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STABILITY, OPTIMALITY AND COMPLEXITY OF NETWORK GAMES WITH PRICING
AND PLAYER DROPOUTS

ANDREW LOMONOSOV* AND MEERA SITHARAMT

Abstract. We study basic properties of a class of noncooperative games whose players are selfish, distributed users of a network
and the game’s broad objective is to optimize Quality of Service (QoS) provision. This class of games was previously introduced
by the authors and is a generalization of well-studied network congestion games.

The overall goal is to determine a minimal set of static game rules based on pricing that result in stable and near optimal QoS
provision.

We show the following. (i) Standard techniques for exhibiting stability or existence of Nash equilibria fail for these games
specifically, neither are the utility functions convex, nor does a generalized potential function exist. (ii) The problem of finding
whether a specific game instance in this class has a Nash equilibrium is NP-complete.

To offset the apparent instability of these games, we show positive results. (iii) For natural subclasses of these games, although
generalized potential functions do not exist, approzimate Nash equilibria do exist and are easy to compute. (iv) These games
perform well in terms of “price of stability” and “price of anarchy.” T.e., all of these approximate Nash equilibria nearly optimize a
communal (or social) welfare function, and there is atleast one Nash equilibrium that is optimal.

Finally, we give computer experiments illustrating the basic dynamics of these games which indicate that price thresholds could
speed up convergence to Nash equilibria.
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1. Introduction. Recently much research has been done in applying game-theoretic concepts and general
economics techniques to analysis of computer network traffic [2, 3, 5, 10, 11, 12, 16, 14, 20, 21, 24]. For a general
survey see [1]. Stability in games refers to whether the game reaches a Nash equilibrium, a state where no player
has incentive to move. Optimality is a measure of how close a Nash equilibrium is to optimizing a social or
communal welfare function, usually the sum of the individual players’ utility functions.

We consider primarily atomic games, where the number of players (network users) is finite. The case of
non-atomic games where there is an infinite number of infinitesimally small players is easier to analyze. For
similar reasons, spittable games, where network users can split their volume onto many service classes are easier
to analyze and have more orderly behavior than unsplittable games, where each user is forced to place all their
volume onto the same class.

The atomic splittable network game model has been studied [20, 12], with early results in the transportation
literature. Efficiency (or optimality) of Nash equilibria in atomic splittable network games was studied in [24]
and [28].

Here we consider primarily the unsplittable case that has also been studied for some time, for example [26].

Most, of the research deals with congestion games where payoff to a player depends only on the player’s
strategy and on the number of players choosing the same strategy. Thanks to [26] it is known that such
games always have Nash equilibrium. Two common techniques that are used to demonstrate existence of Nash
Equilbria are the following. When the player utility functions are convex, Kakutani’s fixed point theorem [25]
directly shows existence. Also when such convexity properties are not present, potential functions, [18], certain
functions that increase after every move, are used to show existence. These have a long history, for example, as
Lyapunov stability functions classically used to describe equilibria in dynamical systems.

The [23] network games have realistic features that make them somewhat different from congestion games:
in particular, players have non-convex utility functions caused by a threshold of total traffic volume in service
classes that they are willing to tolerate. In addition in the [15] games, the players are allowed to refrain from
participation, or to dropout, if their traffic quality demands are not satisfied. Hence existence of Nash equilibria
or potential functions is not guaranteed for these classes of games. However, we were able to show existence of
Nash equilibria for some of these classes of games by constructing generalized potential functions. (Generalized)
potential functions have also been used by others to study versions of congestion and other games e.g., [7, 21, 22].

For the classes of games in [15, 16] we additionally showed that the Nash equilibria established via general-
ized potential functions are easy to compute. In general, however, while potential functions guarantee existence
of Nash equilibrium, the problem of actually finding such an equilibrium remains computationally challenging.
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It has been shown [7] that the problem of finding Nash Equilbrium in congestion games is PLS-Complete,
which intuitively means “as hard to compute as any object whose existence is guaranteed by a potential func-
tion”.

Considerable research has gone into the price of anarchy and price of stability of Nash equilibria [27]. These
notions describe how far or how close Nash equilbria can be to the System Optimum of a game, where system
optimum is a configuration (not necessarily a Nash equilibrium) that has greatest communal welfare.

We showed that for the classes of games with Nash equilibria in [15, 16], the communal welfare at these
equilibria was poor, i. e., they are far from the system optimum. To rectify this, we further generalized our
classes of games by introducing pricing incentives (not to be confused with the word “price” in the previous
paragraph). The effect of pricing on congestion games has also been studied in [9, 6, 8]. Our original goal was
to modify our original class of games so that the Nash equilibria would be close to system optima. However,
the priced games were shown to not have Nash equilibria, in general. We instead showed that there is trade-off
between game stability (existence of Nash Equilbria) and communal welfare achieved by such games. Le., while
the priced games did not always have Nash equilibria, the Nash equilibria, when they existed, were close to the
system optima.

