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t. We study basi
 properties of a 
lass of non
ooperative games whose players are sel�sh, distributed users of a networkand the game's broad obje
tive is to optimize Quality of Servi
e (QoS) provision. This 
lass of games was previously introdu
edby the authors and is a generalization of well-studied network 
ongestion games.The overall goal is to determine a minimal set of stati
 game rules based on pri
ing that result in stable and near optimal QoSprovision.We show the following. (i) Standard te
hniques for exhibiting stability or existen
e of Nash equilibria fail for these games�spe
i�
ally, neither are the utility fun
tions 
onvex, nor does a generalized potential fun
tion exist. (ii) The problem of �ndingwhether a spe
i�
 game instan
e in this 
lass has a Nash equilibrium is NP-
omplete.To o�set the apparent instability of these games, we show positive results. (iii) For natural sub
lasses of these games, althoughgeneralized potential fun
tions do not exist, approximate Nash equilibria do exist and are easy to 
ompute. (iv) These gamesperform well in terms of �pri
e of stability� and �pri
e of anar
hy.� I.e., all of these approximate Nash equilibria nearly optimize a
ommunal (or so
ial) welfare fun
tion, and there is atleast one Nash equilibrium that is optimal.Finally, we give 
omputer experiments illustrating the basi
 dynami
s of these games whi
h indi
ate that pri
e thresholds 
ouldspeed up 
onvergen
e to Nash equilibria.Key words. Congestion games, Sel�sh routing, Atomi
 unsplittable model, Nash Equilbria, Network pri
ing1. Introdu
tion. Re
ently mu
h resear
h has been done in applying game-theoreti
 
