
Salable Computing: Pratie and ExperieneVolume 8, Number 1, pp. 63�77. http://www.spe.org ISSN 1895-1767© 2007 SWPSOBSERVATION-BASED PROACTIVE COMMUNICATION IN MULTI-AGENTTEAMWORKYU ZHANG∗Abstrat. Multi-agent teamwork is governed by the same priniples that underlie human ooperation. This paper desribeshow to give agents the same ooperative apabilities, observability and proativity, that humans use. We show how agents anuse observation of the environment and of teammates' ations to estimate the teammates' beliefs without generating unneessarymessages; we also show how agents an antiipate information needs among the team members and proatively ommuniatethe information, reduing the total volume of ommuniation. Finally, we present several experiments that validate the systemdeveloped, explore the e�etiveness of di�erent aspets of observability and introdue the salability of the use of observability withrespet to the number of agents in a system.Key words. Multi-agent systems, teamwork, agent ommuniation, observability1. Introdution. Reently, the fous of muh researh on multi-agent systems (MAS) has shifted fromstrong ageny [26℄ to teamwork, whih is a ooperative e�ort by a team of agents to ahieve a ommon orshared goal [23℄. Researh on multi-agent teamwork builds on �ndings about e�etive human team behaviorsand inorporates them into intelligent agent tehnologies. For example, the shared mental model, one of themajor aspets of the psyhologial underpinnings of teamwork, has been adopted widely as a oneptual basis ofmulti-agent teamwork. Based on the shared mental model, an e�etive team often an antiipate the informationneeds of teammates and o�er pertinent information proatively [18, 22℄. Consequently, supporting proativeinformation exhange among agents in a multi-agent teamwork setting is ruial [29℄. Substantial hallengesarise in a dynami environment beause agents need to deal with hanges. Although partial observability ofdynami, multi-agent environments has gained muh attention [17, 11℄, little work has been done to address howto proess what is observable and under whih onditions; how an agent's observability a�ets the individual'smental state and whole team performane; and how agents an ommuniate proatively with eah other in apartially observable environment.In this paper, we fous on how to inlude represent observability in the desription of a plan, and howto inlude it into the basi reasoning for proative ommuniation. We de�ne several di�erent aspets ofobservability (e.g., seeing a property, seeing another agent perform an ation, and believing another an see aproperty or ation are all di�erent), and propose an approah to the expliit treatment of an agent's observabilitythat aims to ahieve more e�etive information exhange among agents. We employ the agent's observabilityas the major means for individual agents to reason about the environment and other team members. We dealwith ommuniation with the `right' agent about the `right' thing at the `proper' time in the following ways:
• Reasoning about what information eah agent on a team will produe, and thus, what informationeah agent an o�er others. This is ahieved through: 1) analysis of the e�ets of individual ationsin the spei�ed team plans; 2) analysis of observability spei�ation, indiating what and under whihonditions eah agent an pereive about the environment as well as the other agents.
• Reasoning about what information eah agent will need in the proess of plan exeution. This is donethrough the analysis of the preonditions of the individual ations involved in the team plans.
• Reasoning about whether an agent needs to at proatively when produing some information. Thedeision is made in terms of: 1) whether or not the information is mutable aording to informationlassi�ation; 2) whih agent(s) needs this information; and 3) whether or not an agent who needs thisinformation is able to obtain the information independently aording to the observation of environmentand other agents' behaviors.We also present several experiments that validate the system developed, explore the e�etiveness of di�erentaspets of observability and introdue the salability of the use of observability with respet to the number ofagents in a system.The rest of this paper is organized as follows. Setion 2 reviews related work. Setion 3 is an overview of thesystem arhiteture, whih is alled CAST-O. Setion 4 disusses how an agent's observability is represented,and how an agent's beliefs are maintained in the ourse of observations. Setion 5 desribes observation-based
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64 Yu Zhangproative ommuniation among agents. Setion 6 is an empirial study based on a multi-agent Wumpus World.Setion 7 summarizes our work and disusses issues for further researh.2. Related Work. A single agent's observability and reasoning have reeived researhers' attentions forsome time. Pereption reasoning is one of these researh diretions [16, 24℄. For example, �seeing is believing�has been adopted for pereption-based belief reason[2, 13℄. In reent years, observability has been used widelyto understand behaviors of multi-agent systems. One study of partiular interest is a logi for visibility, seeingand knowledge (VSK), whih explores relationships between what is true, visible, pereived, and known; italso investigates a number of interation axioms among agents, suh as under whih ondition agent a seeseverything agent b sees or agent b knows everything agent a sees [27℄. However, VSK logi does not addresstwo major issues regarding agent ooperation: 1) an agent uses the e�ets of ations in reasoning what oth-ers are likely to know, but VSK does not provide a way to treat ations through observation; 2) VSK doesnot provide agents with an e�etive way to utilize their observation to manage ommuniation. Isozaki andKatsuno propose an algorithm to reason about agents' nested beliefs (whih are one's belief about the beliefof another), based on observatio[10℄. However, they do not represent the proess of observation, suh as whatan be seen and under whih onditions. Tambe and Kaminka use observation to monitor failed soial rela-tionships between agents [12℄, but they do not give details about how agents' belief about their teammates'mental states are updated. Viroli and Omiini devise a formal framework for observation that abstrats on-ditions that ause agents' interative behavi [25℄. But, they don't say muh about how the observation toenvironment is proessed. All of above fall into the ategory �passive observation�, in the sense that eahagent evaluates observability onditions at the appropriate times. Our work also belongs to passive observa-tion. However, we aim to redue the amount of ommuniation by reasoning about agent observability, theapability to observe environment and ations. We relate an agent's observability to its mental state, andthen use observation and belief about others' observabilities to estimate its teammates' mental states. Thatis, an agent an exploit knowledge about what it and its teammates an see to help deide when others mightor might not know some information. Ioerger has onsidered �ative observation�, in whih he invokes addi-tional `�nd-out' plans to seek values for unknown onditions knowledge of whose values would enable situationassessment [9℄.To date, ontrol paradigms for ooperative teamwork have allowed agents to ommuniate about their in-tentions, plans, and the relationships between them [23, 21℄. However, this omplex team ooperation behaviorrequires high-frequeny ommuniation and omputation time, whih weakens teamwork e�ieny. Moreover,some researhers have found that ommuniation, while a useful paradigm, is expensive relative to loal om-putation [1℄; therefore tehniques that redue extraneous ommuniation during teamwork proesses are ofpartiular importane. On the other hand, there exist several ommuniation-less agent ooperation tehniquessuh as soial onventions [20℄, foal points [14℄, plan reognition [8℄, deision-theoreti modeling [15, 28℄, andgame-theoreti reursive modeling [5℄. In general, these tehniques emphasize inferring others' ations impli-itly or expliitly, based on established norms for behavior or on knowledge about the preferenes or interestsof others. However, strategies suh as soial onventions or foal points totally eliminate ommuniation anduse onvention rules to guide agents' ations, strategies suh as plan reognition or deision-theoreti nor-mally have high omputational omplexity in dealing with unertainty whih weakens teamwork e�ieny, andgame-theoreti reursive modeling is primarily suitable for two-member teams. Our approah to proative om-muniation is di�erent in that agents are apable of prediting team-related information (by analyzing teamplans) and distributing suh information only when it is neessary. The ommuniation need is redued, byusing belief of what agents an observe, and hene don't have to be told.3. The CAST-O Arhiteture. The CAST-O arhiteture is an extension of CAST (CollaborativeAgents for Simulating Teamwork) [29℄. There are three aspets to the extension: 1) representation of agentobservability about the environments and other agents' ations; 2) belief-maintenane in terms of observation;3) observation-based proative ommuniation among agents.An agent team is omposed of a set of agents. The team members share the team knowledge that isrepresented in MALLET (Multi-Agent Logi Language for Enoding Teamwork), whih provides desriptorsfor enoding knowledge about teamwork proesses (i. e. individual/team plans and operations), as well asspei�ations of team strutures (e.g., team members and roles) [30℄. Eah agent has an individual knowledgebase (KB) to speify its beliefs about the environment and beliefs about teammates' mental states. Theenvironment simulation provides an interfae through whih the agents an interat with the environment. In