This trade-off has since been formalized by examining approximate Nash equilibria i. e. states where no
player can improve their individual welfare by more than a certain factor, and the value of communal welfare at
such approximate equilibria [4]. For example, [2] demonstrated a tradeoff between welfare and stability when
costs functions are semiconvex.

In this paper, our overall goal is to analyze our classes of realistic network congestion games with respect to
these stability and communal welfare measures; investigate mechanisms for games to optimize these measures;
and to pose formal questions about the structure of game classes imposed by such measures.

More specifically, the original classes of games introduced in [15] were: the class Q where players were solely
motivated by their traffic quality demands and classes PQ where players were also influnced by prices imposed
on traffic. Stability of games in Q was demonstrated by means of general potential functions, and concrete
examples of instability of PQ were then given.

In this paper, we establish the NP-completeness of determining existence of Nash equilibria and for com-
puting Nash Equilbria in PQ. We further study stability and communal welfare of (a modified version of)
approximate Nash equilibria in PQ, as compared to class Q (i. e. effect of pricing on stability and social welfare
in our games).

We also briefly look at game dynamics, i. e. number of steps that it actually takes to converge to Nash
Equilbria for some of our games and conduct computer experiments to study trade-off between willingness to
pay and speed of convergence.

Section 2 presents preliminary definitions, Section 3 presents previous results on the class Q of games,
Section 4 presents the main results of this paper concerning the class PQ, and Section 5 concludes by tabulating
and comparing the results of Sections 3 and 4, followed by open problems.

2. Definitions. A game (instance) G in the base class of QoS provision network games is specified by the
game parameters G = (n,m € N,{\; € R : 1 <i <n}{bj; € R":1<i<mnl<j<m}{p:R" —
R,1 < j <m}). The best way to define G is by identifying it with its finite game configuration graph (formally
defined below) which consists of a set of feasible game configurations (vertices) and the valid or selfish game
moves (oriented edges). The game G is played by n users or players each wanting to send a traffic of A; units
through one of m network service classes and (for convenience of analysis) an overflow or Dummy Class with
index 0, referred to as DC. Each player i additionally has a volume threshold b; ; (to be described below) for
each class j. A price function p;() for each service class is a nonincreasing function that maps the total (traffic)
volume in the class to a unit price. (Unit price typically decreases with increasing congestion or total volume in
any service class). The price for using DC is 0. A feasible configuration A of G is fully specified by an allocation
Ja:{1,...,n} = {1,...,m} which describes which service class Jx (i) that the user or player i has decided to
place their chunk A; of traffic. This allocation Jj results in a total traffic volume qa ; = Zi:lgign/\JA(i):j A; in
each class 1 < j < m at the game configuration A. The set of feasible game configurations F' form the vertez
set of the game configuration graph Q. Individual utility function U;(A) is a type of step function based on i’s
volume threshold being met at the configuration A, and on the unit price incurred by the player 7 in its class
j=Ja@). Ui(A) is:

e 0if j =0 (user i is in DC)
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o —¢, for small € > 0if b; ; < ga,; (volume threshold exceeded)

e equal to A\;(1 — pjqa,;) otherwise.
It is assumed that the price functions are always appropriately normalized so that this quantity is always strictly
positive for all players i and their classes Jj () at any configuration A. A typical utility function is shown on
Figure 2.1. We say that user i is satisfied at configuration A if U;(A) # 0, and not satisfied otherwise. We define

Price Utility

Volume bi Volume

Fig. 2.1. Utility as a function of volume, volume threshold and price

a function Saty (i) = 1 if Up (i) # 0, otherwise Sata (i) = 0. A selfish move by user i at a configuration A; is a
reallocation of i’s volume \; from a departure class j; (i.e Ja, (i) = j1), to a a destination class jo resulting in
a configuration Ay (i.e, Jp, (i) = j2) that increases utility of this user, i.e, U;(A1) < U;(A2). Moves to DC by
a user whose volume threshold is exceeded are called user dropouts. Note that user dropouts qualify as selfish
moves according to our definition.