on
epts and generale
onomi
s te
hniques to analysis of 
omputer network tra�
 [2, 3, 5, 10, 11, 12, 16, 14, 20, 21, 24℄. For a generalsurvey see [1℄. Stability in games refers to whether the game rea
hes a Nash equilibrium, a state where no playerhas in
entive to move. Optimality is a measure of how 
lose a Nash equilibrium is to optimizing a so
ial or
ommunal welfare fun
tion, usually the sum of the individual players' utility fun
tions.We 
onsider primarily atomi
 games, where the number of players (network users) is �nite. The 
ase ofnon-atomi
 games where there is an in�nite number of in�nitesimally small players is easier to analyze. Forsimilar reasons, spittable games, where network users 
an split their volume onto many servi
e 
lasses are easierto analyze and have more orderly behavior than unsplittable games, where ea
h user is for
ed to pla
e all theirvolume onto the same 
lass.The atomi
 splittable network game model has been studied [20, 12℄, with early results in the transportationliterature. E�
ien
y (or optimality) of Nash equilibria in atomi
 splittable network games was studied in [24℄and [28℄.Here we 
onsider primarily the unsplittable 
ase that has also been studied for some time, for example [26℄.Most of the resear
h deals with 
ongestion games where payo� to a player depends only on the player'sstrategy and on the number of players 
hoosing the same strategy. Thanks to [26℄ it is known that su
hgames always have Nash equilibrium. Two 
ommon te
hniques that are used to demonstrate existen
e of NashEquilbria are the following. When the player utility fun
tions are 
onvex, Kakutani's �xed point theorem [25℄dire
tly shows existen
e. Also when su
h 
onvexity properties are not present, potential fun
tions, [18℄, 
ertainfun
tions that in
rease after every move, are used to show existen
e. These have a long history, for example, asLyapunov stability fun
tions 
lassi
ally used to des
ribe equilibria in dynami
al systems.The [23℄ network games have realisti
 features that make them somewhat di�erent from 
ongestion games:in parti
ular, players have non-
onvex utility fun
tions 
aused by a threshold of total tra�
 volume in servi
e
lasses that they are willing to tolerate. In addition in the [15℄ games, the players are allowed to refrain fromparti
ipation, or to dropout, if their tra�
 quality demands are not satis�ed. Hen
e existen
e of Nash equilibriaor potential fun
tions is not guaranteed for these 
lasses of games. However, we were able to show existen
e ofNash equilibria for some of these 
lasses of games by 
onstru
ting generalized potential fun
tions. (Generalized)potential fun
tions have also been used by others to study versions of 
ongestion and other games e.g., [7, 21, 22℄.For the 
lasses of games in [15, 16℄ we additionally showed that the Nash equilibria established via general-ized potential fun
tions are easy to 
ompute. In general, however, while potential fun
tions guarantee existen
eof Nash equilibrium, the problem of a
tually �nding su
h an equilibrium remains 
omputationally 
hallenging.
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80 A. Lomonosov and M. SitharamIt has been shown [7℄ that the problem of �nding Nash Equilbrium in 
ongestion games is PLS-Complete,whi
h intuitively means �as hard to 
ompute as any obje
t whose existen
e is guaranteed by a potential fun
-tion�.Considerable resear
h has gone into the pri
e of anar
hy and pri
e of stability of Nash equilibria [27℄. Thesenotions des
ribe how far or how 
lose Nash equilbria 
an be to the System Optimum of a game, where systemoptimum is a 
on�guration (not ne
essarily a Nash equilibrium) that has greatest 
ommunal welfare.We showed that for the 
lasses of games with Nash equilibria in [15, 16℄, the 
ommunal welfare at theseequilibria was poor, i. e., they are far from the system optimum. To re