Observation-Based Proative Communiation in Multi-Agent Teamwork 65the proess of plan exeution, individual agents an observe the environment and their teammates' behaviors,infer the teammates' mental states, ommuniate with eah other, and perform ations.Plans are at the enter of ativity. They desribe how individuals or teams an go about ahieving variousgoals. Plans are lassi�ed into individual plans and team plans. Eah individual plan has a proess onsistingof a set of operations, eah of whih is either a primitive operator, or a omposite operation (e.g., a sub-plan).Team plans are similar to individual plans, but they allow multiple agents or agent variables to be assigned toarry out operations or plans (some of the requiring a team). A DO statement is used to assign one or severalagents to arry out spei� operators or sub-plans. The following is an example team plan for the multi-agentversion of Wumpus World (refer to setion 6 for more details):(tplan killwumpus()(proess(par(seq(agent-bind ?a (onstraint (play-role ?a arrier)))(DO ?a (findwumpus ?w))) // arrier is assigned(seq(agent-bind ?fi (onstraint ((play-role ?fi fighter)(losest-to-wumpus ?fi ?w))))(DO ?fi (movetowumpus ?w)) // fighter who is losest to// wumpus is assigned(DO ?fi (shootwumpus ?w)))))) // shootwumpus is an operatorwhere findwumpus and movewumpus are individual plans, and shootwumpus is an individual operator spei�edas follows:Generally, operators are de�ned by their preonditions and e�ets, whih are logial onjuntions. Anindividual ation is the exeution of an instantiated operator in a DO statement. It is represented as:<ation> ::= (DO <doer> (<operator-name> <args>))where <doer> is the agent assigned to the ation and <operator-name> and <args> are orrespondent to thename and arguments of the operator. Sample individual ations in the extended Wumpus World are as follows:(DO ?fi (shootwumpus ?w))(DO ?a (pikupgold ?g))We assume that the preondition of the ation must be believed by <doer> before the ation an beperformed and the e�et must be believed after the ation is performed. Sine ations are domain-dependent,when agents perform the ations, they send a signal to the environment simulation. Then the ations are visibleto any team member whose observability (see setion 4) permits it at the time the ations are performed.An essential feature that di�erentiates an agent team from a set of individual agents is that a team of agentsmay perform a joint ation, whih is the union of simultaneous individual ations performed by individualssharing ertain spei� mental properties [4℄. MALLET provides a desriptor joint-do for agents performingthe joint ation, and spei�es three di�erent joint types: AND, OR or XOR [29℄. For example, we may de�nefollowing joint ation in the extended Wumpus World:(joint-do AND(DO ?a (move ?x ?y))(DO ?fi (move ?x ?y)))whih means agents ?a and ?fi move simultaneously.Given a team plan expressed in MALLET, we an expliitly dedue information needs and prodution fromthe pre-onds and e�ets of operators and impliitly dedue others from the plan struture, e.g., joint-do requiresoordination regarding starting time, or operations in parallel need oordination in terms of the starting andending of the par set of branhes. The latter, for example, might be determinable from observations, avoidingthe need for expliit ommuniation. In addition, if multiple agents are apable of performing the same tasks,the MALLET team plan is likely to ontain agent seletion riteria (e.g., the losest agent to a wumpus shouldkill it). Again, this falls in the realm of impliitly determinable oordination ommuniation. While this paperhas foused on the only the expliitly determinable part of this (i. e., things derived from pre-onds and e�etsonditions), the basi struture of the use of observation an be applied to more general situations.Another important setting for agents' teamwork is environment. The environment is omposed of objets.Eah objet has some properties. A property is represented as follows:



66 Yu Zhang<property> ::= (<property-name> <objet> <args>)<objet> ::= <agent>|<non-agent>where <objet> ould be either agent or non-agent, and <args> is a list of arguments desribing the property.Sample properties in the extended Wumpus World are as follows:(loation fi ?x ?y),(dead w1 ?state).The usefulness of properties derives from treating them as queries to the environment, using variables forany or all of the arguments. Uni�ation will provide values, if any, for the free variables that make the querytrue; if there are no suh values, then the value for the query will be false.During a teamwork proess, the environment simulation provides an interfae through whih the agents anobserve the environment and their teammates' ations. The environment evolves from the state at one time tothe state at the next time with an ation possibly being taken during the time interval, saving only the urrentenvironment states. Eah agent maintains knowledge of the environment in its KB, updating this knowledge asneeded to arry out its plan or provide information to team members.4. Agent Observability. To express agent observability, we de�ne a query funtion CanSee(<observer><observable> <ond>), where <observer> spei�es the agent doing the observing, <observable> identi-�es what is to be observed, and <ond> spei�es the onditions under whih the <observer> an see the<observable>. When needed, the query is submitted to the knowledge base for evaluation after �rst formingthe onjuntion of the arguments. As <observablea> and <ond> may be prediates, missing values for vari-ables will be supplied via uni�ation if there are any suh values that allow the <ond> to be satis�ed, or elsereturn FALSE. This allows an agent, for example, to determine the loation (through variables) of a target ifthe onditions are satis�ed (e.g., the target is within range). Time is impliit in this query and is taken to be thetime of the urrent step. Note that strong onstraints weaken agents' observability; weak onstraints strengthenagents observability. The strongest onstraint is FALSE, whih means that the agent an see nothing. Theweakest onstraint is TRUE, whih means that the agent an see everything.Suessful teamwork requires interdependeny among the agents [6℄. This suggests that an agent shouldknow at least some things about what other team members an see. However, an agent may not know forsure that another agent an see something. Rather, an agent may only believe, based on its urrent beliefs,that another agent an see something. We then use BelieveCanSee(<believer> <observer> <observable><ond>) to mean that one agent believes another agent an see something under ertain ondition.We also make the assumption of �seeing is believing�. While philosophers may entertain doubts beause ofthe possibility of illusion, ommon sense indiates that, other things being equal, one should believe what onesees [13, 2℄. Thus, we assume that an agent believes an observed property persists until it believes the propertyhas been negated later.In the following subsetions, we desribe the syntax and semantis of observability in more detail.4.1. The Syntax of Observability. The syntax we use for observability is given in Table 4.1. Forexample, the observability spei�ation for a arrier in the extended Wumpus World is shown below, where a,ra, �, r� represent the arrier, arrier's detetion radius, �ghter and �ghter's detetion radius, respetively.(CanSee a (loation ?o ?x ?y)(loation a ?x ?y) (loation ?o ?x ?y)(inradius ?x ?y ?x ?y ra)) // The arrier an see the loation property of an objet.(CanSee a (DO ?fi (shootwumpus ?w))(play-role fighter ?fi) (loation a ?x ?y) (loation ?fi ?x ?y)(adjaent ?x ?y ?x ?y)) // The arrier an see the shootwumpus ation of a fighter.(BelieveCanSee a fi (loation ?o ?x ?y)(loation fi ?xi ?yi) (loation ?o ?x ?y)(inradius ?x ?y ?xi ?yi rfi)) // The arrier believes the fighter is able to see the// loation property of an objet.



Observation-Based Proative Communiation in Multi-Agent Teamwork 67Table 4.1The Syntax of Observability1: < observability > := (CanSee < viewing >)∗2: (BelieveCanSee < believer >< viewing >)∗3: < viewing > := < observer >< observable >< cond >4: < believer > := < agent >5: < observer > := < agent >6: < observable > := < property > | < action >7: < property > := (< property − name >< object >< args >)8: < action > := (DO < doer > (< operator − name >< args >))9: < object > := < agent > | < non− agent >10: < doer > := < agent >(BelieveCanSee a fi (DO ?f (shootwumpus ?w))(play-role fighter ?f) ( ?f fi) (loation a ?x ?y)(loation fi ?xi ?yi) (loation ?f ?x ?y)(inradius ?xi ?yi ?x ?y ra) (inradius ?x ?y ?x ?y ra)(adjaent ?x ?y ?xi ?yi)) // The arrier believes the fighter is able to see the// shootwumpus ation of another fighter.An agent has two kinds of knowledge, shared team knowledge, enoded in MALLET, and individual knowl-edge, ontained in its knowledge base. The syntax of observability an be used either, as rules in an agent'sknowledge base [31℄, or as apability inorporated into MALLET. In this paper, we enode observability as rulesin agents' knowledge bases.4.2. The Semantis of Observability. To give operational semantis to observability, we need to larifythe relationships of: 1) what an agent an see, what it atually sees, and what it believes from its seeing; 2)what an agent believes another agent an see, what it believes another agent atually sees, and what it believesanother agent believes from its seeing.In order to properly disuss the semantis, we need to introdue a notion of time, as preonditions ande�ets refer to di�erent points in time. For purposes of exposition, we will simply assume that time is a disreteand indexed in order by the natural numbers, and use the indies to referene points in time. Sine we aredealing with multiple agents, multiple ations may our at the same time instant. We do not try to elaboratefurther on time in this paper, as there are a number of useful di�erent ways of dealing with issues suh as thesynhronization among team members performing ations, and they are not entral to the point of the paper.Let Seet(a, ψ) express that agent a observes ψ at time t. There are two ases to onsider, �rst where ψ isa property, and seondly, where ψ is an ation. When ψ is a property, seeing ψ means determining the truthvalue of ψ, with uni�ation of any free variables in ψ. If ψ is an ation, seeing ψ means that the agent believesthe doer believed the preondition of ψ immediately before the ation ourred and the doer believes the e�etof ψ immediately after performing the ation. We use the meta-prediate Holdt() to mean  holds in the world(environment simulation) at time t. We make the assumption below:
∀a, ψ, c, t, CanSee(a, ψ, c) ∧Holdt(c) → Seet(a, ψ) (4.1)whih means that if the ondition  holds at time t and agent a has the apability to observe ψ under ondition, then agent a atually does determine the truth-value of ψ at time t.Next, we onsider the relation between seeing something and believing it. Belief is denoted by the modaloperator BEL and for its semantis we adopt the axioms K, D, 4, 5 in modal logi. The assumption of �seeingis believing� is again stated separately for properties and ations. In the ase of properties, it is formalized inthe axiom below:

∀a, ϕ, t, Seet(a, ϕ) → [Holdt(ϕ) → BELt(a, ϕ)] ∧ [¬Holdt(ϕ) → BELt(a,¬ϕ)] (4.2)whih says that for any property ϕ seen by agent a, if ϕ holds, agent a believes ϕ; if ϕ does not hold, agent abelieves not ϕ (¬ϕ).



68 Yu ZhangAgent a's belief is more omplex when an ation, φ, is observed. Let Doer(φ), Prec(φ), Efft(φ) denotethe doer, the preondition, and the e�et of ation φ. When agent a sees ation φ performed by some agent,agent a believes that the agent believed the preondition and believes the e�et. This proess is expressed bythe following axiom:
∀a, φ, t, Seet(a, φ) → BELt(a,BELt−1(Doer(φ), P rec(φ))) ∧

BELt(a,BELt(Doer(φ), Efft(φ))) (4.3)From the belief update perspetive in our urrent implementation where beliefs are assumed persistent, for any
p ∈ Prec(φ), agent a believes that Doer(φ) still believes p at time t (i. e. BELt(a,BELt(Doer(φ), p)))) unless
¬p is ontained in E�t(φ). This is similar for BelieveCanSee.An agent's belief about what another agent sees is based on the following axiom:

∀a, b, ψ, c, t, t′, BelieveCanSee(a, b, ψ, c)∧BELt(a,BELt′(b, c)) →

BELt(a, Seet′(b, ψ)) (4.4)whih means that if agent a believes that agent b is able to observe ψ under ondition , and agent a believes at time t', then agent a believes at time t that agent b saw (t'<t), sees (t'=t), or will see (t'>t, whih requiressome predition apability for agent a) ψ at time t'. In our approah, eah agent fouses on the reasoning abouturrent observability, not in the past or in the future. Therefore, the axiom above an be simpli�ed as follows:
∀a, b, ψ, c, t, BelieveCanSee(a, b, ψ, c)∧BELt(a, c) → BELt(a, Seet(b, ψ)) (4.5)Note that agent a evaluates ondition  aording to its own beliefs.Combining this with the previous assumption that �seeing is believing�. we extend this to belief. We havetwo separate ases for properties and ations. When agent a believes agent b sees a property ϕ, a believes thatb believes ϕ:

∀a, b, ϕ, t, BELt(a, Seet(b, ϕ)) → BELt(a,BELt(b, ϕ)) (4.6)When agent a believes agent b sees an ation φ, a believes that b believes the doer believed the preonditionat the previous time step and believes the e�et at the urrent time step. This onsequene is expressed by thefollowing:
∀a, b, φ, t, BELt(a, Seet(b, φ)) →

BELt(a,BELt(b, BELt−1(Doer(φ), P rec(φ)))) ∧

BELt(a,BELt(b, BELt(Doer(φ), Efft(φ)))) (4.7)4.3. Belief Maintenane. From the semantis, agents' observability is losely tied to their beliefs aboutthe environment and other agents. Agents must update these beliefs when they perform, or reason about others',observation.4.3.1. Maintaining Belief About Self 's Observability. The axiom of �seeing is believing� bridges thegap between what an agent sees and what it believes. An agent maintains its beliefs in two aspets: 1) for anobserved property, the agent believes the property; 2) for an observed ation, the agent believes that the doerbelieved the preondition before the ation and the doer believes the e�et after the ation. The algorithm forupdating what an agent has observed, aording to the observability rules, is given in Figure 4.1.This algorithm builds beliefs in the believer's (i. e., agent self's), knowledge base by heking the following:Observing a property
• When evaluating observability (CanSee self (<prop-name> <objet> <args>) <ond>), self queries<ond> to environment KB. The query returns a list of substitutions of variables, or null if <ond> arenot satis�ed. When the returned tuple is not null, if the property holds in the environment, self updatesits knowledge base with belief (<prop-name> <objet> <args>) for eah variable bindings, otherwise,self updates its knowledge base with belief (not (<prop-name> <objet> <args>)) for eah variablebindings.



