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t. Multi-agent teamwork is governed by the same prin
iples that underlie human 
ooperation. This paper des
ribeshow to give agents the same 
ooperative 
apabilities, observability and proa
tivity, that humans use. We show how agents 
anuse observation of the environment and of teammates' a
tions to estimate the teammates' beliefs without generating unne
essarymessages; we also show how agents 
an anti
ipate information needs among the team members and proa
tively 
ommuni
atethe information, redu
ing the total volume of 
ommuni
ation. Finally, we present several experiments that validate the systemdeveloped, explore the e�e
tiveness of di�erent aspe
ts of observability and introdu
e the s
alability of the use of observability withrespe
t to the number of agents in a system.Key words. Multi-agent systems, teamwork, agent 
ommuni
ation, observability1. Introdu
tion. Re
ently, the fo
us of mu
h resear
h on multi-agent systems (MAS) has shifted fromstrong agen
y [26℄ to teamwork, whi
h is a 
ooperative e�ort by a team of agents to a
hieve a 
ommon orshared goal [23℄. Resear
h on multi-agent teamwork builds on �ndings about e�e
tive human team behaviorsand in
orporates them into intelligent agent te
hnologies. For example, the shared mental model, one of themajor aspe
ts of the psy
hologi
al underpinnings of teamwork, has been adopted widely as a 
on
eptual basis ofmulti-agent teamwork. Based on the shared mental model, an e�e
tive team often 
an anti
ipate the informationneeds of teammates and o�er pertinent information proa
tively [18, 22℄. Consequently, supporting proa
tiveinformation ex
hange among agents in a multi-agent teamwork setting is 
ru
ial [29℄. Substantial 
hallengesarise in a dynami
 environment be
ause agents need to deal with 
hanges. Although partial observability ofdynami
, multi-agent environments has gained mu
h attention [17, 11℄, little work has been done to address howto pro
ess what is observable and under whi
h 
onditions; how an agent's observability a�e
ts the individual'smental state and whole team performan
e; and how agents 
an 
ommuni
ate proa
tively with ea
h other in apartially observable environment.In this paper, we fo
us on how to in
lude represent observability in the des
ription of a plan, and howto in
lude it into the basi
 reasoning for proa
tive 
ommuni
ation. We de�ne several di�erent aspe
ts ofobservability (e.g., seeing a property, seeing another agent perform an a
tion, and believing another 
an see aproperty or a
tion are all di�erent), and propose an approa
h to the expli
it treatment of an agent's observabilitythat aims to a
hieve more e�e
tive information ex
hange among agents. We employ the agent's observabilityas the major means for individual agents to reason about the environment and other team members. We dealwith 
ommuni
ation with the `right' agent about the `right' thing at the `proper' time in the following ways:
• Reasoning about what information ea
h agent on a team will produ
e, and thus, what informationea
h agent 
an o�er others. This is a
hieved through: 1) analysis of the e�e
ts of individual a
tionsin the spe
i�ed team plans; 2) analysis of observability spe
i�
ation, indi
ating what and under whi
h
onditions ea
h agent 
an per
eive about the environment as well as the other agents.
• Reasoning about what information ea
h agent will need in the pro
ess of plan exe
ution. This is donethrough the analysis of the pre
onditions of the individual a
tions involved in the team plans.
• Reasoning about whether an agent needs to a
t proa
tively when produ
ing some information. Thede
ision is made in terms of: 1) whether or not the information is mutable a

ording to information
lassi�
ation; 2) whi
h agent(s) needs this information; and 3) whether or not an agent who needs thisinformation is able to obtain the information independently a