Each selfish move is an ordered pair of feasible game configurations (for example (A1,A3) € F x F), and
represents an oriented edge of the game configuration graph Q. A generalized potential function is a function
defined on configurations that increases after every player move. A game play for G is a sequence of valid
selfish moves in G, i.e (A1,A2), (A2, As), ..., (Ak—1,Ak), or a path in the game configuration graph Q. A Nash
Equilibrium or NE of a game G is a configuration A such that there is no selfish move possible for any user 1.
Nash equilibria are exactly sink vertices of a game configuration graph €2 that have no outgoing edges toward
other vertices. For our classes of games, the communal welfare function for configuration A is defined as
C(A) = %;Satp(i)A;. The feasible game configuration that has highest value of communal welfare function is
called the System Optimum or SO. Let Ay be a Nash Equilibrium that has the smallest value of communal
welfare function taken over all Nash Equilibriums, while A; be a Nash Equilibrium that has the largest value.
As defined in say [27] a price of anarchy of a game is equal to C(An)/C(A.), where A, is SO. A price of stability
is equal to C(Apr)/C(Ay).

Class of games that do not have pricing, i. e. p;(x) = 0 for all classes j and their volumes x is denoted
by Q. In such games players are motivated only by their desire to satisfy their volume thresholds. Subclass
Q¢ C Q is a class of games with no pricing where all players have equal volume. Class of games that have
only one pricing function p(z) for all classes j and this function is strictly decreasing (p(z) < p(y) < = > y) is
denoted by PQ. Subclass PQg C PQ is a class of games with single strictly decreasing price function where
all players have equal volume. Here we will give a pictorial example, Figure 2.2, of some notions introduced in
this section. A game configuration graph €2 and configurations A of a particular game G are shown. Columns
represent classes, rectangles represent users, the size of a rectangle corresponds to volume of a user, volume
thresholds of users are indicated on the right. In this example the game G in class PQ has 2 classes, 2 users A
and B that have equal volumes and the volume threshold of A is greater than that of B. Game configuration
graph Q has 4 vertices. This game G has no Nash equilibrium.

Throughout this paper we assume wlog that every player ¢ has the same volume threshold b; = b;;1 =
bio = ...bim in every class j = 1...m. We also assume that players are sorted in the increasing order of their
thresholds, i.e by < ba < ... < b,. (The former assumption could be easily generalized for all results in this
paper, the latter assumption is realistic and commonly made [23]).

In proofs when describing a game configuration A, we will specify values of game parameters n and m,
provide a list of users in the form User(Volume, Volume Threshold) (for example A(5,12) means that User A
has volume 5 and volume threshold 12), as well as specify where these users are, i.e {Ja(i)}.
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Fic. 2.2. Game configuration graph and individual configurations

3. Previously known properties of Q. We list relevant properties of the class Q of games established
in [15] concerning existence, optimality and complexity of computing Nash equilibria.

THEOREM 3.1. Every game in Q has a generalized potential function and therefore every such game has a
Nash Equilbrium.

THEOREM 3.2. For any € > 0 there is a game in Q that has price of anarchy and price of stability equal
to e.

THEOREM 3.3. A Nash Equilibrium that is also a System Optimum of a game in Qg can be found in time
linear in the game parameters.

THEOREM 3.4. Any Nash Equilibrium of any game G € Q¢ has communal welfare of at least a half of that
of G’s System Optimum.

THEOREM 3.5. For any initial configuration of every game in Qg there is a sequence of selfish mowves
by players that will terminate at Nash Equilibrium after O(n?) steps. This sequence can be determined by
considering players in decreasing order of their volume thresholds and letting them make their selfish choices.

4. New results. In this section we consider stability of games in class PQ and various properties of their
Nash equilibria. Results will be compared to those of Q@ in Table 5.

We begin by establishing the following simple result about the prices of anarchy and stability of general
games in the class PQ, showing that they are not particularly well behaved.

THEOREM 4.1. For any € > 0 there is a game in PQ that has a unique Nash equilibrium, whose communal
welfare is €, while the system optimum of this game has communal welfare equal to 1. This implies that prices
of anarchy and stability of such a game are equal to €.

Proof. Consider a game with one non-DC class, and two players, A(e, 14€) and B(1,1). The only equilibrium
this game has is when player A is in class 1 and player B is in DC, as opposed to the system optimum when
their positions are reversed. 0

4.1. Approximate Nash equilibria. As we have noted in the Introduction and Figure 2.2, Nash equilib-
ria do not necessarily exist in games PQ that involve pricing. One approach to examining such games involves
a—approzimate Nash equilibria, defined in for example [4]. A configuration is said to be a—approzimate Nash
equilibrium if no player can move and decrease her cost by more than an « multiplicative factor.

Note that since pricing functions of PQ are arbitrary decreasing linear functions, we will instead use a more
appropriate notion of d—approximate Nash equilibrium instead, where ¢ is an additive factor.