Observation-Based Proative Communiation in Multi-Agent Teamwork 69
• Observing an ationIn the ase of (CanSee self (<ation-name> Agd(6= self) <args>) <ond>), the query <ond> ismade with respet to environment KB as well. If the result of query is not null, self updates its beliefsby that self believes that agent Agd knew the preondition, and that Agd infers the e�et. To handlethe temporal issue orretly, self updates Agd's belief about the preondition �rst and then Agd's beliefabout the e�et. These beliefs are useful in ommuniation. For example, if agent a needs informationI and believes agent b believes I, a may ask b for I.updateSelfObs(self, KBself)/* Let self be the agent invoking the algorithms. We denote the knowledge basefor agent a by KBa, for the environment by KBenv .*/1: for eah rule in KBself of the form (CanSee self (prop objet args) ond)2: if ond is true in KBenv for some bindings of variables3: if (prop objet args) is true in KBenv for some bindings of variables4: update(KBself , (prop objet args))5: for eah suh binding of values to the variables;6: else7: update(KBself , (not (prop objet args)))for eah suh binding of values to the variables;8: for eah rule in KBself of the form (CanSee self (ation doer args) ond),if ond is true in KBenv for some binding of variables,9: for eah onjunt of preondition of ation10: update(KBself , (BEL doer onjunt));11: for eah onjunt of e�et of ation12: update(KBself , (BEL doer onjunt));Fig. 4.1. An Algorithm of Maintaining Self s Belief by Diret Observation4.4. Maintaining Belief About Others' Observabilities. Figure 4.2 shows an algorithm for updatingwhat an agent an determine about what other agents an see.updateSelfBel(self, KBself )1: for eah rule of the form (BelieveCanSee self Ag (prop objet args) ond) that2: ond is true in KBself for some binding of arguments to agents Ag 6= self3: for eah suh binding of arguments to the variables4: update(KBself , (BEL Ag (prop objet args)));5: for eah rule of the form (BelieveCanSee self Ag (ation doer args) ond) that6: ond is true in KBself for some binding of arguments to agents Ag 6= self7: for eah onjunt of the preondition of ation8: update(KBself , (BEL Ag (BEL doer onjunt)));9: for eah onjunt of the e�et of ation10: update(KBself , (BEL Ag (BEL doer onjunt)));Fig. 4.2. An algorithm of maintaining belief about others observabilitiesThe algorithm reords whih agents are known to be able to see what, and updates what an agent believes,aording to the preondition and e�et of the ations it observes other agents performing. For the agentto determine whether a piee of information is needed by others, it simulates the inferene proess of others'observability to determine whih is known by others.
• Observing a propertyIn the ase of (BelieveCanSee self Ag( 6= self) <property> <ond>), a query <ond> is made withrespet to KBself . If the ondition is satis�ed, self believes Ag an see the property. However, self mayor may not have knowledge of <property>. For example, a arrier may believe a �ghter an smell awumpus if the �ghter is adjaent to the wumpus, but the arrier does not itself smell the wumpus.



70 Yu Zhang
• Observing an ation In the ase of (BelieveCanSee self Ag(6=self) (<ation-name> doer(6=self)<args>) <ond>), <ond> is evaluated with respet to KBself . Self adds tuples to KBself , indiatingthat Ag believes that doer believed the preonditions of the ation, and believes the e�ets of the ation1.4.5. Exeution Model. At eah time step, every agent, denoted by self, has a funtion yle: (possibly)observe, reeive information from others, belief oherene, (possibly) send information to others, and at. If selfneeds an information item or produes an item needed by others, it will observe the world and other agents. Itthen heks messages and adjusts its beliefs for what it sees and what it is told. Self keeps trak of the otheragents' mental states by reasoning about what they see from observation, in order to deide when to assist theothers with the needed information proatively. Finally, self ats ooperatively with teammates and enters thenext time step.An algorithm for overall belief maintenane along with the funtion yle is shown in Figure 4.3. Thealgorithm begins with updateWorld by self's last ation. We will not elaborate on how updateWorld workswhih is beyond the fous of this paper. Basially, the environment simulation updates the environment KBafter reeiving any ation from the agent. Beause the agent an infer the e�et of its own ation, the algorithmsaves the e�et as a new belief. UpdateSelfObs evaluates observability rules with information obtained from

KBenv and updates KBself with the results of the observation. UpdateSelfBel updates self's beliefs about whatothers' beliefs by observing environment and ations.updateKB(self, ation, KBself )/* The algorithm is exeuted independently by eah agent, denoted self below,after the ompletion of eah step in the plan in whih the agent is involved.*/1: updateWorld(ation, self); //notify the environment to update KBenv2: for eah onjunt in the e�et of ation3: update(KBself , onjunt);4: if self produes/needs information I5: updateSelfObs(self, KBself ); //update KBself by observability6: updateSe�Bel(self, KBself ); //update KBself by beliefs about//others observabilities7: for eah oming information I8: update(KBself, I); //update KBself by ommuniationFig. 4.3. An overall belief-maintenane algorithmThe funtion update manages history and is responsible for oherene and persistene of belief in an agent'sKB. The agent's beliefs about the world are saved as primitive prediates as they were expressed originallyin the world. Suh beliefs are generated from three soures: (1) belief from observation, i. e., a property selfobserves; (2) belief from inferene, i. e., onjunts inferred from the e�et of the ation self performs; (3) belieffrom ommuniation, i. e., messages other agents send to self by ommuniation. How does ommuniationa�et the agent's mental state? Van Linder et al. propose that the ommuniation an also be translated to abelief saved in the mental state in the same way as observation is [13℄. In any situation in whih belief is requiredfrom multiple soures, on�its may arise, suh as self simultaneously sees ¬ψ and hears ψ. A strategy is neededthat presribes how to maintain the oherene of the knowledge base of an agent in the ase of on�its amonginoming information from di�erent soures. Castelfranhi proposes that suh a strategy should presribe thatmore redible information should always be favored over less redible information [3℄. To de�ne a strategyomplying with this idea, we propose that eah soure is assoiated with a redit and the redit dereases inthis order: soure from observation, soure from inferene, and soure from ommuniation. At ertain timepoint, when an agent gets on�it information from di�erent soures, it always believes what it sees.Sine the number of time steps ould be in�nite, an agent keeps only urrent beliefs in its mental state,exept that the most reent one is kept, even if it is not generated urrently. That an agent does not diretlyobserve or infer some prediates from urrent observation does not mean it does not believe them. The agenthas memory of them from before. Memory is useful in proative ommuniation; thus, if a piee of informationis infrequently hanged, at the time when agent a realizes that agent b needs the information, even if agent adoes not have the information, agent a an tell agent b the information in its memory.
1Note, however, that self does not neessarily know what there values are. This is useful, however, in ase self needs to make anativeAsk.