ording to the observation of environmentand other agents' behaviors.We also present several experiments that validate the system developed, explore the e�e
tiveness of di�erentaspe
ts of observability and introdu
e the s
alability of the use of observability with respe
t to the number ofagents in a system.The rest of this paper is organized as follows. Se
tion 2 reviews related work. Se
tion 3 is an overview of thesystem ar
hite
ture, whi
h is 
alled CAST-O. Se
tion 4 dis
usses how an agent's observability is represented,and how an agent's beliefs are maintained in the 
ourse of observations. Se
tion 5 des
ribes observation-based
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64 Yu Zhangproa
tive 
ommuni
ation among agents. Se
tion 6 is an empiri
al study based on a multi-agent Wumpus World.Se
tion 7 summarizes our work and dis
usses issues for further resear
h.2. Related Work. A single agent's observability and reasoning have re
eived resear
hers' attentions forsome time. Per
eption reasoning is one of these resear
h dire
tions [16, 24℄. For example, �seeing is believing�has been adopted for per
eption-based belief reason[2, 13℄. In re
ent years, observability has been used widelyto understand behaviors of multi-agent systems. One study of parti
ular interest is a logi
 for visibility, seeingand knowledge (VSK), whi
h explores relationships between what is true, visible, per
eived, and known; italso investigates a number of intera
tion axioms among agents, su
h as under whi
h 
ondition agent a seeseverything agent b sees or agent b knows everything agent a sees [27℄. However, VSK logi
 does not addresstwo major issues regarding agent 
ooperation: 1) an agent uses the e�e
ts of a
tions in reasoning what oth-ers are likely to know, but VSK does not provide a way to treat a
tions through observation; 2) VSK doesnot provide agents with an e�e
tive way to utilize their observation to manage 
ommuni
ation. Isozaki andKatsuno propose an algorithm to reason about agents' nested beliefs (whi
h are one's belief about the beliefof another), based on observatio[10℄. However, they do not represent the pro
ess of observation, su
h as what
an be seen and under whi
h 
onditions. Tambe and Kaminka use observation to monitor failed so
ial rela-tionships between agents [12℄, but they do not give details about how agents' belief about their teammates'mental states are updated. Viroli and Omi
ini devise a formal framework for observation that abstra
ts 
on-ditions that 
ause agents' intera
tive behavi [25℄. But, they don't say mu
h about how the observation toenvironment is pro
essed. All of above fall into the 
ategory �passive observation�, in the sense that ea
hagent evaluates observability 
onditions at the appropriate times. Our work also belongs to passive observa-tion. However, we aim to redu
e the amount of 
ommuni
ation by reasoning about agent observability, the
apability to observe environment and a
tions. We relate an agent's observability to its mental state, andthen use observation and belief about others' observabilities to estimate its teammates' mental states. Thatis, an agent 
an exploit knowledge about what it and its teammates 
an see to help de
ide when others mightor might not know some information. Ioerger has 
onsidered �a
tive observation�, in whi
h he invokes addi-tional `�nd-out' plans to seek values for unknown 
onditions knowledge of whose values would enable situationassessment [9℄.To date, 
ontrol paradigms for 
ooperative teamwork have allowed agents to 
ommuni
ate about their in-tentions, plans, and the relationships between them [23, 21℄. However, this 
omplex team 
ooperation behaviorrequires high-frequen
y 
ommuni
ation and 
omputation time, whi
h weakens teamwork e�
ien
y. Moreover,some resear
hers have found that 
ommuni
ation, while a useful paradigm, is expensive relative to lo
al 
om-putation [1℄; therefore te
hniques that redu
e extraneous 
ommuni
ation during teamwork pro
esses are ofparti
ular importan
e. On the other hand, there exist several 
ommuni
ation-less agent 
ooperation te
hniquessu
h as so
ial 
onventions [20℄, fo
al points [14℄, plan re
ognition [8℄, de
ision-theoreti
 modeling [15, 28℄, andgame-theoreti
 re
ursive modeling [5℄. In general, these te
hniques emphasize inferring others' a
tions impli
-itly or expli
itly, based on established norms for behavior or on knowledge about the preferen
es or interestsof others. However, strategies su
h as so
ial 
onventions or fo
al points totally eliminate 
ommuni
ation anduse 
onvention rules to guide agents' a
tions, strategies su
h as plan re
ognition or de
ision-theoreti
 nor-mally have high 
omputational 
omplexity in dealing with un
ertainty whi
h weakens teamwork e�
ien
y, andgame-theoreti
 re
ursive modeling is primarily suitable for two-member teams. Our approa
h to proa
tive 
om-muni
ation is di�erent in that agents are 
apable of predi
ting team-related information (by analyzing teamplans) and distributing su
h information only when it is ne
essary. The 
ommuni
ation need is redu
ed, byusing belief of what agents 
an observe, and hen
e don't have to be told.3. The CAST-O Ar
hite
ture. The CAST-O ar
hite
ture is an extension of CAST (CollaborativeAgents for Simulating Teamwork) [29℄. There are three aspe
ts to the extension: 1) representation of agentobservability about the environments and other agents' a
tions; 2) belief-maintenan
e in terms of observation;3) observation-based proa
tive 
ommuni
ation among agents.An agent team is 
omposed of a set of agents. The team members share the team knowledge that isrepresented in MALLET (Multi-Agent Logi
 Language for En
oding Teamwork), whi
h provides des
riptorsfor en
oding knowledge about teamwork pro
esses (i. e. individual/team plans and operations), as well asspe
i�
ations of team stru
tures (e.g., team members and roles) [30℄. Ea
h agent has an individual knowledgebase (KB) to spe
ify its beliefs about the environment and beliefs about teammates' mental states. Theenvironment simulation provides an interfa
e through whi
h the agents 
an intera
t with the environment. In
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tive Communi
ation in Multi-Agent Teamwork 65the pro
ess of plan exe
ution, individual agents 
an observe the environment and their teammates' behaviors,infer the teammates' mental states, 
ommuni
ate with ea
h other, and perform a
tions.Plans are at the 
enter of a
tivity. They des
ribe how individuals or teams 
an go about a
hieving variousgoals. Plans are 
lassi�ed into individual plans and team plans. Ea
h individual plan has a pro
ess 
onsistingof a set of operations, ea
h of whi
h is either a primitive operator, or a 
omposite operation (e.g., a sub-plan).Team plans are similar to individual plans, but they allow multiple agents or agent variables to be assigned to
arry out operations or plans (some of the requiring a team). A DO statement is used to assign one or severalagents to 
arry out spe
i�
 operators or sub-plans. The following is an example team plan for the multi-agentversion of Wumpus World (refer to se
tion 6 for more details):(tplan killwumpus()(pro
ess(par(seq(agent-bind ?
a (
onstraint (play-role ?
a 
arrier)))(DO ?
a (findwumpus ?w))) // 
arrier is assigned(seq(agent-bind ?fi (
onstraint ((play-role ?fi fighter)(
losest-to-wumpus ?fi ?w))))(DO ?fi (movetowumpus ?w)) // fighter who is 
losest to// wumpus is assigned(DO ?fi (shootwumpus ?w)))))) // shootwumpus is an operatorwhere findwumpus and movewumpus are individual plans, and shootwumpus is an individual operator spe
i�edas follows:Generally, operators are de�ned by their pre
onditions and e�e
ts, whi
h are logi
al 
onjun
tions. Anindividual a
tion is the exe
ution of an instantiated operator in a DO statement. It is represented as:<a
tion> ::= (DO <doer> (<operator-name> <args>))where <doer> is the agent assigned to the a
tion and <operator-name> and <args> are 
orrespondent to thename and arguments of the operator. Sample individual a
tions in the extended Wumpus World are as follows:(DO ?fi (shootwumpus ?w))(DO ?
a (pi
kupgold ?g))We assume that the pre
ondition of the a
tion must be believed by <doer> before the a
tion 
an beperformed and the e�e
t must be believed after the a
tion is performed. Sin
e a
tions are domain-dependent,when agents perform the a
tions, they send a signal to the environment simulation. Then the a
tions are visibleto any team member whose observability (see se
tion 4) permits it at the time the a
tions are performed.An essential feature that di�erentiates an agent team from a set of individual agents is that a team of agentsmay perform a joint a
tion, whi
h is the union of simultaneous individual a
tions performed by individualssharing 
ertain spe
i�
 mental properties [4℄. MALLET provides a des
riptor joint-do for agents performingthe joint a
tion, and spe
i�es three di�erent joint types: AND, OR or XOR [29℄. For example, we may de�nefollowing joint a
tion in the extended Wumpus World:(joint-do AND(DO ?
a (move ?x ?y))(DO ?fi (move ?x ?y)))whi
h means agents ?
a and ?fi move simultaneously.Given a team plan expressed in MALLET, we 
an expli
itly dedu
e information needs and produ
tion fromthe pre-
onds and e�e
ts of operators and impli
itly dedu
e others from the plan stru
ture, e.g., joint-do requires
oordination regarding starting time, or operations in parallel need 
oordination in terms of the starting andending of the par set of bran
hes. The latter, for example, might be determinable from observations, avoidingthe need for expli
it 
ommuni
ation. In addition, if multiple agents are 
apable of performing the same tasks,the MALLET team plan is likely to 
ontain agent sele
tion 
riteria (e.g., the 
losest agent to a wumpus shouldkill it). Again, this falls in the realm of impli
itly determinable 
oordination 
ommuni
ation. While this paperhas fo
used on the only the expli
itly determinable part of this (i. e., things derived from pre-
onds and e�e
ts
onditions), the basi
 stru
ture of the use of observation 
an be applied to more general situations.Another important setting for agents' teamwork is environment. The environment is 
omposed of obje
ts.Ea
h obje
t has some properties. A property is represented as follows:



66 Yu Zhang<property> ::= (<property-name> <obje
t> <args>)<obje
t> ::= <agent>|<non-agent>where <obje
t> 
ould be either agent or non-agent, and <args> is a list of arguments des
ribing the property.Sample properties in the extended Wumpus World are as follows:(lo
ation fi ?x ?y),(dead w1 ?state).The usefulness of properties derives from treating them as queries to the environment, using variables forany or all of the arguments. Uni�
ation will provide values, if any, for the free variables that make the querytrue; if there are no su
h values, then the value for the query will be false.During a teamwork pro
ess, the environment simulation provides an interfa
e through whi
h the agents 
anobserve the environment and their teammates' a
tions. The environment evolves from the state at one time tothe state at the next time with an a
tion possibly being taken during the time interval, saving only the 
urrentenvironment states. Ea
h agent maintains knowledge of the environment in its KB, updating this knowledge asneeded to 
arry out its plan or provide information to team members.4. Agent Observability. To express agent observability, we de�ne a query fun
tion CanSee(<observer><observable> <
ond>), where <observer> spe
i�es the agent doing the observing, <observable> identi-�es what is to be observed, and <
ond> spe
i�es the 
onditions under whi
h the <observer> 
an see the<observable>. When needed, the query is submitted to the knowledge base for evaluation after �rst formingthe 
onjun
tion of the arguments. As <observablea> and <
ond> may be predi
ates, missing values for vari-ables will be supplied via uni�
ation if there are any su
h values that allow the <
ond> to be satis�ed, or elsereturn FALSE. This allows an agent, for example, to determine the lo
ation (through variables) of a target ifthe 
onditions are satis�ed (e.g., the target is within range). Time is impli
it in this query and is taken to be thetime of the 
urrent step. Note that strong 
onstraints weaken agents' observability; weak 
onstraints strengthenagents observability. The strongest 
onstraint is FALSE, whi
h means that the agent 
an see nothing. Theweakest 
onstraint is TRUE, whi
h means that the agent 
an see everything.Su

essful teamwork requires interdependen
y among the agents [6℄. This suggests that an agent shouldknow at least some things about what other team members 
an see. However, an agent may not know forsure that another agent 
an see something. Rather, an agent may only believe, based on its 
urrent beliefs,that another agent 
an see something. We then use BelieveCanSee(<believer> <observer> <observable><
ond>) to mean that one agent believes another agent 
an see something under 
ertain 
ondition.We also make the assumption of �seeing is believing�. While philosophers may entertain doubts be
ause ofthe possibility of illusion, 
ommon sense indi
ates that, other things being equal, one should believe what onesees [13, 2℄. Thus, we assume that an agent believes an observed property persists until it believes the propertyhas been negated later.In the following subse
tions, we des
ribe the syntax and semanti
s of observability in more detail.4.1. The Syntax of Observability. The syntax we use for observability is given in Table 4.1. Forexample, the observability spe
i�
ation for a 
arrier in the extended Wumpus World is shown below, where 
a,r
a, �, r� represent the 
arrier, 
arrier's dete
tion radius, �ghter and �ghter's dete
tion radius, respe
tively.(CanSee 
a (lo
ation ?o ?x ?y)(lo
ation 
a ?x
 ?y
) (lo
ation ?o ?x ?y)(inradius ?x ?y ?x
 ?y
 r
a)) // The 
arrier 
an see the lo
ation property of an obje
t.(CanSee 
a (DO ?fi (shootwumpus ?w))(play-role fighter ?fi) (lo
ation 
a ?x
 ?y
) (lo
ation ?fi ?x ?y)(adja
ent ?x
 ?y
 ?x ?y)) // The 
arrier 
an see the shootwumpus a
tion of a fighter.(BelieveCanSee 
a fi (lo
ation ?o ?x ?y)(lo
ation fi ?xi ?yi) (lo
ation ?o ?x ?y)(inradius ?x ?y ?xi ?yi rfi)) // The 
arrier believes the fighter is able to see the// lo
ation property of an obje
t.
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ation in Multi-Agent Teamwork 67Table 4.1The Syntax of Observability1: < observability > := (CanSee < viewing >)∗2: (BelieveCanSee < believer >< viewing >)∗3: < viewing > := < observer >< observable >< cond >4: < believer > := < agent >5: < observer > := < agent >6: < observable > := < property > | < action >7: < property > := (< property − name >< object >< args >)8: < action > := (DO < doer > (< operator − name >< args >))9: < object > := < agent > | < non− agent >10: < doer > := < agent >(BelieveCanSee 
a fi (DO ?f (shootwumpus ?w))(play-role fighter ?f) ( ?f fi) (lo
ation 
a ?x
 ?y
)(lo
ation fi ?xi ?yi) (lo
ation ?f ?x ?y)(inradius ?xi ?yi ?x
 ?y
 r
a) (inradius ?x ?y ?x
 ?y
 r
a)(adja
ent ?x ?y ?xi ?yi)) // The 
arrier believes the fighter is able to see the// shootwumpus a
tion of another fighter.An agent has two kinds of knowledge, shared team knowledge, en
oded in MALLET, and individual knowl-edge, 
ontained in its knowledge base. The syntax of observability 
an be used either, as rules in an agent'sknowledge base [31℄, or as 
apability in
orporated into MALLET. In this paper, we en
ode observability as rulesin agents' knowledge bases.4.2. The Semanti
s of Observability. To give operational semanti
s to observability, we need to 
larifythe relationships of: 1) what an agent 
an see, what it a
tually sees, and what it believes from its seeing; 2)what an agent believes another agent 
an see, what it believes another agent a
tually sees, and what it believesanother agent believes from its seeing.In order to properly dis
uss the semanti
s, we need to introdu
e a notion of time, as pre
onditions ande�e
ts refer to di�erent points in time. For purposes of exposition, we will simply assume that time is a dis
reteand indexed in order by the natural numbers, and use the indi
es to referen
e points in time. Sin
e we aredealing with multiple agents, multiple a
tions may o

ur at the same time instant. We do not try to elaboratefurther on time in this paper, as there are a number of useful di�erent ways of dealing with issues su
h as thesyn
hronization among team members performing a
tions, and they are not 
entral to the point of the paper.Let Seet(a, ψ) express that agent a observes ψ at time t. There are two 
ases to 
onsider, �rst where ψ isa property, and se
ondly, where ψ is an a
tion. When ψ is a property, seeing ψ means determining the truthvalue of ψ, with uni�
ation of any free variables in ψ. If ψ is an a
tion, seeing ψ means that the agent believesthe doer believed the pre
ondition of ψ immediately before the a
tion o

urred and the doer believes the e�e
tof ψ immediately after performing the a
tion. We use the meta-predi
ate Holdt(
) to mean 
 holds in the world(environment simulation) at time t. We make the assumption below:
∀a, ψ, c, t, CanSee(a, ψ, c) ∧Holdt(c) → Seet(a, ψ) (4.1)whi
h means that if the 
ondition 
 holds at time t and agent a has the 
apability to observe ψ under 
ondition
, then agent a a
tually does determine the truth-value of ψ at time t.Next, we 
onsider the relation between seeing something and believing it. Belief is denoted by the modaloperator BEL and for its semanti
s we adopt the axioms K, D, 4, 5 in modal logi
. The assumption of �seeingis believing� is again stated separately for properties and a
tions. In the 
ase of properties, it is formalized inthe axiom below:

∀a, ϕ, t, Seet(a, ϕ) → [Holdt(ϕ) → BELt(a, ϕ)] ∧ [¬Holdt(ϕ) → BELt(a,¬ϕ)] (4.2)whi
h says that for any property ϕ seen by agent a, if ϕ holds, agent a believes ϕ; if ϕ does not hold, agent abelieves not ϕ (¬ϕ).