tify this, we further generalized our
lasses of games by introdu
ing pri
ing in
entives (not to be 
onfused with the word �pri
e� in the previousparagraph). The e�e
t of pri
ing on 
ongestion games has also been studied in [9, 6, 8℄. Our original goal wasto modify our original 
lass of games so that the Nash equilibria would be 
lose to system optima. However,the pri
ed games were shown to not have Nash equilibria, in general. We instead showed that there is trade-o�between game stability (existen
e of Nash Equilbria) and 
ommunal welfare a
hieved by su
h games. I.e., whilethe pri
ed games did not always have Nash equilibria, the Nash equilibria, when they existed, were 
lose to thesystem optima.This trade-o� has sin
e been formalized by examining approximate Nash equilibria i. e. states where noplayer 
an improve their individual welfare by more than a 
ertain fa
tor, and the value of 
ommunal welfare atsu
h approximate equilibria [4℄. For example, [2℄ demonstrated a tradeo� between welfare and stability when
osts fun
tions are semi
onvex.In this paper, our overall goal is to analyze our 
lasses of realisti
 network 
ongestion games with respe
t tothese stability and 
ommunal welfare measures; investigate me
hanisms for games to optimize these measures;and to pose formal questions about the stru
ture of game 
lasses imposed by su
h measures.More spe
i�
ally, the original 
lasses of games introdu
ed in [15℄ were: the 
lass Q where players were solelymotivated by their tra�
 quality demands and 
lasses PQ where players were also in�un
ed by pri
es imposedon tra�
. Stability of games in Q was demonstrated by means of general potential fun
tions, and 
on
reteexamples of instability of PQ were then given.In this paper, we establish the NP-
ompleteness of determining existen
e of Nash equilibria and for 
om-puting Nash Equilbria in PQ. We further study stability and 
ommunal welfare of (a modi�ed version of)approximate Nash equilibria in PQ, as 
ompared to 
lass Q (i. e. e�e
t of pri
ing on stability and so
ial welfarein our games).We also brie�y look at game dynami
s, i. e. number of steps that it a
tually takes to 
onverge to NashEquilbria for some of our games and 
ondu
t 
omputer experiments to study trade-o� between willingness topay and speed of 
onvergen
e.Se
tion 2 presents preliminary de�nitions, Se
tion 3 presents previous results on the 
lass Q of games,Se
tion 4 presents the main results of this paper 
on
erning the 
lass PQ, and Se
tion 5 
on
ludes by tabulatingand 
omparing the results of Se
tions 3 and 4, followed by open problems.2. De�nitions. A game (instan
e) G in the base 
lass of QoS provision network games is spe
i�ed by thegame parameters G = 〈n, m ∈ N, {λi ∈ R+ : 1 ≤ i ≤ n}, {bi,j ∈ R+ : 1 ≤ i ≤ n; 1 ≤ j ≤ m}, {pj : R+ →
R, 1 ≤ j ≤ m}〉. The best way to de�ne G is by identifying it with its �nite game 
on�guration graph (formallyde�ned below) whi
h 
onsists of a set of feasible game 
on�gurations (verti
es) and the valid or sel�sh gamemoves (oriented edges). The game G is played by n users or players ea
h wanting to send a tra�
 of λi unitsthrough one of m network servi
e 
lasses and (for 
onvenien
e of analysis) an over�ow or Dummy Class withindex 0, referred to as DC. Ea
h player i additionally has a volume threshold bi,j (to be des
ribed below) forea
h 
lass j. A pri
e fun
tion pj() for ea
h servi
e 
lass is a nonin
reasing fun
tion that maps the total (tra�
)volume in the 
lass to a unit pri
e. (Unit pri
e typi
ally de
reases with in
reasing 
ongestion or total volume inany servi
e 
lass). The pri
e for using DC is 0. A feasible 
on�guration Λ of G is fully spe
i�ed by an allo
ation
JΛ : {1, . . . , n} → {1, . . . , m} whi
h des
ribes whi
h servi
e 
lass JΛ(i) that the user or player i has de
ided topla
e their 
hunk λi of tra�
. This allo
ation JΛ results in a total tra�
 volume qΛ,j =

