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OBSERVATION-BASED PROACTIVE COMMUNICATION IN MULTI-AGENT
TEAMWORK

YU ZHANG*

Abstract. Multi-agent teamwork is governed by the same principles that underlie human cooperation. This paper describes
how to give agents the same cooperative capabilities, observability and proactivity, that humans use. We show how agents can
use observation of the environment and of teammates’ actions to estimate the teammates’ beliefs without generating unnecessary
messages; we also show how agents can anticipate information needs among the team members and proactively communicate
the information, reducing the total volume of communication. Finally, we present several experiments that validate the system
developed, explore the effectiveness of different aspects of observability and introduce the scalability of the use of observability with
respect to the number of agents in a system.
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1. Introduction. Recently, the focus of much research on multi-agent systems (MAS) has shifted from
strong agency [26] to teamwork, which is a cooperative effort by a team of agents to achieve a common or
shared goal [23]. Research on multi-agent teamwork builds on findings about effective human team behaviors
and incorporates them into intelligent agent technologies. For example, the shared mental model, one of the
major aspects of the psychological underpinnings of teamwork, has been adopted widely as a conceptual basis of
multi-agent teamwork. Based on the shared mental model, an effective team often can anticipate the information
needs of teammates and offer pertinent information proactively [18, 22]. Consequently, supporting proactive
information exchange among agents in a multi-agent teamwork setting is crucial [29]. Substantial challenges
arise in a dynamic environment because agents need to deal with changes. Although partial observability of
dynamic, multi-agent environments has gained much attention [17, 11], little work has been done to address how
to process what is observable and under which conditions; how an agent’s observability affects the individual’s
mental state and whole team performance; and how agents can communicate proactively with each other in a
partially observable environment.

In this paper, we focus on how to include represent observability in the description of a plan, and how
to include it into the basic reasoning for proactive communication. We define several different aspects of
observability (e.g., seeing a property, seeing another agent perform an action, and believing another can see a
property or action are all different), and propose an approach to the explicit treatment of an agent’s observability
that aims to achieve more effective information exchange among agents. We employ the agent’s observability
as the major means for individual agents to reason about the environment and other team members. We deal
with communication with the ‘right’” agent about the ‘right’ thing at the ‘proper’ time in the following ways:

e Reasoning about what information each agent on a team will produce, and thus, what information
each agent can offer others. This is achieved through: 1) analysis of the effects of individual actions
in the specified team plans; 2) analysis of observability specification, indicating what and under which
conditions each agent can perceive about the environment as well as the other agents.

e Reasoning about what information each agent will need in the process of plan execution. This is done
through the analysis of the preconditions of the individual actions involved in the team plans.

e Reasoning about whether an agent needs to act proactively when producing some information. The
decision is made in terms of: 1) whether or not the information is mutable according to information
classification; 2) which agent(s) needs this information; and 3) whether or not an agent who needs this
information is able to obtain the information independently according to the observation of environment
and other agents’ behaviors.

We also present several experiments that validate the system developed, explore the effectiveness of different
aspects of observability and introduce the scalability of the use of observability with respect to the number of
agents in a system.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 is an overview of the
system architecture, which is called CAST-O. Section 4 discusses how an agent’s observability is represented,
and how an agent’s beliefs are maintained in the course of observations. Section 5 describes observation-based
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proactive communication among agents. Section 6 is an empirical study based on a multi-agent Wumpus World.
Section 7 summarizes our work and discusses issues for further research.

2. Related Work. A single agent’s observability and reasoning have received researchers’ attentions for
some time. Perception reasoning is one of these research directions [16, 24]|. For example, “seeing is believing”
has been adopted for perception-based belief reason|2, 13]. In recent years, observability has been used widely
to understand behaviors of multi-agent systems. One study of particular interest is a logic for visibility, seeing
and knowledge (VSK), which explores relationships between what is true, visible, perceived, and known; it
also investigates a number of interaction axioms among agents, such as under which condition agent a sees
everything agent b sees or agent b knows everything agent a sees [27]. However, VSK logic does not address
two major issues regarding agent cooperation: 1) an agent uses the effects of actions in reasoning what oth-
ers are likely to know, but VSK does not provide a way to treat actions through observation; 2) VSK does
not provide agents with an effective way to utilize their observation to manage communication. Isozaki and
Katsuno propose an algorithm to reason about agents’ nested beliefs (which are one’s belief about the belief
of another), based on observatio[10]. However, they do not represent the process of observation, such as what
can be seen and under which conditions. Tambe and Kaminka use observation to monitor failed social rela-
tionships between agents [12], but they do not give details about how agents’ belief about their teammates’
mental states are updated. Viroli and Omicini devise a formal framework for observation that abstracts con-
ditions that cause agents’ interactive behavi [25]. But, they don’t say much about how the observation to
environment is processed. All of above fall into the category “passive observation”, in the sense that each
agent evaluates observability conditions at the appropriate times. Our work also belongs to passive observa-
tion. However, we aim to reduce the amount of communication by reasoning about agent observability, the
capability to observe environment and actions. We relate an agent’s observability to its mental state, and
then use observation and belief about others’ observabilities to estimate its teammates’ mental states. That
is, an agent can exploit knowledge about what it and its teammates can see to help decide when others might
or might not know some information. loerger has considered “active observation”, in which he invokes addi-
tional ‘find-out’ plans to seek values for unknown conditions knowledge of whose values would enable situation
assessment [9].