68 Yu ZhangAgent a's belief is more 
omplex when an a
tion, φ, is observed. Let Doer(φ), Prec(φ), Efft(φ) denotethe doer, the pre
ondition, and the e�e
t of a
tion φ. When agent a sees a
tion φ performed by some agent,agent a believes that the agent believed the pre
ondition and believes the e�e
t. This pro
ess is expressed bythe following axiom:
∀a, φ, t, Seet(a, φ) → BELt(a,BELt−1(Doer(φ), P rec(φ))) ∧

BELt(a,BELt(Doer(φ), Efft(φ))) (4.3)From the belief update perspe
tive in our 
urrent implementation where beliefs are assumed persistent, for any
p ∈ Prec(φ), agent a believes that Doer(φ) still believes p at time t (i. e. BELt(a,BELt(Doer(φ), p)))) unless
¬p is 
ontained in E�t(φ). This is similar for BelieveCanSee.An agent's belief about what another agent sees is based on the following axiom:

∀a, b, ψ, c, t, t′, BelieveCanSee(a, b, ψ, c)∧BELt(a,BELt′(b, c)) →

BELt(a, Seet′(b, ψ)) (4.4)whi
h means that if agent a believes that agent b is able to observe ψ under 
ondition 
, and agent a believes 
at time t', then agent a believes at time t that agent b saw (t'<t), sees (t'=t), or will see (t'>t, whi
h requiressome predi
tion 
apability for agent a) ψ at time t'. In our approa
h, ea
h agent fo
uses on the reasoning about
urrent observability, not in the past or in the future. Therefore, the axiom above 
an be simpli�ed as follows:
∀a, b, ψ, c, t, BelieveCanSee(a, b, ψ, c)∧BELt(a, c) → BELt(a, Seet(b, ψ)) (4.5)Note that agent a evaluates 
ondition 
 a

ording to its own beliefs.Combining this with the previous assumption that �seeing is believing�. we extend this to belief. We havetwo separate 
ases for properties and a
tions. When agent a believes agent b sees a property ϕ, a believes thatb believes ϕ:

∀a, b, ϕ, t, BELt(a, Seet(b, ϕ)) → BELt(a,BELt(b, ϕ)) (4.6)When agent a believes agent b sees an a
tion φ, a believes that b believes the doer believed the pre
onditionat the previous time step and believes the e�e
t at the 
urrent time step. This 
onsequen
e is expressed by thefollowing:
∀a, b, φ, t, BELt(a, Seet(b, φ)) →

BELt(a,BELt(b, BELt−1(Doer(φ), P rec(φ)))) ∧

BELt(a,BELt(b, BELt(Doer(φ), Efft(φ)))) (4.7)4.3. Belief Maintenan
e. From the semanti
s, agents' observability is 
losely tied to their beliefs aboutthe environment and other agents. Agents must update these beliefs when they perform, or reason about others',observation.4.3.1. Maintaining Belief About Self 's Observability. The axiom of �seeing is believing� bridges thegap between what an agent sees and what it believes. An agent maintains its beliefs in two aspe
ts: 1) for anobserved property, the agent believes the property; 2) for an observed a
tion, the agent believes that the doerbelieved the pre
ondition before the a
tion and the doer believes the e�e
t after the a
tion. The algorithm forupdating what an agent has observed, a

ording to the observability rules, is given in Figure 4.1.This algorithm builds beliefs in the believer's (i. e., agent self's), knowledge base by 
he
king the following:Observing a property
• When evaluating observability (CanSee self (<prop-name> <obje
t> <args>) <
ond>), self queries<
ond> to environment KB. The query returns a list of substitutions of variables, or null if <
ond> arenot satis�ed. When the returned tuple is not null, if the property holds in the environment, self updatesits knowledge base with belief (<prop-name> <obje
t> <args>) for ea
h variable bindings, otherwise,self updates its knowledge base with belief (not (<prop-name> <obje
t> <args>)) for ea
h variablebindings.
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• Observing an a
tionIn the 
ase of (CanSee self (<a
tion-name> Agd(6= self) <args>) <
ond>), the query <
ond> ismade with respe
t to environment KB as well. If the result of query is not null, self updates its beliefsby that self believes that agent Agd knew the pre
ondition, and that Agd infers the e�e
t. To handlethe temporal issue 
orre
tly, self updates Agd's belief about the pre
ondition �rst and then Agd's beliefabout the e�e
t. These beliefs are useful in 
ommuni
ation. For example, if agent a needs informationI and believes agent b believes I, a may ask b for I.updateSelfObs(self, KBself)/* Let self be the agent invoking the algorithms. We denote the knowledge basefor agent a by KBa, for the environment by KBenv .*/1: for ea
h rule in KBself of the form (CanSee self (prop obje
t args) 
ond)2: if 
ond is true in KBenv for some bindings of variables3: if (prop obje
t args) is true in KBenv for some bindings of variables4: update(KBself , (prop obje
t args))5: for ea
h su
h binding of values to the variables;6: else7: update(KBself , (not (prop obje
t args)))for ea
h su
h binding of values to the variables;8: for ea
h rule in KBself of the form (CanSee self (a
tion doer args) 
ond),if 
ond is true in KBenv for some binding of variables,9: for ea
h 
onjun
t of pre
ondition of a
tion10: update(KBself , (BEL doer 
onjun
t));11: for ea
h 
onjun
t of e�e
t of a
tion12: update(KBself , (BEL doer 
onjun
t));Fig. 4.1. An Algorithm of Maintaining Self s Belief by Dire
t Observation4.4. Maintaining Belief About Others' Observabilities. Figure 4.2 shows an algorithm for updatingwhat an agent 
an determine about what other agents 
an see.updateSelfBel(self, KBself )1: for ea
h rule of the form (BelieveCanSee self Ag (prop obje
t args) 
ond) that2: 
ond is true in KBself for some binding of arguments to agents Ag 6= self3: for ea
h su
h binding of arguments to the variables4: update(KBself , (BEL Ag (prop obje
t args)));5: for ea
h rule of the form (BelieveCanSee self Ag (a
tion doer args) 
ond) that6: 
ond is true in KBself for some binding of arguments to agents Ag 6= self7: for ea
h 
onjun
t of the pre
ondition of a
tion8: update(KBself , (BEL Ag (BEL doer 
onjun
t)));9: for ea
h 
onjun
t of the e�e
t of a
tion10: update(KBself , (BEL Ag (BEL doer 
onjun
t)));Fig. 4.2. An algorithm of maintaining belief about others observabilitiesThe algorithm re
ords whi
h agents are known to be able to see what, and updates what an agent believes,a