∑
i:1≤i≤n∧JΛ(i)=j λi inea
h 
lass 1 ≤ j ≤ m at the game 
on�guration Λ. The set of feasible game 
on�gurations F form the vertexset of the game 
on�guration graph Ω. Individual utility fun
tion Ui(Λ) is a type of step fun
tion based on i'svolume threshold being met at the 
on�guration Λ, and on the unit pri
e in
urred by the player i in its 
lass

j = JΛ(i). Ui(Λ) is:
• 0 if j = 0 (user i is in DC)
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• −ǫ, for small ǫ > 0 if bi,j < qΛ,j (volume threshold ex
eeded)
• equal to λi(1 − pjqΛ,j) otherwise.It is assumed that the pri
e fun
tions are always appropriately normalized so that this quantity is always stri
tlypositive for all players i and their 
lasses JΛ(i) at any 
on�guration Λ. A typi
al utility fun
tion is shown onFigure 2.1. We say that user i is satis�ed at 
on�guration Λ if Ui(Λ) 6= 0, and not satis�ed otherwise. We de�ne

b
i

Utility

VolumeVolume

Price

Fig. 2.1. Utility as a fun
tion of volume, volume threshold and pri
ea fun
tion SatΛ(i) = 1 if UΛ(i) 6= 0, otherwise SatΛ(i) = 0. A sel�sh move by user i at a 
on�guration Λ1 is areallo
ation of i's volume λi from a departure 
lass j1 (i.e JΛ1
(i) = j1), to a a destination 
lass j2 resulting ina 
on�guration Λ2 (i.e, JΛ2

(i) = j2) that in
reases utility of this user, i.e, Ui(Λ1) < Ui(Λ2). Moves to DC bya user whose volume threshold is ex
eeded are 
alled user dropouts. Note that user dropouts qualify as sel�shmoves a