To date, control paradigms for cooperative teamwork have allowed agents to communicate about their in-
tentions, plans, and the relationships between them [23, 21]. However, this complex team cooperation behavior
requires high-frequency communication and computation time, which weakens teamwork efficiency. Moreover,
some researchers have found that communication, while a useful paradigm, is expensive relative to local com-
putation [1]; therefore techniques that reduce extraneous communication during teamwork processes are of
particular importance. On the other hand, there exist several communication-less agent cooperation techniques
such as social conventions [20], focal points [14], plan recognition [8], decision-theoretic modeling [15, 28], and
game-theoretic recursive modeling [5]. In general, these techniques emphasize inferring others’ actions implic-
itly or explicitly, based on established norms for behavior or on knowledge about the preferences or interests
of others. However, strategies such as social conventions or focal points totally eliminate communication and
use convention rules to guide agents’ actions, strategies such as plan recognition or decision-theoretic nor-
mally have high computational complexity in dealing with uncertainty which weakens teamwork efficiency, and
game-theoretic recursive modeling is primarily suitable for two-member teams. Our approach to proactive com-
munication is different in that agents are capable of predicting team-related information (by analyzing team
plans) and distributing such information only when it is necessary. The communication need is reduced, by
using belief of what agents can observe, and hence don’t have to be told.

3. The CAST-O Architecture. The CAST-O architecture is an extension of CAST (Collaborative
Agents for Simulating Teamwork) [29]. There are three aspects to the extension: 1) representation of agent
observability about the environments and other agents’ actions; 2) belief-maintenance in terms of observation;
3) observation-based proactive communication among agents.

An agent team is composed of a set of agents. The team members share the team knowledge that is
represented in MALLET (Multi-Agent Logic Language for Encoding Teamwork), which provides descriptors
for encoding knowledge about teamwork processes (i. e. individual/team plans and operations), as well as
specifications of team structures (e.g., team members and roles) [30]. Each agent has an individual knowledge
base (KB) to specify its beliefs about the environment and beliefs about teammates’ mental states. The
environment simulation provides an interface through which the agents can interact with the environment. In
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the process of plan execution, individual agents can observe the environment and their teammates’ behaviors,
infer the teammates’ mental states, communicate with each other, and perform actions.

Plans are at the center of activity. They describe how individuals or teams can go about achieving various
goals. Plans are classified into individual plans and team plans. Each individual plan has a process consisting
of a set of operations, each of which is either a primitive operator, or a composite operation (e.g., a sub-plan).
Team plans are similar to individual plans, but they allow multiple agents or agent variables to be assigned to
carry out operations or plans (some of the requiring a team). A DO statement is used to assign one or several
agents to carry out specific operators or sub-plans. The following is an example team plan for the multi-agent
version of Wumpus World (refer to section 6 for more details):

(tplan killwumpus ()

(process
(par
(seq
(agent-bind 7ca (constraint (play-role 7ca carrier)))
(D0 7ca (findwumpus ?w))) // carrier is assigned
(seq
(agent-bind 7fi (constraint ((play-role ?fi fighter)
(closest-to-wumpus 7fi 7w))))
(DO 7fi (movetowumpus 7w)) // fighter who is closest to
// wumpus is assigned
(DO 7fi (shootwumpus ?7w)))))) // shootwumpus is an operator
where findwumpus and movewumpus are individual plans, and shootwumpus is an individual operator specified
as follows:

Generally, operators are defined by their preconditions and effects, which are logical conjunctions. An
individual action is the execution of an instantiated operator in a DO statement. It is represented as:

<action> ::= (DO <doer> (<operator—name> <args>))

where <doer> is the agent assigned to the action and <operator-name> and <args> are correspondent to the
name and arguments of the operator. Sample individual actions in the extended Wumpus World are as follows:
(DO 7fi (shootwumpus 7w))
(DO ?ca (pickupgold 7g))

We assume that the precondition of the action must be believed by <doer> before the action can be
performed and the effect must be believed after the action is performed. Since actions are domain-dependent,
when agents perform the actions, they send a signal to the environment simulation. Then the actions are visible
to any team member whose observability (see section 4) permits it at the time the actions are performed.

An essential feature that differentiates an agent team from a set of individual agents is that a team of agents
may perform a joint action, which is the union of simultaneous individual actions performed by individuals
sharing certain specific mental properties [4]. MALLET provides a descriptor joint-do for agents performing
the joint action, and specifies three different joint types: AND, OR or XOR [29]. For example, we may define
following joint action in the extended Wumpus World:

(joint-do AND
(DO ?ca (move ?x 7y))
(DO 7fi (move 7x 7y)))
which means agents 7ca and ?7fi move simultaneously.

Given a team plan expressed in MALLET, we can explicitly deduce information needs and production from
the pre-conds and effects of operators and implicitly deduce others from the plan structure, e.g., joint-do requires
coordination regarding starting time, or operations in parallel need coordination in terms of the starting and
ending of the par set of branches. The latter, for example, might be determinable from observations, avoiding
the need for explicit communication. In addition, if multiple agents are capable of performing the same tasks,
the MALLET team plan is likely to contain agent selection criteria (e.g., the closest agent to a wumpus should
kill it). Again, this falls in the realm of implicitly determinable coordination communication. While this paper
has focused on the only the explicitly determinable part of this (i. e., things derived from pre-conds and effects
conditions), the basic structure of the use of observation can be applied to more general situations.

Another important setting for agents’ teamwork is environment. The environment is composed of objects.
Each object has some properties. A property is represented as follows:
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<property> ::= (<property-name> <object> <args>)

<object> ::= <agent>|<non-agent>
where <object> could be either agent or non-agent, and <args> is a list of arguments describing the property.
Sample properties in the extended Wumpus World are as follows:

(location fi ?7x 7y),

(dead w1l 7state).

The usefulness of properties derives from treating them as queries to the environment, using variables for
any or all of the arguments. Unification will provide values, if any, for the free variables that make the query
true; if there are no such values, then the value for the query will be false.