ording to the pre
ondition and e�e
t of the a
tions it observes other agents performing. For the agentto determine whether a pie
e of information is needed by others, it simulates the inferen
e pro
ess of others'observability to determine whi
h is known by others.
• Observing a propertyIn the 
ase of (BelieveCanSee self Ag( 6= self) <property> <
ond>), a query <
ond> is made withrespe
t to KBself . If the 
ondition is satis�ed, self believes Ag 
an see the property. However, self mayor may not have knowledge of <property>. For example, a 
arrier may believe a �ghter 
an smell awumpus if the �ghter is adja
ent to the wumpus, but the 
arrier does not itself smell the wumpus.
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• Observing an a
tion In the 
ase of (BelieveCanSee self Ag(6=self) (<a
tion-name> doer(6=self)<args>) <
ond>), <
ond> is evaluated with respe
t to KBself . Self adds tuples to KBself , indi
atingthat Ag believes that doer believed the pre
onditions of the a
tion, and believes the e�e
ts of the a
tion1.4.5. Exe
ution Model. At ea
h time step, every agent, denoted by self, has a fun
tion 
y
le: (possibly)observe, re
eive information from others, belief 
oheren
e, (possibly) send information to others, and a
t. If selfneeds an information item or produ
es an item needed by others, it will observe the world and other agents. Itthen 
he
ks messages and adjusts its beliefs for what it sees and what it is told. Self keeps tra
k of the otheragents' mental states by reasoning about what they see from observation, in order to de
ide when to assist theothers with the needed information proa
tively. Finally, self a
ts 
ooperatively with teammates and enters thenext time step.An algorithm for overall belief maintenan
e along with the fun
tion 
y
le is shown in Figure 4.3. Thealgorithm begins with updateWorld by self's last a
tion. We will not elaborate on how updateWorld workswhi
h is beyond the fo
us of this paper. Basi
ally, the environment simulation updates the environment KBafter re
eiving any a
tion from the agent. Be
ause the agent 
an infer the e�e
t of its own a
tion, the algorithmsaves the e�e
t as a new belief. UpdateSelfObs evaluates observability rules with information obtained from

KBenv and updates KBself with the results of the observation. UpdateSelfBel updates self's beliefs about whatothers' beliefs by observing environment and a
tions.updateKB(self, a
tion, KBself )/* The algorithm is exe
uted independently by ea
h agent, denoted self below,after the 
ompletion of ea
h step in the plan in whi
h the agent is involved.*/1: updateWorld(a
tion, self); //notify the environment to update KBenv2: for ea
h 
onjun
t in the e�e
t of a
tion3: update(KBself , 
onjun
t);4: if self produ
es/needs information I5: updateSelfObs(self, KBself ); //update KBself by observability6: updateSe�Bel(self, KBself ); //update KBself by beliefs about//others observabilities7: for ea
h 
oming information I8: update(KBself, I); //update KBself by 
ommuni
ationFig. 4.3. An overall belief-maintenan
e algorithmThe fun
tion update manages history and is responsible for 
oheren
e and persisten
e of belief in an agent'sKB. The agent's beliefs about the world are saved as primitive predi
ates as they were expressed originallyin the world. Su
h beliefs are generated from three sour
es: (1) belief from observation, i. e., a property selfobserves; (2) belief from inferen
e, i. e., 
onjun
ts inferred from the e�e
t of the a
tion self performs; (3) belieffrom 
ommuni
ation, i. e., messages other agents send to self by 
ommuni
ation. How does 
ommuni
ationa�e
t the agent's mental state? Van Linder et al. propose that the 
ommuni
ation 
an also be translated to abelief saved in the mental state in the same way as observation is [13℄. In any situation in whi
h belief is requiredfrom multiple sour
es, 
on�i
ts may arise, su
h as self simultaneously sees ¬ψ and hears ψ. A strategy is neededthat pres
ribes how to maintain the 
oheren
e of the knowledge base of an agent in the 
ase of 
on�i
ts amongin
oming information from di�erent sour
es. Castelfran
hi proposes that su
h a strategy should pres
ribe thatmore 
redible information should always be favored over less 
redible information [3℄. To de�ne a strategy
omplying with this idea, we propose that ea
h sour
e is asso
iated with a 
redit and the 
redit de
reases inthis order: sour
e from observation, sour
e from inferen
e, and sour
e from 
ommuni
ation. At 
ertain timepoint, when an agent gets 
on�i
t information from di�erent sour
es, it always believes what it sees.Sin
e the number of time steps 
ould be in�nite, an agent keeps only 
urrent beliefs in its mental state,ex
ept that the most re
ent one is kept, even if it is not generated 
urrently. That an agent does not dire
tlyobserve or infer some predi
ates from 
urrent observation does not mean it does not believe them. The agenthas memory of them from before. Memory is useful in proa
tive 
ommuni
ation; thus, if a pie
e of informationis infrequently 
hanged, at the time when agent a realizes that agent b needs the information, even if agent adoes not have the information, agent a 
an tell agent b the information in its memory.
1Note, however, that self does not ne
essarily know what there values are. This is useful, however, in 
ase self needs to make ana
tiveAsk.
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tive Communi
ation. The purpose of proa
tive 
ommuni
ation is to redu
e 
ommuni
ationoverhead and to improve the e�
ien
y or performan
e of a team. In our approa
h, proa
tive 
ommuni
ationis based on two proto
ols named proa
tiveTell and a
tiveAsk. These proto
ols are used by ea
h agent togenerate inter-agent 
ommuni
ations when information ex
hange is desirable. Proa
tive 
ommuni
ation answersthe following questions pertinent to agent proa
tivity during teamwork. First, when does an agent send theinformation to its teammates if it has a new pie
e of information (either from performing an a
tion or observing)?A simple solution 
ould be sending the information when requested. That is, the agent would only send theinformation after it has re
eived a request from another agent. Our approa
h is that the agent observes itsteammates, and 
ommits to proa
tive tell on
e it realizes that one of the teammates needs the information toful�ll its role and does not have it now. Meanwhile, if the agent needs some information, it does not passivelywait for someone else to tell it; it should ask for this information a
tively. Se
ond, what information is sent ina session of information ex
hange? There are two kinds of information that 
an be 
ommuni
ated. One is theinformation expli
itly needed by an agent to 
omplete a given plan, i. e., 
onjun
ts in a pre
ondition of plansor operators that the agent is going to perform. The other is the information impli
itly needed by the agent.For example, if agent a needs predi
ate p and knows p 
an be dedu
ed from predi
ate q, even if the providingagent does not know p, it still 
an tell agent a about q on
e it has q, be
ause it knows that agent a 
an dedu
ep from q. This paper, however, deals only with agents 
ommuni
ating information that is expli
itly needed.The proa
tiveTell and a
tiveAsk proto
ols are designed based on following three types of knowledge:
• Information needers and providers. In order to �nd a list of agents who might know or need someinformation, we analyze the pre
onditions and e�e
ts of operators and plans and generate a list ofneeders and a list of providers for every pie
e of information. The providers are agents who might knowsu
h information, and the needers are agents who might need to know the information.
• Relative frequen
y of information need vs. produ
tion. For any pie
e of information I, we de�ne twofun
tions, fC and fN . fC(I ) returns the frequen
y with whi
h I 
hanges. fN(I ) returns the frequen
ywith whi
h I is used by agents. We 
lassify information into two types: stati
2 and dynami
. If fC(I) ≤
fN (I), I is 
onsidered stati
 information; if fC(I) > fN (I), I is 
onsidered dynami
 information. Forstati
 information we use proa
tiveTell by providers, and for dynami
 information we use a
tiveAskedby needers3.