ording to our de�nition.Ea
h sel�sh move is an ordered pair of feasible game 
on�gurations (for example (Λ1, Λ2) ∈ F × F ), andrepresents an oriented edge of the game 
on�guration graph Ω. A generalized potential fun
tion is a fun
tionde�ned on 
on�gurations that in
reases after every player move. A game play for G is a sequen
e of validsel�sh moves in G, i.e (Λ1, Λ2), (Λ2, Λ3), . . . , (Λk−1, Λk), or a path in the game 
on�guration graph Ω. A NashEquilibrium or NE of a game G is a 
on�guration Λ su
h that there is no sel�sh move possible for any user i.Nash equilibria are exa
tly sink verti
es of a game 
on�guration graph Ω that have no outgoing edges towardother verti
es. For our 
lasses of games, the 
ommunal welfare fun
tion for 
on�guration Λ is de�ned as
C(Λ) = ΣiSatΛ(i)λi. The feasible game 
on�guration that has highest value of 
ommunal welfare fun
tion is
alled the System Optimum or SO. Let ΛN be a Nash Equilibrium that has the smallest value of 
ommunalwelfare fun
tion taken over all Nash Equilibriums, while ΛM be a Nash Equilibrium that has the largest value.As de�ned in say [27℄ a pri
e of anar
hy of a game is equal to C(ΛN )/C(Λ∗), where Λ∗ is SO. A pri
e of stabilityis equal to C(ΛM )/C(Λ∗).Class of games that do not have pri
ing, i. e. pj(x) = 0 for all 
lasses j and their volumes x is denotedby Q. In su
h games players are motivated only by their desire to satisfy their volume thresholds. Sub
lass
QE ⊂ Q is a 
lass of games with no pri
ing where all players have equal volume. Class of games that haveonly one pri
ing fun
tion p(x) for all 
lasses j and this fun
tion is stri
tly de
reasing (p(x) < p(y) ↔ x > y) isdenoted by PQ. Sub
lass PQE ⊂ PQ is a 
lass of games with single stri
tly de
reasing pri
e fun
tion whereall players have equal volume. Here we will give a pi
torial example, Figure 2.2, of some notions introdu
ed inthis se
tion. A game 
on�guration graph Ω and 
on�gurations Λ of a parti
ular game G are shown. Columnsrepresent 
lasses, re
tangles represent users, the size of a re
tangle 
orresponds to volume of a user, volumethresholds of users are indi
ated on the right. In this example the game G in 
lass PQ has 2 
lasses, 2 users Aand B that have equal volumes and the volume threshold of A is greater than that of B. Game 
on�gurationgraph Ω has 4 verti
es. This game G has no Nash equilibrium.Throughout this paper we assume wlog that every player i has the same volume threshold bi = bi,1 =
bi,2 = . . . bi,m in every 
lass j = 1 . . .m. We also assume that players are sorted in the in
reasing order of theirthresholds, i.e b1 ≤ b2 ≤ . . . ≤ bn. (The former assumption 
ould be easily generalized for all results in thispaper, the latter assumption is realisti
 and 
ommonly made [23℄).In proofs when des
ribing a game 
on�guration Λ, we will spe
ify values of game parameters n and m,provide a list of users in the form User(Volume, Volume Threshold) (for example A(5,12) means that User Ahas volume 5 and volume threshold 12), as well as spe
ify where these users are, i.e {JΛ(i)}.
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Fig. 2.2. Game 
on�guration graph and individual 
on�gurations3. Previously known properties of Q. We list relevant properties of the 
lass Q of games establishedin [15℄ 
on
erning existen
e, optimality and 
omplexity of 
omputing Nash equilibria.Theorem 3.1. Every game in Q has a generalized potential fun
tion and therefore every su
h game has aNash Equilbrium.Theorem 3.2. For any ǫ > 0 there is a game in Q that has pri
e of anar
hy and pri
e of stability equalto ǫ.Theorem 3.3. A Nash Equilibrium that is also a System Optimum of a game in QE 
an be found in timelinear in the game parameters.Theorem 3.4. Any Nash Equilibrium of any game G ∈ QE has 
ommunal welfare of at least a half of thatof G's System Optimum.Theorem 3.5. For any initial 
on�guration of every game in QE there is a sequen
e of sel�sh movesby players that will terminate at Nash Equilibrium after O(n2) steps. This sequen
e 
an be determined by
onsidering players in de
reasing order of their volume thresholds and letting them make their sel�sh 
hoi
es.4. New results. In this se
tion we 
onsider stability of games in 
lass PQ and various properties of theirNash equilibria. Results will be 
ompared to those of Q in Table 5.We begin by establishing the following simple result about the pri
es of anar
hy and stability of generalgames in the 
lass PQ, showing that they are not parti
ularly well behaved.Theorem 4.1. For any ǫ > 0 there is a game in PQ that has a unique Nash equilibrium, whose 
ommunalwelfare is ǫ, while the system optimum of this game has 
ommunal welfare equal to 1. This implies that pri
esof anar
hy and stability of su
h a game are equal to ǫ.Proof. Consider a game with one non-DC 
lass, and two players, A(ǫ, 1+ǫ) and B(1, 1). The only equilibriumthis game has is when player A is in 
lass 1 and player B is in DC, as opposed to the system optimum whentheir positions are reversed.4.1. Approximate Nash equilibria. As we have noted in the Introdu
tion and Figure 2.2, Nash equilib-ria do not ne
essarily exist in games PQ that involve pri
ing. One approa
h to examining su
h games involves
α−approximate Nash equilibria, de�ned in for example [4℄. A 
on�guration is said to be α−approximate Nashequilibrium if no player 
an move and de
rease her 
ost by more than an α multipli
ative fa
tor.Note that sin
e pri
ing fun
tions of PQ are arbitrary de
reasing linear fun
tions, we will instead use a moreappropriate notion of δ−approximate Nash equilibrium instead, where δ is an additive fa
tor.Let PQE be the subset of PQ where all players have volume ǫ = δ. In su
h a game a 
on�guration whereall players are satis�ed and all 
lasses have equal total volume would be a ǫ−approximate Nash equilibrium,sin
e no player would have an in
entive to move.When ǫ goes to zero and number of players goes to in�nity, the 
lass PQE will be denoted as PQ∞. This
lass of games has similar behavior to the 
lass of games where players are allowed to split their volume betweenseveral 
lasses.Theorem 4.2. A Nash equilibrium (δ−approximate Nash equilibrium) that is also system optimum 
an be
onstru
ted for any game in PQ∞ (PQE) in time of O(n).Proof. A greedy algorithm solves this problem. Here is the algorithm for PQE . Let b1 ≤ . . . ≤ bn; pla
eplayer n in 
lass 1, pla
e player n− 1 in 
lass 1 if bn−1 ≥ 2ǫ, otherwise pla
e player n− 1 in 
lass 2; pla
e player
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n − 2 in 
lass 1 if bn−2 ≥ 3ǫ et
. The resulting 
on�guration is a system optimum and a δ−approximate Nashequilibrium.Note that while the pre
eeding theorem guarantees existen
e of an approximate Nash equilibrium for games
PQE , it does not promise that every sequen
e of sel�sh moves will arrive at an approximate Nash equilibrium.Consider the following observation, whi
h also disproves existen
e of general potential fun
tions for all gamesin PQE . This is also true for games in PQ∞.Theorem 4.3. There is a game in PQE where there is a 
y
le of sel�sh moves.Proof. Let δ = 1. Consider a game with 2 non-DC 
lasses and 12 players:

A1(1, 9), A2(1, 9), A3(1, 9), B1(1, 6), B2(1, 6), B3(1, 6), C1(1, 3), . . . , C6(1, 3).Initial 
on�guration Λ: players C4, C5 and C6 are in 
lass 2, all other players are in 
lass 1. First players B1, B2and B3 move to 
lass 2, after that players C1, C2, C3 move to DC, then players A1, A2 and A3 move to 
lass 2and �nally players C1, C2, C3 move from DC to 
lass 1. The resulting 
on�guration is essentially isomorphi
 to
Λ, hen
e a 
y
le has o

urred.Now we will examine properties of 
orresponding Nash equilibria.Theorem 4.4. Pri
e of anar
hy of games in PQ∞ is equal to 1/2. Pri
e of stability of su
h games isequal 1.If pri
e of anar
hy and pri
e of stability were rede�ned over ǫ-approximate Nash equilibria instead of regularNash equilibria, then it would hold that pri
e of anar
hy of games in PQE is equal to 1/2 and pri
e of stabilityof su
h games is equal 1.Proof. Pri
e of stability follows from the fa
t that Nash equilibria 
onstru
ted in Theorem 4.2 are systemoptima.Pri
e of anar
hy 
an be demonstrated by following argument for games in PQE , and the proof for PQ∞ issimilar. Let Λ be a Nash equilibrium when all players have the same volume ǫ. Consider the unsatis�ed player
i that has the largest volume threshold bi. (If there are no unsatis�ed players then su
h a Nash equilibriumis a system optimum). Total tra�
 volume qj in every 
lass j is stri
tly greater than bi − ǫ, hen
e 
ommunalwelfare of Λ is greater than or equal to m(bi − ǫ) but 
ommunal welfare of system optimum 
annot be morethan 2(m(bi − ǫ)).4.2. Finding a Nash equilibrium. It was shown in [16℄ that the problem of �nding system optimumof a game in 
lass Q is NP-Complete. It was also shown that the problem of �nding a Nash equilibrium in
Q 
an be solved in O(n2) time. Similarly the problem of �nding a system optimum of a game in 
lass PQ isNP-Complete. Now we will examine the problem of �nding a Nash equilibrium (or determining that it does notexists) for games in PQ.Theorem 4.5. Problem of �nding Nash equilibrium for games in PQ is NP-Complete.Proof. Consider the following version of MAXIMUM SUBSET SUM problem�given set S = {s1, . . . , sn}and targets t1, t2, �nd A ⊆ S su
h that t1 ≤

∑
i∈A si ≤ t2. This problem 
an be redu
ed to problem of �ndinga Nash equilibrium as follows. There are n + 1 players and two non-DC 
lasses. Players 1, . . . , n all have samethreshold b1 = b2 = . . . bn = t2, individual volumes λi = si. Player n + 1 has volume λn+1 = t2 and threshold

bn+1 = t1 + t2. Then this game will have a Nash equilibrium if and only if the original MAXIMUM SUBSETSUM problem had a feasible solution.4.3. Pri
e thresholds. In [16℄ it was shown that games in 
lass Q will terminate in O(n2) steps, given
ertain assumptions on order of player moves. Here we will des
ribe a 
omputer experiment that examinedspeed of 
onvergen
e of games where there was no su
h ordering of player moves.This experiment involved a following natural assumption about players behavior. In pra
ti
e, there 
ouldbe a limit on how mu
h a user is willing to pay, and this 
on
ept 
an be easily added to our games, resulting inthe new 
lasses of games. This 
on
ept has a desirable e�e
t on the dynami
s of the game, as explained below.Formally, for players i we de�ne pri
e thresholds (in addition to the old volume thresholds) ti that have thefollowing property. If the pri
e in a 
lass ex
eeds player i's pri
e threshold, then player i is not satis�ed. Weassume that bi ≤ bj if and only if ti ≥ tj , i.e users who demand better quality of servi
e (smaller tra�
 volumein their 
lass) are willing to pay more.We 
onje
ture that in addition to being realisti
, su
h pri
e thresholds also tend to improve the speed of
onvergen
e to Nash equilibria. This is be
ause of players spending less time looping in non-terminal 
y
les.



84 A. Lomonosov and M. SitharamTo test this 
onje
ture we ran a 
omputer program simulating a game in 
lass PQ. Later we added pri
ingthresholds to the game whi
h has 
onsiderably improved time lapsed before 
onvergen
e to Nash equilibria.Game parameters were 
hosen su
h that Nash equilibrium would always exist. Parameters of the game were
M = number of 
lasses, M/T = number of types of users that have the same volume and volume threshold, K =number of users of the same type that 
an �t in one 
lass without ex
eeding their volume threshold. Volumeswere in in
rements of one, i.e there are T ∗ K users that have volume 1 and volume threshold K, T ∗ K usersthat have volume 2 and threshold 2K, . . . , T ∗ K users that have volume M/T and threshold M ∗ K/T . Thusthere are a total of M ∗K users. For example let K = 10, M = 20, T = 5. This means that there are 20 
lasses,4 types of users and at most 10 users of any one type 
an �t into one 
lass. Users are