Observation-Based Proative Communiation in Multi-Agent Teamwork 715. Proative Communiation. The purpose of proative ommuniation is to redue ommuniationoverhead and to improve the e�ieny or performane of a team. In our approah, proative ommuniationis based on two protools named proativeTell and ativeAsk. These protools are used by eah agent togenerate inter-agent ommuniations when information exhange is desirable. Proative ommuniation answersthe following questions pertinent to agent proativity during teamwork. First, when does an agent send theinformation to its teammates if it has a new piee of information (either from performing an ation or observing)?A simple solution ould be sending the information when requested. That is, the agent would only send theinformation after it has reeived a request from another agent. Our approah is that the agent observes itsteammates, and ommits to proative tell one it realizes that one of the teammates needs the information toful�ll its role and does not have it now. Meanwhile, if the agent needs some information, it does not passivelywait for someone else to tell it; it should ask for this information atively. Seond, what information is sent ina session of information exhange? There are two kinds of information that an be ommuniated. One is theinformation expliitly needed by an agent to omplete a given plan, i. e., onjunts in a preondition of plansor operators that the agent is going to perform. The other is the information impliitly needed by the agent.For example, if agent a needs prediate p and knows p an be dedued from prediate q, even if the providingagent does not know p, it still an tell agent a about q one it has q, beause it knows that agent a an deduep from q. This paper, however, deals only with agents ommuniating information that is expliitly needed.The proativeTell and ativeAsk protools are designed based on following three types of knowledge:
• Information needers and providers. In order to �nd a list of agents who might know or need someinformation, we analyze the preonditions and e�ets of operators and plans and generate a list ofneeders and a list of providers for every piee of information. The providers are agents who might knowsuh information, and the needers are agents who might need to know the information.
• Relative frequeny of information need vs. prodution. For any piee of information I, we de�ne twofuntions, fC and fN . fC(I ) returns the frequeny with whih I hanges. fN(I ) returns the frequenywith whih I is used by agents. We lassify information into two types: stati2 and dynami. If fC(I) ≤
fN (I), I is onsidered stati information; if fC(I) > fN (I), I is onsidered dynami information. Forstati information we use proativeTell by providers, and for dynami information we use ativeAskedby needers3.

• Beliefs generated after observation. Agents take advantage of these beliefs to trak other team members'mental states and use beliefs of what an be observed and inferred to redue the volume of ommuni-ation. For example, if a provider believes that a needer sees or infers information I, the provider willnot tell the needer.An algorithm for deiding when and to whom to ommuniate for ativeAsk and proativeTell4 is shown inFigure 5.1.Considering the intratability of general belief reasoning [7℄, our algorithm deals with beliefs nested nomore than one-layer. This is su�ient for our urrent study on proative behaviors of agents, whih fouseson peer-to-peer proative ommuniation among agents. For ativeAsk, an agent requests the informationfrom other agents who may know it, having determined it from the information �ow. The agent selets aprovider among agents who know I and ask for I. For proativeTell, the agent tells other agents who need I.An agent always assumes others know nothing until it an observe or reason that they do know a relevant item.Information sensed and beliefs about others' sensing apabilities beome the basis for this reasoning. First, theagent determines what another agent needs from the information �ows. Seond, the observation rules are usedto determine whether or not one agent knows that another agent an sense the needed information.6. Empirial Study. While one would think that if one gives an agent additional apabilities, its perfor-mane would improve, and indeed this turns out to be orret, there are several other interesting aspets of oursheme to evaluate. For example, when there are several di�erent apabilities, the interesting question arisesof how muh improvement eah apability gives and whih apabilities are the most important to add in dif-ferent situations. Moreover, while it is obvious that one should not see dereasing performane from inreasing
2Here, stati information inludes not only the information never hanged, but also the information infrequently hanged butfrequently needed.
3In future work, we will address some statistial methods to alulate frequenies and hene will be able to provide moreomprehensive proative ommuniation protools.
4Note that there is no need to say anything anout previous time points, as those would have been handled when they were �rstentered. Furthermore, these is no need to onsider ¬I expliitly; if ture, it will be entered as a fat on its own.



72 Yu ZhangativeAsk(self, I, KBself , T)/* Let T be the time step when the algorithm is exeuted.Independently exeuted by eah agent (self) when itneeds the value of information I.*/1: andidateList=null;2: if (I is dynami and (I t) ∨ (¬I t) is not true in KBself for any t≤T)3: if there exists a x≥0 suh that4: ((BEL Ag I T-x) ∨ (BEL Ag ¬I T-x)) is true in KBself5: let xs be the smallest suh value of x;6: for eah agent Ag 6=self7: if ((BEL Ag I T-xs) ∨ (BEL Ag ¬I T-xs)) is true in KBself8: add Ag to andidateList;9: randomly selet Ag from andidateList;10: ask Ag for I;11: else12: randomly selet a provider13: ask the provider for I;proativeTell(KBself , T)/* Independently exeuted by eah agent (self), after it exeutes updateKB.*/14: for eah onjunt I for whih (I, T) is true in KBself and I is stati15: for eah Agn needers16: if (BEL Agn I T) is not true in KBself17: tell Agn I; Fig. 5.1. Proative Communiation Protoolsapabilities, there are still interesting questions of how muh performane inrease an be obtained and howone an inorporate the apabilities into the system in a omputationally tratable manner. And, one there isan interest in how the sheme sales with the number of agents involved. Our empirial study is intended toaddress these questions.To test our approah, we have extended the Wumpus World problem [19℄ into a multi-agent version. Theworld is 20 by 20 ells and has 20 wumpuses, 8 pits, and 20 piles of gold. The goals of the team, fouragents, one arrier and three �ghters, are to kill wumpuses and get the gold. The arrier is apable of �nd-ing wumpuses and piking up gold. The �ghters are apable of shooting wumpuses. Every agent an sensea stenh (from adjaent wumpuses), a breeze (from adjaent pits), and glitter (from the same position) ofgold. When a piee of gold is piked up, both the glitter and the gold disappear from its loation. Whena wumpus is killed, agents an determine whether the wumpus is dead only by getting the message fromothers, who kill wumpus or see shooting wumpus ation. The environment simulation maintains objet prop-erties and ations. Agents may also have additional sensing apabilities, de�ned by observability rules intheir KBs.There are two ategories of information needed by the team: 1) an unknown onjunt that is part of thepreondition of a plan or an operator (e.g., �wumpus loation� and �wumpus is dead�); 2) an unknown onjuntthat is part of a onstraint (e.g., ��ghter loation�, for seleting a �ghter losest to wumpus). The �wumpusloation� and �wumpus is dead� are stati information and the ��ghter loation� is dynami information. Agentsuse proativeTell to impart stati information they just learned if they believe other agents will need it. Forexample, the arrier proativeTells the �ghters the wumpus' loation. Agents use ativeAsk to request dynamiinformation if they need it and believe other agents have it. For example, �ghters ativeAsk eah other abouttheir loations and whether a wumpus is dead.We used two teams, Team A and Team B. Eah team was allowed to operate a �xed number of 150 steps.Exept for the observability rules, onditions of both teams were exatly the same. In the absene of anytarget information (wumpus or gold), all agents reasoned about the environment to determine their priority ofpotential movements. If they were aware of a target loation requiring ation on their part (shoot wumpus orpik up gold), they moved toward the target. In all ases, they avoided unsafe loations.We report three experiments. The �rst explores how observability redues ommuniation load and improveteam performane in multi-agent teamwork. The seond fouses on the relative ontribution of eah type of