• Beliefs generated after observation. Agents take advantage of these beliefs to tra
k other team members'mental states and use beliefs of what 
an be observed and inferred to redu
e the volume of 
ommuni-
ation. For example, if a provider believes that a needer sees or infers information I, the provider willnot tell the needer.An algorithm for de
iding when and to whom to 
ommuni
ate for a
tiveAsk and proa
tiveTell4 is shown inFigure 5.1.Considering the intra
tability of general belief reasoning [7℄, our algorithm deals with beliefs nested nomore than one-layer. This is su�
ient for our 
urrent study on proa
tive behaviors of agents, whi
h fo
useson peer-to-peer proa
tive 
ommuni
ation among agents. For a
tiveAsk, an agent requests the informationfrom other agents who may know it, having determined it from the information �ow. The agent sele
ts aprovider among agents who know I and ask for I. For proa
tiveTell, the agent tells other agents who need I.An agent always assumes others know nothing until it 
an observe or reason that they do know a relevant item.Information sensed and beliefs about others' sensing 
apabilities be
ome the basis for this reasoning. First, theagent determines what another agent needs from the information �ows. Se
ond, the observation rules are usedto determine whether or not one agent knows that another agent 
an sense the needed information.6. Empiri
al Study. While one would think that if one gives an agent additional 
apabilities, its perfor-man
e would improve, and indeed this turns out to be 
orre
t, there are several other interesting aspe
ts of ours
heme to evaluate. For example, when there are several di�erent 
apabilities, the interesting question arisesof how mu
h improvement ea
h 
apability gives and whi
h 
apabilities are the most important to add in dif-ferent situations. Moreover, while it is obvious that one should not see de
reasing performan
e from in
reasing
2Here, stati
 information in
ludes not only the information never 
hanged, but also the information infrequently 
hanged butfrequently needed.
3In future work, we will address some statisti
al methods to 
al
ulate frequen
ies and hen
e will be able to provide more
omprehensive proa
tive 
ommuni
ation proto
ols.
4Note that there is no need to say anything anout previous time points, as those would have been handled when they were �rstentered. Furthermore, these is no need to 
onsider ¬I expli
itly; if ture, it will be entered as a fa
t on its own.
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tiveAsk(self, I, KBself , T)/* Let T be the time step when the algorithm is exe
uted.Independently exe
uted by ea
h agent (self) when itneeds the value of information I.*/1: 
andidateList=null;2: if (I is dynami
 and (I t) ∨ (¬I t) is not true in KBself for any t≤T)3: if there exists a x≥0 su
h that4: ((BEL Ag I T-x) ∨ (BEL Ag ¬I T-x)) is true in KBself5: let xs be the smallest su
h value of x;6: for ea
h agent Ag 6=self7: if ((BEL Ag I T-xs) ∨ (BEL Ag ¬I T-xs)) is true in KBself8: add Ag to 
andidateList;9: randomly sele
t Ag from 
andidateList;10: ask Ag for I;11: else12: randomly sele
t a provider13: ask the provider for I;proa
tiveTell(KBself , T)/* Independently exe
uted by ea
h agent (self), after it exe
utes updateKB.*/14: for ea
h 
onjun
t I for whi
h (I, T) is true in KBself and I is stati
15: for ea
h Agn needers16: if (BEL Agn I T) is not true in KBself17: tell Agn I; Fig. 5.1. Proa
tive Communi
ation Proto
ols
apabilities, there are still interesting questions of how mu
h performan
e in
rease 
an be obtained and howone 
an in
orporate the 
apabilities into the system in a 
omputationally tra
table manner. And, one there isan interest in how the s
heme s
ales with the number of agents involved. Our empiri
al study is intended toaddress these questions.To test our approa
h, we have extended the Wumpus World problem [19℄ into a multi-agent version. Theworld is 20 by 20 
ells and has 20 wumpuses, 8 pits, and 20 piles of gold. The goals of the team, fouragents, one 
arrier and three �ghters, are to kill wumpuses and get the gold. The 
arrier is 
apable of �nd-ing wumpuses and pi
king up gold. The �ghters are 
apable of shooting wumpuses. Every agent 
an sensea sten
h (from adja
ent wumpuses), a breeze (from adja
ent pits), and glitter (from the same position) ofgold. When a pie
e of gold is pi
ked up, both the glitter and the gold disappear from its lo
ation. Whena wumpus is killed, agents 
an determine whether the wumpus is dead only by getting the message fromothers, who kill wumpus or see shooting wumpus a
tion. The environment simulation maintains obje
t prop-erties and a
tions. Agents may also have additional sensing 
apabilities, de�ned by observability rules intheir KBs.There are two 
ategories of information needed by the team: 1) an unknown 
onjun
t that is part of thepre
ondition of a plan or an operator (e.g., �wumpus lo
ation� and �wumpus is dead�); 2) an unknown 
onjun
tthat is part of a 
onstraint (e.g., ��ghter lo
ation�, for sele
ting a �ghter 
losest to wumpus). The �wumpuslo
ation� and �wumpus is dead� are stati
 information and the ��ghter lo
ation� is dynami
 information. Agentsuse proa
tiveTell to impart stati
 information they just learned if they believe other agents will need it. Forexample, the 
arrier proa
tiveTells the �ghters the wumpus' lo
ation. Agents use a
tiveAsk to request dynami
information if they need it and believe other agents have it. For example, �ghters a
tiveAsk ea
h other abouttheir lo
ations and whether a wumpus is dead.We used two teams, Team A and Team B. Ea
h team was allowed to operate a �xed number of 150 steps.Ex
ept for the observability rules, 
onditions of both teams were exa
tly the same. In the absen
e of anytarget information (wumpus or gold), all agents reasoned about the environment to determine their priority ofpotential movements. If they were aware of a target lo
ation requiring a
tion on their part (shoot wumpus orpi
k up gold), they moved toward the target. In all 
ases, they avoided unsafe lo
ations.We report three experiments. The �rst explores how observability redu
es 
ommuni
ation load and improveteam performan
e in multi-agent teamwork. The se
ond fo
uses on the relative 
ontribution of ea
h type of
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e and Communi
ation Frequen
y in Sample Run. T1: number of wumpuses left alive, T2: amount of goldleft unfound, T3: total number of avtiveAsks used, T4: total number of proa
tiveTells used, T5: average number of a
tiveAsks perwumpus killed, T6: average number of proa
tiveTells per wumpus killed
T 1 T 2 T 3 T 4 T 5 T 6