During a teamwork process, the environment simulation provides an interface through which the agents can
observe the environment and their teammates’ actions. The environment evolves from the state at one time to
the state at the next time with an action possibly being taken during the time interval, saving only the current
environment states. Each agent maintains knowledge of the environment in its KB, updating this knowledge as
needed to carry out its plan or provide information to team members.

4. Agent Observability. To express agent observability, we define a query function CanSee (<observer>
<observable> <cond>), where <observer> specifies the agent doing the observing, <observable> identi-
fies what is to be observed, and <cond> specifies the conditions under which the <observer> can see the
<observable>. When needed, the query is submitted to the knowledge base for evaluation after first forming
the conjunction of the arguments. As <observablea> and <cond> may be predicates, missing values for vari-
ables will be supplied via unification if there are any such values that allow the <cond> to be satisfied, or else
return FALSE. This allows an agent, for example, to determine the location (through variables) of a target if
the conditions are satisfied (e.g., the target is within range). Time is implicit in this query and is taken to be the
time of the current step. Note that strong constraints weaken agents’ observability; weak constraints strengthen
agents observability. The strongest constraint is FALSE, which means that the agent can see nothing. The
weakest constraint is TRUE, which means that the agent can see everything.

Successful teamwork requires interdependency among the agents [6]. This suggests that an agent should
know at least some things about what other team members can see. However, an agent may not know for
sure that another agent can see something. Rather, an agent may only believe, based on its current beliefs,
that another agent can see something. We then use BelieveCanSee(<believer> <observer> <observable>
<cond>) to mean that one agent believes another agent can see something under certain condition.

We also make the assumption of “seeing is believing”. While philosophers may entertain doubts because of
the possibility of illusion, common sense indicates that, other things being equal, one should believe what one
sees [13, 2|. Thus, we assume that an agent believes an observed property persists until it believes the property
has been negated later.

In the following subsections, we describe the syntax and semantics of observability in more detail.

4.1. The Syntax of Observability. The syntax we use for observability is given in Table 4.1. For
example, the observability specification for a carrier in the extended Wumpus World is shown below, where ca,
rca, fi, rfi represent the carrier, carrier’s detection radius, fighter and fighter’s detection radius, respectively.

(CanSee ca (location 70 7x 7y)
(location ca ?xc ?yc) (location 7o ?x 7y)
(inradius ?7x 7y 7xc 7yc rca)
) // The carrier can see the location property of an object.

(CanSee ca (DO 7fi (shootwumpus 7w))
(play-role fighter 7fi) (location ca ?xc 7yc) (location 7fi ?x 7y)
(adjacent ?xc 7yc ?x ?y)

) // The carrier can see the shootwumpus action of a fighter.

(BelieveCanSee ca fi (location 7o 7x 7y)
(location fi 7xi 7yi) (location 7o ?x 7y)
(inradius ?x 7y 7xi ?7yi rfi)

) // The carrier believes the fighter is able to see the
// location property of an object.
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TaBLE 4.1
The Syntaz of Observability

1: < observability > :— (CanSee < viewing >)x*

2: (BelieveCanSee < believer >< viewing >)x*

3: < viewing > := < observer >< observable >< cond >

4: < believer > = < agent >

5: < observer > i < agent >

6: < observable > := < property > | < action >

7 < property > := (< property — name >< object >< args >)

8 < action > = (DO < doer > (< operator — name >< args >))
9: < object > = < agent > | < non — agent >

10: < doer > i < agent >

(BelieveCanSee ca fi (DO 7f (shootwumpus ?w))
(play-role fighter 7f) ( 7f fi) (location ca 7xc ?yc)
(location fi 7xi ?yi) (location ?f ?7x 7y)
(inradius 7xi ?yi 7xc ?yc rca) (inradius 7x 7y ?xc 7yc rca)
(adjacent 7x 7y 7xi 7yi)

) // The carrier believes the fighter is able to see the
// shootwumpus action of another fighter.

An agent has two kinds of knowledge, shared team knowledge, encoded in MALLET, and individual knowl-
edge, contained in its knowledge base. The syntax of observability can be used either, as rules in an agent’s
knowledge base [31], or as capability incorporated into MALLET. In this paper, we encode observability as rules
in agents’ knowledge bases.

4.2. The Semantics of Observability. To give operational semantics to observability, we need to clarify
the relationships of: 1) what an agent can see, what it actually sees, and what it believes from its seeing; 2)
what an agent believes another agent can see, what it believes another agent actually sees, and what it believes
another agent believes from its seeing.

In order to properly discuss the semantics, we need to introduce a notion of time, as preconditions and
effects refer to different points in time. For purposes of exposition, we will simply assume that time is a discrete
and indexed in order by the natural numbers, and use the indices to reference points in time. Since we are
dealing with multiple agents, multiple actions may occur at the same time instant. We do not try to elaborate
further on time in this paper, as there are a number of useful different ways of dealing with issues such as the
synchronization among team members performing actions, and they are not central to the point of the paper.

Let Seei(a, 1) express that agent a observes ¢ at time ¢. There are two cases to consider, first where v is
a property, and secondly, where 1) is an action. When ¢ is a property, seeing 1) means determining the truth
value of ¢, with unification of any free variables in 1. If v is an action, seeing ¥ means that the agent believes
the doer believed the precondition of ¥ immediately before the action occurred and the doer believes the effect
of ¢ immediately after performing the action. We use the meta-predicate Hold;(c) to mean ¢ holds in the world
(environment simulation) at time ¢. We make the assumption below:

Ya, v, c,t, CanSee(a, ), c) N Hold:(c) — Sees(a, 1)) (4.1)

which means that if the condition ¢ holds at time ¢ and agent a has the capability to observe 1) under condition
¢, then agent a actually does determine the truth-value of ¢ at time ¢.