Observation-Based Proative Communiation in Multi-Agent Teamwork 73Table 6.1Team Performane and Communiation Frequeny in Sample Run. T1: number of wumpuses left alive, T2: amount of goldleft unfound, T3: total number of avtiveAsks used, T4: total number of proativeTells used, T5: average number of ativeAsks perwumpus killed, T6: average number of proativeTells per wumpus killed
T 1 T 2 T 3 T 4 T 5 T 6

TeamA 4.8 7.2 77.4 33.8 5.09 2.23
TeamB 15 14.6 67.6 28.8 13.6 5.9belief generated from observability to the suesses of CAST-O as a whole. Finally, the third evaluates theimpat of observability on hanging ommuniation load with inrease of team size.Two teams are de�ned as follows:

• Team A: The arrier an observe objets within a radius of 5 grid ells, and eah �ghter an see objetswithin a radius of 3 grid ells.
• Team B: None of the agents have any seeing apabilities beyond the basi apabilities desribed at thebeginning of the setion.We use measures of performane, whih re�et the number of wumpuses killed, the amount of ommuniationused and the gold piked up. In order to make omparisons easier, we have hosen to have dereasing valuesindiate improving performane, e.g., smaller numbers of ommuniation messages are better. To maintain thisuniformity with some parameters of interest, we use the quantity not ahieved by the team rather than thenumber ahieved, e.g., the number of wumpuses left alive rather than the number killed. The experiments wereperformed on 5 randomly generated worlds. The results are shown in Table 1.Table 1 shows that, as expeted, Team A killed more wumpuses and found more gold than Team B. Fromother experiments we have learned that the further the agents an see, the more wumpuses they kill. It isinteresting that the absolute number of ommuniations is higher for Team A with observabilities than that ofTeam B, thus 33.8 vs. 28.8 for proativeTell and 77.4 vs. 67.6 for ativeAsk. The reason for the inreased numberof proativeTells is that in Team A, the arrier, who is responsible for �nding wumpuses and proativeTellingwumpuses' loations to �ghters, has further vision than that of the arrier in Team B. Hene the arrier in TeamA an see more wumpuses. This feature leads to more proativeTells from the arrier to the �ghters in TeamA. The number of proativeTells an be redued by the arrier's beliefs about the �ghters' observability, i. e.,if the arrier believes the �ghters an see the wumpus' loation, it will not proativeTell the �ghters. However,sine the �ghters' detet range is smaller than that of the arrier, the redution annot o�set the number ofextra proativeTells. The reason for the inreased number of ativeAsks in Team A is that the more wumpusesthey �nd, the more likely it beomes that messages are sent among �ghters to deide who is losest to thewumpuses. Sine �ghters in Team A may �nd wumpuses by themselves, they need to ask other teammates ifthe wumpus is dead, to deide whether to kill it or not. Although the number of the messages ould be reduedby fators suh as allowing the �ghter to see other �ghters' loations and to see other �ghters killing a wumpus,the inrease annot be totally o�set beause of the �ghters' short vision. Hene, it makes more sense to omparethe average number of messages per wumpus killed. In these terms, the performane of Team A, is muh betterthan that of Team B, thus 2.23 vs. 5.9 for proativeTell and 5.09 vs. 13.6 for ativeAsk. Hene, our algorithmsfor managing the observability of agents have been e�etive.The results of this experiment produed a bit of a surprise. By introduing observabilities to agents,the amount of ommuniation atually inreased slightly. This an be explained by the fat that beauseobservability is a major means for an individual agent to obtain information about environment and teammembers; the more information obtained by the agent, the more messages were onveyed to help others. Theproper way to interpret the results, then, is to normalize them by the performane of the team, whih in thisase is the average number of ommuniations per wumpus killed, denoted by ACPWK, in this example. Fromthis perspetive, the amount of ommuniation was redued, as expeted, also validating our approah.6.1. Evaluating Di�erent Beliefs Generated from Observability. The seond experiment tested theontribution of di�erent aspets of observability to the suessful redution of the ommuniation. These aspetsare belief about observed property, belief about the doer's belief about preonditions of observed ation, beliefabout the doer's belief about e�ets of observed ation and belief about another's belief about observed property.For simplify, we all them belief1, belief2, belief3 and belief4 orrespondently. We test their ontributions by
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Fig. 6.1. Average Communiation Per Killed Wumpus in Di�erent Combinationsombining them. We used Team A and Team B in this experiment and kept all onditions the same as thoseof the �rst experiment. We used Team B, as referene to evaluate the e�etiveness of di�erent ombinations ofobservability with Team A. We named this test ombination 0, sine there is none of suh four beliefs involvedin. For Team A, we tested another 4 ombinations of these beliefs to show the e�etiveness of eah, in terms ofACPWK. These ombinations are:
• Combination 0: Team B, whih involves none of beliefs.
• Combination 1: In Team A, for eah agent, leave o� BelieveCanSee rules and do not proess belief2and belief3 when maintaining beliefs after observation. Therefore every agent only has belief1 aboutthe world.
• Combination 2: Keep every ondition in ombination 1, exept for enabling the belief2 proess. Thisombination tests how belief2 improves the situation.
• Combination 3: Enabling the belief3 proess in ombination 2. This ombination tests the e�et ofbelief3.
