasa multiagent system

product line. In 7th International Workshop on Agent Oriented Software Engineering 2006, page to be published,
Hakodate, Japan, May, 2006. LNCS.

. PeENA, M. G. HincHEY, M. REsinas, R. STERRITT, AND J. L. RasH, Designing and managing evolving systems using

a mas-product-line approach. Journal of Science of Computer Programming, 2006.

. Pexa, R. Levy, anD R. CorcuHUELO, Towards clarifying the importance of interactions in agent-oriented software

engineering. International Iberoamerican Journal of Al 9(25):19 28, 2005.

. PeENa, M. G. HiNncHEY, AND R. STERRITT, Towards modeling, specifying and deploying policies in autonomous and

autonomic systems using an aose methodology. In EASE ’06: Proceedings of the Third IEEE International Workshop
on Engineering of Autonomic and Autonomous Systems (EASE’06), pages 37 46, Washington, DC, USA, 2006. IEEE
Computer Society.

R. PreEssmaN, Software Engineering: a Practitioner’s Approach. MacGraw Hill, New York, N.Y., 2nd edition, 1986.

F.

SCHNEIDER, Synchronization in distributed programs. ACM Transactions on Programming Languages and Systems,
4(2):125 148, Apr. 1982.

M. SiNnGgHAL, Deadlock detection in distributed systems. Computer Magazine of the Computer Group News of the IEEE,

J.

22(11):37 48, 1989.
Van DE SNeEpscHEUT, Synchronous communication between asynchronous components. Information Processing Letters,
13(3):127-130, Dec. 1981,

M. Y. Varpi aND P. WoLPER, An automata-theoretic approach to automatic program verification (preliminary report). In

Proceedings 1st Annual IEEE Symp. on Logic in Computer Science, LICS’86, Cambridge, MA, USA, 16—18 June 1986,
pages 332 344. IEEE Computer Society Press, Washington, DC, 1986.

A Top Down Approach for Describing the Acquaintace Organisation of Multiagent Systems 61

[37] M. Woob anp S. A. DeLoacH, An overview of the multiagent systems engineering methodology. In Proceedings of the
First International Workshop on Agent-Oriented Software Engineering, number 1957 in LCNS, Limerick, Ireland, 2001.
Springer-Verlag.

[38] M. WoorpripGe, N. R. Jennings, aND D. Kinny, The gaia methodology for agent-oriented analysis and design. Au-
tonomous Agents and Multi- Agent Systems, 3(3):285-312, 2000.

Appendix A. IP Code of the example. It exists several languages based on the Multi-party Interactions
(MPI) to describe systems where several processes have to coordinate [6, 10, 13]. IP [12] is worthy of special
attention since, although its implementation is relatively simple, moreover it allows to check properties thanks
its formal character. Following we will do a brief review of its statements and its more relevant characteristics
for our work, and finally we will write the source code of the debit—card system example.

An TP specification is built with a set of sequential processes that cooperates between them using multiparty
interactions. Its abstract syntax is the following:

S = Il [H]

| [~ B; & L[zi=ei] — Si]
| [, Bi & Li[Ti=e;] — Si]
| S1; 52

| skip

Each processes will be able to participate in several interactions, but only one at the same time. The
statement of interaction has the form I[Zi=e| where I is the name of the interaction and Zi=e is a sequence
of parallel assignments in where we can consult the state of the rest of participants in the interaction, usually
referred as communication code. Each Interaction has a set of fixed participants in the set of processes of the
system, so that it can be executed only when not any is executing other interaction and all of them are in a
point of the specification where the questioned interaction can be executed.

TRANSFERS :: |[PST() || CustomerAccount() || MerchantAccount()],
where
PST() :: s: sale := null, ok : boolean;
*[v # null & approv| ok :— (cc.balance > s.price)] —
[ok & transfer[v :— null] — skip

I
—ok & hire p||] — skip]

1
v — null & next_sale|...] — skip],
CustomerAccount() :: cc: account;
*[approv[] —
[transfer|[cc.balance := cc.balance - s.price] — skip
[]
hire_p[cc.hire purchase(ma.ID)] — skip] |,
MerchantAccount() :: ma: account;
*[approv[] —
[transfer| ma.balance :— ma.balance + s.price - v.m_ costs | — skip

[]

hire p[ma.balance := ma.balance - s.m_ costs] — skip |
|
Fia. 7.1. IP specification of the debit card system.
For example, if we analyze the interaction transfer in the IP code of the example in the figure 7.1, we can
notice it has in its participants? with the PST, with the CustomerAccount and with the MerchantAccount. This

interaction will not be executed until all its participants will be in an adequate point of the specification and

2To determine the participants of an interaction we only have to see in which processes appears in the specification

62 Joaquin Pefia, Rafael Corchuelo and Antonio Ruiz-Cortés

TRANSFERS :: [PST() || CustomerAccount() || MerchantAccount()], where
PST() :: v: sale :— null; ok : boolean;
*[v # null & approv| ok := (cc.balance > s.price)|] —
[ok & transferi|] — transfers|v := null]
l
-0k & hire pof] — skip
|
l

v = null & next_sale|...] — skip |,
CustomerAccount() :: cc: account;
*[approv]] —
[transferi|cc.balance :— cc.balance - s.price] — skip
l
hire pi[cc.hire_purchase(ma.ID] — skip | |,
MerchantAccount() :: ma: account;
ol =
[transfers| ma.balance :— ma.balance + s.price - s.m_ costs| — skip

l

hire pj[ma.balance := ma.balance - s.m_costs| — hire_ps| |

]

Fia. 7.2. IP specification of the example after applying the refinements.

when this will happen, its participant will execute its communication code. For example, the PST will calculate
the value of variable ok using the balance of the CustomerAccount and the amount to transfer.

IP also has statements to write non-deterministic choice with guards [[|’.;G; — S;] and loops with nonde-
terministic choice with guards [[]’;G; — S;]. The guards are of the form B&a[z=e|, where B is a boolean
condition involving the local state of a process, and the rest is an usual interaction statement. The behaviour of
these statements is very simple: The non-deterministic choice checks all the boolean conditions and wait then for
the interactions whose boolean condition is true to have all its participants; if no one could do so the statement
will not have any effect. In loops the behaviour is similar, only that it will repeat the non-deterministic choice

until all the boolean conditions are false.

Furthermore, in IP we can make the statements above to execute sequence (S7;S2), and we can use the

null statement that is represented as skip.

Finally, the code resultant after applying all the refinements described above is shown in Figure 7.2.

Edited by: Marcin Paprzycki, Niranjan Suri
Received: October 1, 2006
Accepted: December 10, 2006