Next, we consider the relation between seeing something and believing it. Belief is denoted by the modal
operator BEL and for its semantics we adopt the axioms K, D, 4, 5 in modal logic. The assumption of “seeing
is believing” is again stated separately for properties and actions. In the case of properties, it is formalized in
the axiom below:

Ya, p,t, Seei(a, p) — [Holdi(¢) — BELi(a, )] A [mHoldi(p) — BEL(a, ~p)] (4.2)

which says that for any property ¢ seen by agent a, if ¢ holds, agent a believes ; if ¢ does not hold, agent a
believes not ¢ (—¢).
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Agent a’s belief is more complex when an action, ¢, is observed. Let Doer(¢), Prec(¢), Ef ft(¢) denote
the doer, the precondition, and the effect of action ¢. When agent a sees action ¢ performed by some agent,
agent a believes that the agent believed the precondition and believes the effect. This process is expressed by
the following axiom:

Ya, o, t, Seei(a,d) — BEL(a, BEL;_1(Doer(¢), Prec())) A
BELq(a, BEL,(Doer(), Ef f:(6))) (4.3)

From the belief update perspective in our current implementation where beliefs are assumed persistent, for any
p € Prec(¢), agent a believes that Doer(¢) still believes p at time ¢ (i. e. BELy(a, BEL(Doer(¢),p)))) unless
—p is contained in Efft(¢). This is similar for BelieveCanSee.

An agent’s belief about what another agent sees is based on the following axiom:

Va,b,v, e, t,t', BelieveCanSee(a,b,1,c) N BELi(a, BELy (b, c)) —
BEL¢(a, Seey (b, 1)) (4.4)

which means that if agent a believes that agent b is able to observe 1) under condition ¢, and agent a believes ¢
at time ¢’ then agent a believes at time ¢ that agent b saw (1'<t), sees (+'—t), or will see (#*>#, which requires
some prediction capability for agent a) 1 at time ¢’ In our approach, each agent focuses on the reasoning about
current observability, not in the past or in the future. Therefore, the axiom above can be simplified as follows:

Ya,b,,c, t, BelieveCanSee(a, b, 1, c) N BELt(a,c) — BEL(a, See:(b, 1)) (4.5)

Note that agent a evaluates condition ¢ according to its own beliefs.

Combining this with the previous assumption that “seeing is believing”. we extend this to belief. We have
two separate cases for properties and actions. When agent a believes agent b sees a property ¢, a believes that
b believes ¢:

Ya,b, p,t, BEL(a, See(b,)) — BEL(a, BEL(b, p)) (4.6)

When agent a believes agent b sees an action ¢, a believes that b believes the doer believed the precondition
at the previous time step and believes the effect at the current time step. This consequence is expressed by the
following:

Ya,b, ¢, t, BELi(a, Seei(b, ¢)) —
BEL(a, BEL(b, BEL,_1(Doer(¢), Prec(¢)))) A
BELy(a, BEL:(b, BEL:(Doer(6), Ef f1(6))) (47)

4.3. Belief Maintenance. From the semantics, agents’ observability is closely tied to their beliefs about
the environment and other agents. Agents must update these beliefs when they perform, or reason about others’,
observation.

4.3.1. Maintaining Belief About Self’s Observability. The axiom of “seeing is believing” bridges the
gap between what an agent sees and what it believes. An agent maintains its beliefs in two aspects: 1) for an
observed property, the agent believes the property; 2) for an observed action, the agent believes that the doer
believed the precondition before the action and the doer believes the effect after the action. The algorithm for
updating what an agent has observed, according to the observability rules, is given in Figure 4.1.

This algorithm builds beliefs in the believer’s (i. e., agent self’s), knowledge base by checking the following:
Observing a property

e When evaluating observability (CanSee self (<prop-name> <object> <args>) <cond>), self queries
<cond> to environment KB. The query returns a list of substitutions of variables, or null if <cond> are
not satisfied. When the returned tuple is not null, if the property holds in the environment, self updates
its knowledge base with belief (<prop-name> <object> <args>) for each variable bindings, otherwise,
self updates its knowledge base with belief (not (<prop-name> <object> <args>)) for each variable
bindings.
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e Observing an action
In the case of (CanSee self (<action-name> Agd(# self) <args>) <cond>), the query <cond> is
made with respect to environment KB as well. If the result of query is not null, self updates its beliefs
by that self believes that agent Agd knew the precondition, and that Agd infers the effect. To handle
the temporal issue correctly, self updates Agd’s belief about the precondition first and then Agd’s belief
about the effect. These beliefs are useful in communication. For example, if agent a needs information
I and believes agent b believes I, a may ask b for L.

updateSelfObs(self, KBself)

/* Let self be the agent invoking the algorithms. We denote the knowledge base
for agent a by KBy, for the environment by K Beny.*/

1: for each rule in K By of the form (CanSee self (prop object args) cond)

2: if cond is true in K Bep, for some bindings of variables

3: if (prop object args) is true in K Beno for some bindings of variables
4: update(K Bseif, (prop object args))

5: for each such binding of values to the variables;

6: else

T update(K Bseif, (not (prop object args)))

for each such binding of values to the variables;
8: for each rule in K By of the form (CanSee self (action doer args) cond),
if cond is true in K Bey, for some binding of variables,
9:  for each conjunct of precondition of action

10: update(K Bseif, (BEL doer conjunct));
11: for each conjunct of effect of action
12: update(K Bsei¢, (BEL doer conjunct));

Fic. 4.1. An Algorithm of Maintaining Self s Belief by Direct Observation

4.4. Maintaining Belief About Others’ Observabilities. Figure 4.2 shows an algorithm for updating
what an agent can determine about what other agents can see.