• Combination 4: Add BelieveCanSee rules into ombination 3. This ombination tests the e�et ofbelief4 as well as show e�etiveness of the beliefs as a whole.Eah ombination is run in the �ve randomly generated worlds. The average results of these runs are presentedin Figure 6.1, in whih one bar shows ACPWK for one ombination.First of all that, agents' belief1 (ombination 1) is a major ontributor to e�etive ommuniation, for bothproativeTell and ativeAsk. For proativeTell, in (a), ompared to ombination 0, ACPWK signi�antly dropsfrom 5.9 to 3.52. For ativeAsk, in (b), ACPWK drops from 13.8 to 11.1.The seond ase, belief2 (ombination 2) does not produe any further redution and hene is not e�etivefor proativeTell, but produes improvement for ativeAsk. For proativeTell, when a provider sees an ation,though it believes the doer knows the preondition and e�et of the ation, it does not know the preonditionand e�et by itself. So for this example belief2 an be of little help in proativeTell. While for ativeAsk, belief2redues ACPWK from 11.1 to 9.36, beause with belief2, a needer will know who has a piee of informationexpliitly. Then it an ativeAsk without ambiguity.Third, for the same reason that belief2 only works for ativeAsk, belief3 (ombination 3) ontributes littleto proativeTell but further dereases ACPWK to 7.97 for ativeAsk.Fourth, belief4 (ombination 4) has a major e�et on ommuniations that applies to both protools. Itfurther drops ACPWK to 2.23 for proativeTell and to 5.39 for ativeAsk. Belief4 is partiularly important forproativeTell. For example, if the arrier believes that the �ghters see a wumpus' loation, it will not tell them.This experiment examined the ontribution of eah belief dedued from observability to the overall e�etive-ness of ommuniation. The result indiates three things. First, belief1 and belief4 have a strong e�et on thee�ieny of both proativeTell and ativeAsk. Therefore, CanSee/BelieveCanSee a property, the observabilityfrom whih these two beliefs generated, an be generally applied to dual parts ommuniation involving bothTell and Ask. Seond, belief2 and belief3 have weak in�uene on the e�ieny of proativeTell, this suggests
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Fig. 6.2. The Comparison of ProativeTell with Di�erent Team Sizethat CanSee an ation may be applied to ommuniation whih inurs more Ask than Tell, suh as goal-diretedommuniation. Third, these beliefs work best together, beause eah of them provides a distint way for agentsto get information from the environment and other team members. Furthermore, they omplement eah other'srelative weaknesses, so using them together better serves the e�etiveness of the ommuniation as a whole.6.2. Evaluating the E�et of Observability Communiation Load with Inreased Team size.We designed the third experiment to show how ommuniation load sales with inreased team size. Based onthe assumption that proativeTell brings more ommuniation into play than ativeAsk, we hoose to test theproativeTell protool. AtiveAsk is direted to only one provider at ertain time, while the proativeTell goesto all needers who do not have the information. If the test results are good for proativeTell, we an expetthat they are valid for ativeAsk as well.We used the same sensing apabilities for Teams A and Team B as in the �rst experiment. However, weinreased the number of team members by 1, 2 and 3, in two tests that we ran. In the �rst test, we inreasedthe number of needers, (i. e. �ghters) and kept the same number of providers, (i. e. arriers). In the seondtest, we did it the other way around. In eah test, for eah inrement and eah team, we ran the �ve randomlygenerated worlds and used the average value of ACPKW produed in eah world.Figure 6.2 shows the trend of ACPKW as a funtion of inreasing team size. In (a), Team B has an obviousinrease in ACPKW with inreasing the team size. However, Team A keeps the same ACPKW. The ause anbe attributed to two fators: �rst, the amount of the inreasing proativeTells is held down beause if the arrierbelieves the �ghters an see wumpus, the arrier does not perform proativeTell; seond, the more �ghters thereare, the more wumpuses will be killed, whih enlarges the numerator of ACPKW.In (b), inreasing the number of providers breaks the onstant trend in Team A and shows an inreasedACPWK. However, omparing this inrease to that of Team B, it is a moderate number. In Team B, everyprovider inrement means almost double the number of proativeTells. The ommuniation load inreasesbeause of dupliate proativeTells of the same information by di�erent arriers. For example, eah arrieralways provides the wumpus' loation to �ghters when observing a wumpus. The arriers lak an e�etiveway to predit when a piee of information is produed and by whom, whih is one of our main onernsof future work. This experiment shows that the team empowered with observability has a slower growth ofACPWK with inrease of team size, whih may indiate that observability will improve team salability in somesense.7. Conlusion. In this paper, we have presented an approah to dealing with agent observability forimproving performane and reduing inter-agent ommuniation. Eah CAST-O agent is allowed to have someobservability to see the environment, and to wath what others are doing inside its detetion range. Based onthe observation, the agent updates its knowledge base and infers what others may know at the urrent time.Reasoning about what others an see allows agents to deide whether to distribute information and to whom.We have proposed a proative ommuniation mehanism to onfer some advantage to related team membersfor realizing team interation and ooperation proatively also. We have onduted an in-depth empirial
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