A1(1, 10), . . . , A50(1, 10), B1(2, 20), . . . , B50(2, 20), C1(3, 30), . . . , C50(3, 30),

D1(4, 40), . . . , D50(4, 40).Initially all users are in the dummy 
lass (DC). A game pro
eeds by pi
king one of the M ∗ K users atrandom and this user moves either to the largest 
lass where his threshold would not be ex
eeded or to theDC. Even if this move ex
eeds the volume threshold of some other users in the destination 
lass of the movinguser, these unsatis�ed users 
annot move until it is their turn to move and turns are determined at random.Eventually a Nash equilibrium was always rea
hed, where all users of the �rst type were in T 
lasses, all usersof the se
ond type were in the se
ond set of T 
lasses et
. Results are shown in table 4.1. �Moves1� denotes thetotal number of user moves until Nash equilibrium was rea
hed.Later a simulation of pri
ing thresholds was added to the experiment. E�e
tively it would prohibit a user
i that has volume threshold bi to move into any 
lass j su
h that qj + λi < bi − ∆ where ∆ is some 
onstant.The reason for this is that 
lass j is too expensive for the ith user.Table 4.1K M T Moves1 ∆ Moves25 20 1 161,000 5 7,00010 20 1 17,077,000 10 9,00020 20 2 1,354,000 20 25,00050 20 1 56,000 50 35,000100 20 1 49,000 100 46,000100 20 10 3,000 100 5,0001000 20 10 35,000 1000 490005 40 1 2,360,000 5 190,0005 50 1 8,391,000 5 940000When ∆ = ∞ this is equivalent to the old experiment without pri
ing thresholds. In general introdu
tion ofsmall ∆ signi�
antly improved number of moves that was needed to rea
h the Nash equilibrium. See �Moves2�in the table 4.1.5. Con
lusions, Dire
tions. Here we summarize known results about Nash Equilibria for various sub-
lasses of Q and PQ.NE/GenPotential always exists Pri
e of anar
hy Pri
e of stability Complexity of �nding NE

Q Yes/Yes ǫ ǫ O(n2)
QE Yes/Yes 1/2 1 O(n)
PQ No/No ǫ ǫ NP-Complete
PQE Yes/No 1/2 1 O(n)
PQ∞ Yes/No 1/2 1 O(n)Existen
e of Nash Equilbria for Q (and QE , sin
e QE ⊂ Q) is shown in Theorem 3.1. Example of nonex-isten
e of Nash Equilbria in PQ is demonstrated in Figure 2.2. For PQE entry �Yes" refers to δ−approximateNash Equilibria, not regular Nash Equilibria. This (and PQ∞ 
ase) is shown in Theorem 4.2. The nonexisten
e
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tions for these 
lasses is shown in Theorem 4.3. Pri
es of anar
hy and stability of
Q are shown in Theorem 3.2, of QE in Theorem 3.4, of PQ in Theorem 4.1 (assuming that Nash Equilibriumexists), of PQE and PQ∞ in Theorem 4.4. Complexity of �nding a Nash Equilibrium in games of 
lass Q isshown in Theorem 3.5, 
ase of QE is Theorem 3.3, for games in PQ this problem is NP-Complete (Theorem 4.5),for games in PQE and PQ∞ result follows from Theorem 4.2.5.1. Open questions. The 
lass PQ 
ontains both games that have Nash equibria and those who do not.What is the stru
ture of games in 
lass PQ where Nash equilibria or approximate Nash equilibria (additiveor multipli
ative) are guaranteed to exist but they are hard to 
ompute? For example, are there PLS-
ompletegames in the 
lass PQ? For the sub
lasses su
h as PQE Nash equilibria existen
e is easy to determine, and(approximate) Nash equilibria are easy to 
ompute. Formally state and prove the 
onje
ture of Se
tion 4.3
on
erning the usage of pri
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