updateSelfBel(self, K Bcif)
1: for each rule of the form (BelieveCanSee self Ag (prop object args) cond) that
2: cond is true in K Bye¢ for some binding of arguments to agents Ag # sel f
3:  for each such binding of arguments to the variables
update(K By, (BEL Ag (prop object args)));
: for each rule of the form (BelieveCanSee self Ag (action doer args) cond) that
cond is true in K Bgey for some binding of arguments to agents Ag # sel f
for each conjunct of the precondition of action
update(K Bseis, (BEL Ag (BEL doer conjunct)));
for each conjunct of the effect of action
0: update(K B, (BEL Ag (BEL doer conjunct)));

i e i

Fia. 4.2. An algorithm of maintaining belief about others observabilities

The algorithm records which agents are known to be able to see what, and updates what an agent believes,
according to the precondition and effect of the actions it observes other agents performing. For the agent
to determine whether a piece of information is needed by others, it simulates the inference process of others’
observability to determine which is known by others.

e Observing a property
In the case of (BelieveCanSee self Ag(# self) <property> <cond>), a query <cond> is made with
respect to K By ¢. If the condition is satisfied, self believes Ag can see the property. However, self may
or may not have knowledge of <property>. For example, a carrier may believe a fighter can smell a
wumpus if the fighter is adjacent to the wumpus, but the carrier does not itself smell the wumpus.
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e Observing an action In the case of (BelieveCanSee self Ag(#self) (<action-name> doer (#self)
<args>) <cond>), <cond> is evaluated with respect to K By ¢. Self adds tuples to K B¢, indicating
that Ag believes that doer believed the preconditions of the action, and believes the effects of the action®.

4.5. Execution Model. At each time step, every agent, denoted by self, has a function cycle: (possibly)
observe, receive information from others, belief coherence, (possibly) send information to others, and act. If self
needs an information item or produces an item needed by others, it will observe the world and other agents. It
then checks messages and adjusts its beliefs for what it sees and what it is told. Self keeps track of the other
agents’ mental states by reasoning about what they see from observation, in order to decide when to assist the
others with the needed information proactively. Finally, self acts cooperatively with teammates and enters the
next time step.

An algorithm for overall belief maintenance along with the function cycle is shown in Figure 4.3. The
algorithm begins with updateWorld by self’s last action. We will not elaborate on how updateWorld works
which is beyond the focus of this paper. Basically, the environment simulation updates the environment KB
after receiving any action from the agent. Because the agent can infer the effect of its own action, the algorithm
saves the effect as a new belief. UpdateSelfObs evaluates observability rules with information obtained from
K Beny and updates K Bge p with the results of the observation. UpdateSelfBel updates self’s beliefs about what
others’ beliefs by observing environment and actions.

updateKB(self, action, K Bseiy)
/* The algorithm is executed independently by each agent, denoted self below,
after the completion of each step in the plan in which the agent is involved.*/
updateWorld(action, self); //notify the environment to update K Beny
. for each conjunct in the effect of action
update(K Bsei ¢, conjunct);
if self produces/needs information 7
updateSelfObs(self, K Bseir); //update K Bses by observability
updateSeflBel(self, K Bscif); //update K Bsei¢ by beliefs about
//others observabilities
. for each coming information /
update(KBself, I); //update K Bsey by communication

DU WY

0o =~

Fic. 4.3. An overall belief-maintenance algorithm

The function update manages history and is responsible for coherence and persistence of belief in an agent’s
KB. The agent’s beliefs about the world are saved as primitive predicates as they were expressed originally
in the world. Such beliefs are generated from three sources: (1) belief from observation, i. e., a property self
observes; (2) belief from inference, i. e., conjuncts inferred from the effect of the action self performs; (3) belief
from communication, i. e., messages other agents send to self by communication. How does communication
affect the agent’s mental state? Van Linder et al. propose that the communication can also be translated to a
belief saved in the mental state in the same way as observation is [13]. In any situation in which belief is required
from multiple sources, conflicts may arise, such as self simultaneously sees =t and hears 1. A strategy is needed
that prescribes how to maintain the coherence of the knowledge base of an agent in the case of conflicts among
incoming information from different sources. Castelfranchi proposes that such a strategy should prescribe that
more credible information should always be favored over less credible information [3]. To define a strategy
complying with this idea, we propose that each source is associated with a credit and the credit decreases in
this order: source from observation, source from inference, and source from communication. At certain time
point, when an agent gets conflict information from different sources, it always believes what it sees.

Since the number of time steps could be infinite, an agent keeps only current beliefs in its mental state,
except that the most recent one is kept, even if it is not generated currently. That an agent does not directly
observe or infer some predicates from current observation does not mean it does not believe them. The agent
has memory of them from before. Memory is useful in proactive communication; thus, if a piece of information
is infrequently changed, at the time when agent a realizes that agent b needs the information, even if agent a
does not have the information, agent a can tell agent b the information in its memory.

INote, however, that self does not necessarily know what there values are. This is useful, however, in case self needs to make an
activeAsk.
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5. Proactive Communication. The purpose of proactive communication is to reduce communication
overhead and to improve the efficiency or performance of a team. In our approach, proactive communication
is based on two protocols named proactiveTell and activeAsk. These protocols are used by each agent to
generate inter-agent communications when information exchange is desirable. Proactive communication answers
the following questions pertinent to agent proactivity during teamwork. First, when does an agent send the
information to its teammates if it has a new piece of information (either from performing an action or observing)?
A simple solution could be sending the information when requested. That is, the agent would only send the
information after it has received a request from another agent. Our approach is that the agent observes its
teammates, and commits to proactive tell once it realizes that one of the teammates needs the information to
fulfill its role and does not have it now. Meanwhile, if the agent needs some information, it does not passively
wait for someone else to tell it; it should ask for this information actively. Second, what information is sent in
a session of information exchange? There are two kinds of information that can be communicated. One is the
information explicitly needed by an agent to complete a given plan, i. e., conjuncts in a precondition of plans
or operators that the agent is going to perform. The other is the information implicitly needed by the agent.
For example, if agent a needs predicate p and knows p can be deduced from predicate ¢, even if the providing
agent does not know p, it still can tell agent a about ¢ once it has ¢, because it knows that agent a can deduce
p from ¢. This paper, however, deals only with agents communicating information that is explicitly needed.