TeamA 4.8 7.2 77.4 33.8 5.09 2.23
TeamB 15 14.6 67.6 28.8 13.6 5.9belief generated from observability to the su

esses of CAST-O as a whole. Finally, the third evaluates theimpa
t of observability on 
hanging 
ommuni
ation load with in
rease of team size.Two teams are de�ned as follows:

• Team A: The 
arrier 
an observe obje
ts within a radius of 5 grid 
ells, and ea
h �ghter 
an see obje
tswithin a radius of 3 grid 
ells.
• Team B: None of the agents have any seeing 
apabilities beyond the basi
 
apabilities des
ribed at thebeginning of the se
tion.We use measures of performan
e, whi
h re�e
t the number of wumpuses killed, the amount of 
ommuni
ationused and the gold pi
ked up. In order to make 
omparisons easier, we have 
hosen to have de
reasing valuesindi
ate improving performan
e, e.g., smaller numbers of 
ommuni
ation messages are better. To maintain thisuniformity with some parameters of interest, we use the quantity not a
hieved by the team rather than thenumber a
hieved, e.g., the number of wumpuses left alive rather than the number killed. The experiments wereperformed on 5 randomly generated worlds. The results are shown in Table 1.Table 1 shows that, as expe
ted, Team A killed more wumpuses and found more gold than Team B. Fromother experiments we have learned that the further the agents 
an see, the more wumpuses they kill. It isinteresting that the absolute number of 
ommuni
ations is higher for Team A with observabilities than that ofTeam B, thus 33.8 vs. 28.8 for proa
tiveTell and 77.4 vs. 67.6 for a
tiveAsk. The reason for the in
reased numberof proa
tiveTells is that in Team A, the 
arrier, who is responsible for �nding wumpuses and proa
tiveTellingwumpuses' lo
ations to �ghters, has further vision than that of the 
arrier in Team B. Hen
e the 
arrier in TeamA 
an see more wumpuses. This feature leads to more proa
tiveTells from the 
arrier to the �ghters in TeamA. The number of proa
tiveTells 
an be redu
ed by the 
arrier's beliefs about the �ghters' observability, i. e.,if the 
arrier believes the �ghters 
an see the wumpus' lo
ation, it will not proa
tiveTell the �ghters. However,sin
e the �ghters' dete
t range is smaller than that of the 
arrier, the redu
tion 
annot o�set the number ofextra proa
tiveTells. The reason for the in
reased number of a
tiveAsks in Team A is that the more wumpusesthey �nd, the more likely it be
omes that messages are sent among �ghters to de
ide who is 
losest to thewumpuses. Sin
e �ghters in Team A may �nd wumpuses by themselves, they need to ask other teammates ifthe wumpus is dead, to de
ide whether to kill it or not. Although the number of the messages 
ould be redu
edby fa
tors su
h as allowing the �ghter to see other �ghters' lo
ations and to see other �ghters killing a wumpus,the in
rease 
annot be totally o�set be
ause of the �ghters' short vision. Hen
e, it makes more sense to 
omparethe average number of messages per wumpus killed. In these terms, the performan
e of Team A, is mu
h betterthan that of Team B, thus 2.23 vs. 5.9 for proa
tiveTell and 5.09 vs. 13.6 for a
tiveAsk. Hen
e, our algorithmsfor managing the observability of agents have been e�e
tive.The results of this experiment produ
ed a bit of a surprise. By introdu
ing observabilities to agents,the amount of 
ommuni
ation a
tually in
reased slightly. This 
an be explained by the fa
t that be
auseobservability is a major means for an individual agent to obtain information about environment and teammembers; the more information obtained by the agent, the more messages were 
onveyed to help others. Theproper way to interpret the results, then, is to normalize them by the performan
e of the team, whi
h in this
ase is the average number of 
ommuni
ations per wumpus killed, denoted by ACPWK, in this example. Fromthis perspe
tive, the amount of 
ommuni
ation was redu
ed, as expe
ted, also validating our approa
h.6.1. Evaluating Di�erent Beliefs Generated from Observability. The se
ond experiment tested the
ontribution of di�erent aspe
ts of observability to the su