The proactiveTell and activeAsk protocols are designed based on following three types of knowledge:

e Information needers and providers. In order to find a list of agents who might know or need some
information, we analyze the preconditions and effects of operators and plans and generate a list of
needers and a list of providers for every piece of information. The providers are agents who might know
such information, and the needers are agents who might need to know the information.

e Relative frequency of information need vs. production. For any piece of information I, we define two
functions, fo and fy. fo(I) returns the frequency with which I changes. fx(I) returns the frequency
with which T is used by agents. We classify information into two types: static? and dynamic. If fo (1) <
fn (D), Iis considered static information; if fo(I) > fn(I), I is considered dynamic information. For
static information we use proactiveTell by providers, and for dynamic information we use activeAsked
by needers?.

e Beliefs generated after observation. Agents take advantage of these beliefs to track other team members’
mental states and use beliefs of what can be observed and inferred to reduce the volume of communi-
cation. For example, if a provider believes that a needer sees or infers information I, the provider will
not tell the needer.

An algorithm for deciding when and to whom to communicate for activeAsk and proactiveTell* is shown in
Figure 5.1.

Considering the intractability of general belief reasoning [7], our algorithm deals with beliefs nested no
more than one-layer. This is sufficient for our current study on proactive behaviors of agents, which focuses
on peer-to-peer proactive communication among agents. For activeAsk, an agent requests the information
from other agents who may know it, having determined it from the information flow. The agent selects a
provider among agents who know I and ask for I. For proactiveTell, the agent tells other agents who need L
An agent always assumes others know nothing until it can observe or reason that they do know a relevant item.
Information sensed and beliefs about others’ sensing capabilities become the basis for this reasoning. First, the
agent determines what another agent needs from the information flows. Second, the observation rules are used
to determine whether or not one agent knows that another agent can sense the needed information.

6. Empirical Study. While one would think that if one gives an agent additional capabilities, its perfor-
mance would improve, and indeed this turns out to be correct, there are several other interesting aspects of our
scheme to evaluate. For example, when there are several different capabilities, the interesting question arises
of how much improvement each capability gives and which capabilities are the most important to add in dif-
ferent situations. Moreover, while it is obvious that one should not see decreasing performance from increasing

2Here, static information includes not only the information never changed, but also the information infrequently changed but
frequently needed.

3In future work, we will address some statistical methods to calculate frequencies and hence will be able to provide more
comprehensive proactive communication protocols.

4Note that there is no need to say anything anout previous time points, as those would have been handled when they were first
entered. Furthermore, these is no need to consider =7 explicitly; if ture, it will be entered as a fact on its own.
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activeAsk(self, I, KBse¢, T)

/* Let T be the time step when the algorithm is executed.
Independently executed by each agent (self) when it

needs the value of information 1*/

1: candidateList=null;

2: if (I'is dynamic and (I't) V (—It) is not true in K Bge s for any t<T)
3. if there exists a x>0 such that

4: ((BEL Ag I T-x) V (BEL Ag —I T-x)) is true in K Baeis

5 let xs be the smallest such value of x;

6: for each agent Ag#self

7 if (BEL Ag I T-xs) V (BEL Ag —I T-xs)) is true in K Bges
8 add Ag to candidateList;

9: randomly select Ag from candidateList;
10: ask Ag for I
11: else

12: randomly select a provider
13: ask the provider for I;

proactiveTell( K Bgers, T)

/* Independently executed by each agent (self), after it executes updateKB.*/
14: for each conjunct I for which (I, T) is true in K Bseiy and I is static

15: for each Agn needers

16: if (BEL Agn I T) is not true in K Bgef

17: tell Agn I

Fia. 5.1. Proactive Communication Protocols

capabilities, there are still interesting questions of how much performance increase can be obtained and how
one can incorporate the capabilities into the system in a computationally tractable manner. And, one there is
an interest in how the scheme scales with the number of agents involved. Our empirical study is intended to
address these questions.

To test our approach, we have extended the Wumpus World problem [19] into a multi-agent version. The
world is 20 by 20 cells and has 20 wumpuses, 8 pits, and 20 piles of gold. The goals of the team, four
agents, one carrier and three fighters, are to kill wumpuses and get the gold. The carrier is capable of find-
ing wumpuses and picking up gold. The fighters are capable of shooting wumpuses. Every agent can sense
a stench (from adjacent wumpuses), a breeze (from adjacent pits), and glitter (from the same position) of
gold. When a piece of gold is picked up, both the glitter and the gold disappear from its location. When
a wumpus is killed, agents can determine whether the wumpus is dead only by getting the message from
others, who kill wumpus or see shooting wumpus action. The environment simulation maintains object prop-
erties and actions. Agents may also have additional sensing capabilities, defined by observability rules in
their KBs.

There are two categories of information needed by the team: 1) an unknown conjunct that is part of the
precondition of a plan or an operator (e.g., “wumpus location” and “wumpus is dead”); 2) an unknown conjunct
that is part of a constraint (e.g., “fighter location”, for selecting a fighter closest to wumpus). The “wumpus
location” and “wumpus is dead” are static information and the “fighter location” is dynamic information. Agents
use proactiveTell to impart static information they just learned if they believe other agents will need it. For
example, the carrier proactiveTells the fighters the wumpus’ location. Agents use activeAsk to request dynamic
information if they need it and believe other agents have it. For example, fighters activeAsk each other about
their locations and whether a wumpus is dead.