essful redu
tion of the 
ommuni
ation. These aspe
tsare belief about observed property, belief about the doer's belief about pre
onditions of observed a
tion, beliefabout the doer's belief about e�e
ts of observed a
tion and belief about another's belief about observed property.For simplify, we 
all them belief1, belief2, belief3 and belief4 
orrespondently. We test their 
ontributions by
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Fig. 6.1. Average Communi
ation Per Killed Wumpus in Di�erent Combinations
ombining them. We used Team A and Team B in this experiment and kept all 
onditions the same as thoseof the �rst experiment. We used Team B, as referen
e to evaluate the e�e
tiveness of di�erent 
ombinations ofobservability with Team A. We named this test 
ombination 0, sin
e there is none of su
h four beliefs involvedin. For Team A, we tested another 4 
ombinations of these beliefs to show the e�e
tiveness of ea
h, in terms ofACPWK. These 
ombinations are:
• Combination 0: Team B, whi
h involves none of beliefs.
• Combination 1: In Team A, for ea
h agent, leave o� BelieveCanSee rules and do not pro
ess belief2and belief3 when maintaining beliefs after observation. Therefore every agent only has belief1 aboutthe world.
• Combination 2: Keep every 
ondition in 
ombination 1, ex
ept for enabling the belief2 pro
ess. This
ombination tests how belief2 improves the situation.
• Combination 3: Enabling the belief3 pro
ess in 
ombination 2. This 
ombination tests the e�e
t ofbelief3.
• Combination 4: Add BelieveCanSee rules into 
ombination 3. This 
ombination tests the e�e
t ofbelief4 as well as show e�e
tiveness of the beliefs as a whole.Ea
h 
ombination is run in the �ve randomly generated worlds. The average results of these runs are presentedin Figure 6.1, in whi
h one bar shows ACPWK for one 
ombination.First of all that, agents' belief1 (
ombination 1) is a major 
ontributor to e�e
tive 
ommuni
ation, for bothproa
tiveTell and a
tiveAsk. For proa
tiveTell, in (a), 
ompared to 
ombination 0, ACPWK signi�
antly dropsfrom 5.9 to 3.52. For a
tiveAsk, in (b), ACPWK drops from 13.8 to 11.1.The se
ond 
ase, belief2 (
ombination 2) does not produ
e any further redu
tion and hen
e is not e�e
tivefor proa
tiveTell, but produ
es improvement for a
tiveAsk. For proa
tiveTell, when a provider sees an a
tion,though it believes the doer knows the pre
ondition and e�e
t of the a
tion, it does not know the pre
onditionand e�e
t by itself. So for this example belief2 
an be of little help in proa
tiveTell. While for a
tiveAsk, belief2redu
es ACPWK from 11.1 to 9.36, be
ause with belief2, a needer will know who has a pie
e of informationexpli
itly. Then it 
an a
tiveAsk without ambiguity.Third, for the same reason that belief2 only works for a
tiveAsk, belief3 (
ombination 3) 
ontributes littleto proa
tiveTell but further de
reases ACPWK to 7.97 for a
tiveAsk.Fourth, belief4 (
ombination 4) has a major e�e
t on 
ommuni
ations that applies to both proto
ols. Itfurther drops ACPWK to 2.23 for proa
tiveTell and to 5.39 for a
tiveAsk. Belief4 is parti
ularly important forproa
tiveTell. For example, if the 
arrier believes that the �ghters see a wumpus' lo
ation, it will not tell them.This experiment examined the 
ontribution of ea
h belief dedu
ed from observability to the overall e�e
tive-ness of 
ommuni
ation. The result indi
ates three things. First, belief1 and belief4 have a strong e�e
t on thee�
ien
y of both proa
tiveTell and a
tiveAsk. Therefore, CanSee/BelieveCanSee a property, the observabilityfrom whi
h these two beliefs generated, 
an be generally applied to dual parts 
ommuni
ation involving bothTell and Ask. Se
ond, belief2 and belief3 have weak in�uen
e on the e�
ien
y of proa
tiveTell, this suggests
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Fig. 6.2. The Comparison of Proa
tiveTell with Di�erent Team Sizethat CanSee an a
tion may be applied to 
ommuni
ation whi
h in
urs more Ask than Tell, su
h as goal-dire
ted
ommuni
ation. Third, these beliefs work best together, be
ause ea
h of them provides a distin
t way for agentsto get information from the environment and other team members. Furthermore, they 
omplement ea
h other'srelative weaknesses, so using them together better serves the e�e
tiveness of the 
ommuni
ation as a whole.6.2. Evaluating the E�e
t of Observability Communi
ation Load with In
reased Team size.We designed the third experiment to show how 
ommuni
ation load s
ales with in
reased team size. Based onthe assumption that proa
tiveTell brings more 
ommuni
ation into play than a
tiveAsk, we 
hoose to test theproa
tiveTell proto
ol. A
tiveAsk is dire
ted to only one provider at 
ertain time, while the proa
tiveTell goesto all needers who do not have the information. If the test results are good for proa
tiveTell, we 
an expe
tthat they are valid for a
tiveAsk as well.We used the same sensing 
apabilities for Teams A and Team B as in the �rst experiment. However, wein
reased the number of team members by 1, 2 and 3, in two tests that we ran. In the �rst test, we in
reasedthe number of needers, (i. e. �ghters) and kept the same number of providers, (i. e. 
arriers). In the se
ondtest, we did it the other way around. In ea
h test, for ea
h in
rement and ea
h team, we ran the �ve randomlygenerated worlds and used the average value of ACPKW produ
ed in ea
h world.Figure 6.2 shows the trend of ACPKW as a fun
tion of in
reasing team size. In (a), Team B has an obviousin
rease in ACPKW with in
reasing the team size. However, Team A keeps the same ACPKW. The 
ause 
anbe attributed to two fa
tors: �rst, the amount of the in
reasing proa
tiveTells is held down be
ause if the 
arrierbelieves the �ghters 
an see wumpus, the 
arrier does not perform proa
tiveTell; se
ond, the more �ghters thereare, the more wumpuses will be killed, whi
h enlarges the numerator of ACPKW.In (b), in
reasing the number of providers breaks the 
onstant trend in Team A and shows an in
reasedACPWK. However, 
omparing this in
rease to that of Team B, it is a moderate number. In Team B, everyprovider in
rement means almost double the number of proa
tiveTells. The 
ommuni
ation load in
reasesbe
ause of dupli
ate proa
tiveTells of the same information by di�erent 
arriers. For example, ea
h 
arrieralways provides the wumpus' lo
ation to �ghters when observing a wumpus. The 
arriers la
k an e�e
tiveway to predi
t when a pie
e of information is produ
ed and by whom, whi
h is one of our main 
on
ernsof future work. This experiment shows that the team empowered with observability has a slower growth ofACPWK with in
rease of team size, whi
h may indi
ate that observability will improve team s
alability in somesense.7. Con
lusion. In this paper, we have presented an approa
h to dealing with agent observability forimproving performan
e and redu
ing inter-agent 
ommuni
ation. Ea
h CAST-O agent is allowed to have someobservability to see the environment, and to wat
h what others are doing inside its dete
tion range. Based onthe observation, the agent updates its knowledge base and infers what others may know at the 
urrent time.Reasoning about what others 
an see allows agents to de
ide whether to distribute information and to whom.We have proposed a proa
tive 
ommuni
ation me
hanism to 
onfer some advantage to related team membersfor realizing team intera
tion and 
ooperation proa
tively also. We have 
ondu
ted an in-depth empiri
al
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omparing the relative numbers of proa
tiveTell, a
tiveAsk, andwumpuses killed for agent teams with and without observability.A major point to the proa
tive 
ommuni
ation approa
h with observabilities is that the underlying systemthat interprets the team plans of the agents does most of the work for handling the observation, inferen
e and
ommuni
ation. This need only be designed on
e. It is re-used as one moves from one domain to another. It isonly the expli
ation of the observability 
onditions that 
hanges from one domain to another, and this is essen-tially linearly proportional to the number of agents and �size� of the domain properties that are to be observed.Though 
urrently we are 
onsidering just the times of information produ
tion or need, the same approa
h 
anbe extended to un
ertainty in observability as well. Additionally, our present proa
tive information algorithmanalyzes the pre-
onditions and e�e
ts of operators for whi
h ea
h agent is responsible in the team plan. Thepurpose of doing so is to determine potentially useful information �ow among agents. However, this approa
his restri
tive. We would like to make the re
ognition of needed information more dynami
. One way to solvethis problem is to re
ognize the plans of other agents by observing a
tions of the other agents, and tra
king thesequen
e of sub-goals on whi
h they are working dynami
ally. Using this information together with the a
tionan agent has most re
ently performed, the most likely information needs of other agents 
an be dynami
allyestimated over a �nite time horizon. Then we 
an send other agents only unknown information that will beneeded in the near future.A
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