We used two teams, Team A and Team B. Each team was allowed to operate a fixed number of 150 steps.
Except for the observability rules, conditions of both teams were exactly the same. In the absence of any
target information (wumpus or gold), all agents reasoned about the environment to determine their priority of
potential movements. If they were aware of a target location requiring action on their part (shoot wumpus or
pick up gold), they moved toward the target. In all cases, they avoided unsafe locations.

We report three experiments. The first explores how observability reduces communication load and improve
team performance in multi-agent teamwork. The second focuses on the relative contribution of each type of
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TaBLE 6.1
Team Performance and Communication Frequency in Sample Run. T1: number of wumpuses left alive, T'2: amount of gold
left unfound, T3: total number of avtiveAsks used, Tj: total number of proactiveTells used, T5: average number of activeAsks per
wumpus killed, T6: average number of proactiveTells per wumpus killed

T1 | T2 |T3 | T4 | Th T6

TeamA | 4.8 | 7.2 774 | 33.8 | 5.09 | 2.23
TeamB | 15 | 146 | 67.6 | 28.8 | 13.6 | 5.9

belief generated from observability to the successes of CAST-O as a whole. Finally, the third evaluates the
impact of observability on changing communication load with increase of team size.

Two teams are defined as follows:

e Team A: The carrier can observe objects within a radius of 5 grid cells, and each fighter can see objects
within a radius of 3 grid cells.

e Team B: None of the agents have any seeing capabilities beyond the basic capabilities described at the
beginning of the section.

We use measures of performance, which reflect the number of wumpuses killed, the amount of communication
used and the gold picked up. In order to make comparisons easier, we have chosen to have decreasing values
indicate improving performance, e.g., smaller numbers of communication messages are better. To maintain this
uniformity with some parameters of interest, we use the quantity not achieved by the team rather than the
number achieved, e.g., the number of wumpuses left alive rather than the number killed. The experiments were
performed on 5 randomly generated worlds. The results are shown in Table 1.

Table 1 shows that, as expected, Team A killed more wumpuses and found more gold than Team B. From
other experiments we have learned that the further the agents can see, the more wumpuses they kill. It is
interesting that the absolute number of communications is higher for Team A with observabilities than that of
Team B, thus 33.8 vs. 28.8 for proactiveTell and 77.4 vs. 67.6 for activeAsk. The reason for the increased number
of proactiveTells is that in Team A, the carrier, who is responsible for finding wumpuses and proactiveTelling
wumpuses’ locations to fighters, has further vision than that of the carrier in Team B. Hence the carrier in Team
A can see more wumpuses. This feature leads to more proactiveTells from the carrier to the fighters in Team
A. The number of proactiveTells can be reduced by the carrier’s beliefs about the fighters’ observability, i. e.,
if the carrier believes the fighters can see the wumpus’ location, it will not proactiveTell the fighters. However,
since the fighters’ detect range is smaller than that of the carrier, the reduction cannot offset the number of
extra proactiveTells. The reason for the increased number of activeAsks in Team A is that the more wumpuses
they find, the more likely it becomes that messages are sent among fighters to decide who is closest to the
wumpuses. Since fighters in Team A may find wumpuses by themselves, they need to ask other teammates if
the wumpus is dead, to decide whether to kill it or not. Although the number of the messages could be reduced
by factors such as allowing the fighter to see other fighters’ locations and to see other fighters killing a wumpus,
the increase cannot be totally offset because of the fighters’ short vision. Hence, it makes more sense to compare
the average number of messages per wumpus killed. In these terms, the performance of Team A, is much better
than that of Team B, thus 2.23 vs. 5.9 for proactiveTell and 5.09 vs. 13.6 for activeAsk. Hence, our algorithms
for managing the observability of agents have been effective.

The results of this experiment produced a bit of a surprise. By introducing observabilities to agents,
the amount of communication actually increased slightly. This can be explained by the fact that because
observability is a major means for an individual agent to obtain information about environment and team
members; the more information obtained by the agent, the more messages were conveyed to help others. The
proper way to interpret the results, then, is to normalize them by the performance of the team, which in this
case is the average number of communications per wumpus killed, denoted by ACPWK, in this example. From
this perspective, the amount of communication was reduced, as expected, also validating our approach.

6.1. Evaluating Different Beliefs Generated from Observability. The second experiment tested the
contribution of different aspects of observability to the successful reduction of the communication. These aspects
are belief about observed property, belief about the doer’s belief about preconditions of observed action, belief
about the doer’s belief about effects of observed action and belief about another’s belief about observed property.
For simplify, we call them beliefl, belief2, belief3 and belief4 correspondently. We test their contributions by
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combining them. We used Team A and Team B in this experiment and kept all conditions the same as those
of the first experiment. We used Team B, as reference to evaluate the effectiveness of different combinations of
observability with Team A. We named this test combination 0, since there is none of such four beliefs involved
in. For Team A, we tested another 4 combinations of these beliefs to show the effectiveness of each, in terms of
ACPWK. These combinations are:

e Combination 0: Team B, which involves none of beliefs.

e Combination 1: In Team A, for each agent, leave off BelieveCanSee rules and do not process belief2
and belief3 when maintaining beliefs after observation. Therefore every agent only has beliefl about
the world.

e Combination 2: Keep every condition in combination 1, except for enabling the belief2 process. This
combination tests how belief2 improves the situation.

e Combination 3: Enabling the belief3 process in combination 2. This combination tests the effect of
belief3.

e Combination 4: Add BelieveCanSee rules into combination 3. This combination tests the effect of
belief4 as well as show effectiveness of the beliefs as a whole.

Each combination is run in the five randomly generated worlds. The average results of these runs are presented
in Figure 6.1, in which one bar shows ACPWK for one combination.

First of all that, agents’ beliefl (combination 1) is a major contributor to effective communication, for both
proactiveTell and activeAsk. For proactiveTell, in (a), compared to combination 0, ACPWK significantly drops
from 5.9 to 3.52. For activeAsk, in (b), ACPWK drops from 13.8 to 11.1.

The second case, belief2 (combination 2) does not produce any further reduction and hence is not effective
for proactiveTell, but produces improvement for activeAsk. For proactiveTell, when a provider sees an action,
though it believes the doer knows the precondition and effect of the action, it does not know the precondition
and effect by itself. So for this example belief2 can be of little help in proactiveTell. While for activeAsk, belief2
reduces ACPWK from 11.1 to 9.36, because with belief2, a needer will know who has a piece of information
explicitly. Then it can activeAsk without ambiguity.

Third, for the same reason that belief2 only works for activeAsk, belief3 (combination 3) contributes little
to proactiveTell but further decreases ACPWK to 7.97 for activeAsk.

Fourth, belief4 (combination 4) has a major effect on communications that applies to both protocols. It
further drops ACPWK to 2.23 for proactiveTell and to 5.39 for activeAsk. Belief4 is particularly important for
proactiveTell. For example, if the carrier believes that the fighters see a wumpus’ location, it will not tell them.

This experiment examined the contribution of each belief deduced from observability to the overall effective-
ness of communication. The result indicates three things. First, beliefl and belief4 have a strong effect on the
efficiency of both proactiveTell and activeAsk. Therefore, CanSee/BelieveCanSee a property, the observability
from which these two beliefs generated, can be generally applied to dual parts communication involving both
Tell and Ask. Second, belief2 and belief3 have weak influence on the efficiency of proactiveTell, this suggests
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that CanSee an action may be applied to communication which incurs more Ask than Tell, such as goal-directed
communication. Third, these beliefs work best together, because each of them provides a distinct way for agents
to get information from the environment and other team members. Furthermore, they complement each other’s
relative weaknesses, so using them together better serves the effectiveness of the communication as a whole.

6.2. Evaluating the Effect of Observability Communication Load with Increased Team size.
We designed the third experiment to show how communication load scales with increased team size. Based on
the assumption that proactiveTell brings more communication into play than activeAsk, we choose to test the
proactiveTell protocol. ActiveAsk is directed to only one provider at certain time, while the proactiveTell goes
to all needers who do not have the information. If the test results are good for proactiveTell, we can expect
that they are valid for activeAsk as well.

We used the same sensing capabilities for Teams A and Team B as in the first experiment. However, we
increased the number of team members by 1, 2 and 3, in two tests that we ran. In the first test, we increased
the number of needers, (i. e. fighters) and kept the same number of providers, (i. e. carriers). In the second
test, we did it the other way around. In each test, for each increment and each team, we ran the five randomly
generated worlds and used the average value of ACPKW produced in each world.

Figure 6.2 shows the trend of ACPKW as a function of increasing team size. In (a), Team B has an obvious
increase in ACPKW with increasing the team size. However, Team A keeps the same ACPKW. The cause can
be attributed to two factors: first, the amount of the increasing proactiveTells is held down because if the carrier
believes the fighters can see wumpus, the carrier does not perform proactiveTell; second, the more fighters there
are, the more wumpuses will be killed, which enlarges the numerator of ACPKW.

In (b), increasing the number of providers breaks the constant trend in Team A and shows an increased
ACPWK. However, comparing this increase to that of Team B, it is a moderate number. In Team B, every
provider increment means almost double the number of proactiveTells. The communication load increases
because of duplicate proactiveTells of the same information by different carriers. For example, each carrier
always provides the wumpus’ location to fighters when observing a wumpus. The carriers lack an effective
way to predict when a piece of information is produced and by whom, which is one of our main concerns
of future work. This experiment shows that the team empowered with observability has a slower growth of
ACPWK with increase of team size, which may indicate that observability will improve team scalability in some
sense.

7. Conclusion. In this paper, we have presented an approach to dealing with agent observability for
improving performance and reducing inter-agent communication. Each CAST-O agent is allowed to have some
observability to see the environment, and to watch what others are doing inside its detection range. Based on
the observation, the agent updates its knowledge base and infers what others may know at the current time.
Reasoning about what others can see allows agents to decide whether to distribute information and to whom.
We have proposed a proactive communication mechanism to confer some advantage to related team members
for realizing team interaction and cooperation proactively also. We have conducted an in-depth empirical
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evaluation in an extended Wumpus World, comparing the relative numbers of proactiveTell, activeAsk, and
wumpuses killed for agent teams with and without observability.

A major point to the proactive communication approach with observabilities is that the underlying system
that interprets the team plans of the agents does most of the work for handling the observation, inference and
communication. This need only be designed once. It is re-used as one moves from one domain to another. It is
only the explication of the observability conditions that changes from one domain to another, and this is essen-
tially linearly proportional to the number of agents and “size” of the domain properties that are to be observed.

Though currently we are considering just the times of information production or need, the same approach can
be extended to uncertainty in observability as well. Additionally, our present proactive information algorithm
analyzes the pre-conditions and effects of operators for which each agent is responsible in the team plan. The
purpose of doing so is to determine potentially useful information flow among agents. However, this approach
is restrictive. We would like to make the recognition of needed information more dynamic. One way to solve
this problem is to recognize the plans of other agents by observing actions of the other agents, and tracking the
sequence of sub-goals on which they are working dynamically. Using this information together with the action
an agent has most recently performed, the most likely information needs of other agents can be dynamically
estimated over a finite time horizon. Then we can send other agents only unknown information that will be
needed in the near future.
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