Let PQg¢ be the subset of PQ where all players have volume ¢ = §. In such a game a configuration where
all players are satisfied and all classes have equal total volume would be a e—approzimate Nash equilibrium,
since no player would have an incentive to move.

When € goes to zero and number of players goes to infinity, the class PQ¢ will be denoted as PQ.,. This
class of games has similar behavior to the class of games where players are allowed to split their volume between
several classes.

THEOREM 4.2. A Nash equilibrium (§—approzimate Nash equilibrium) that is also system optimum can be
constructed for any game in PQo (PQg) in time of O(n).

Proof. A greedy algorithm solves this problem. Here is the algorithm for PQg. Let by < ... < by; place
player n in class 1, place player n — 1 in class 1 if b,_1 > 2¢, otherwise place player n — 1 in class 2; place player
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n — 2 in class 1 if b,_o > 3e etc. The resulting configuration is a system optimum and a d—approximate Nash
equilibrium. 0O

Note that while the preceeding theorem guarantees existence of an approximate Nash equilibrium for games
PQg¢, it does not promise that every sequence of selfish moves will arrive at an approximate Nash equilibrium.
Counsider the following observation, which also disproves existence of general potential functions for all games
in PQg. This is also true for games in PQ.,.

THEOREM 4.3. There is a game in PQg¢ where there is a cycle of selfish moves.

Proof. Let 6 = 1. Consider a game with 2 non-DC classes and 12 players:

A1(1,9), A5(1,9), A3(1,9), By (1,6), Bo(1,6), B5(1,6),C1(1,3),...,Cs(1,3).

Initial configuration A: players Cy, C5 and Cg are in class 2, all other players are in class 1. First players By, By
and Bs move to class 2, after that players C1,Cy, C3 move to DC, then players A;, As and Az move to class 2
and finally players C7, Cy, C5 move from DC to class 1. The resulting configuration is essentially isomorphic to
A, hence a cycle has occurred. O

Now we will examine properties of corresponding Nash equilibria.

THEOREM 4.4. Price of anarchy of games in PQq is equal to 1/2. Price of stability of such games is
equal 1.

If price of anarchy and price of stability were redefined over e-approzimate Nash equilibria instead of reqular
Nash equilibria, then it would hold that price of anarchy of games in PQg is equal to 1/2 and price of stability
of such games is equal 1.

Proof. Price of stability follows from the fact that Nash equilibria constructed in Theorem 4.2 are system
optima.

Price of anarchy can be demonstrated by following argument for games in PQg¢, and the proof for PQ, is
similar. Let A be a Nash equilibrium when all players have the same volume e. Consider the unsatisfied player
¢ that has the largest volume threshold b;. (If there are no unsatisfied players then such a Nash equilibrium
is a system optimum). Total traffic volume g; in every class j is strictly greater than b; — €, hence communal
welfare of A is greater than or equal to m(b; — €) but communal welfare of system optimum cannot be more
than 2(m(b; —e€)). O

4.2. Finding a Nash equilibrium. It was shown in [16] that the problem of finding system optimum
of a game in class Q is NP-Complete. It was also shown that the problem of finding a Nash equilibrium in
Q can be solved in O(n?) time. Similarly the problem of finding a system optimum of a game in class PQ is
NP-Complete. Now we will examine the problem of finding a Nash equilibrium (or determining that it does not
exists) for games in PQ.

THEOREM 4.5. Problem of finding Nash equilibrium for games in PQ is NP-Complete.

Proof. Consider the following version of MAXIMUM SUBSET SUM problem—given set S = {s1,...,8,}
and targets t1,to, find A C S such that ¢; < EieA s; < to. This problem can be reduced to problem of finding
a Nash equilibrium as follows. There are n + 1 players and two non-DC classes. Players 1,...,n all have same
threshold by = by = ... b, = tg, individual volumes \; = s;. Player n + 1 has volume A\, 1 = t2 and threshold
bn4+1 = t1 4+ t2. Then this game will have a Nash equilibrium if and only if the original MAXIMUM SUBSET
SUM problem had a feasible solution. O

4.3. Price thresholds. In [16] it was shown that games in class Q will terminate in O(n?) steps, given
certain assumptions on order of player moves. Here we will describe a computer experiment that examined
speed of convergence of games where there was no such ordering of player moves.

This experiment involved a following natural assumption about players behavior. In practice, there could
be a limit on how much a user is willing to pay, and this concept can be easily added to our games, resulting in
the new classes of games. This concept has a desirable effect on the dynamics of the game, as explained below.
Formally, for players ¢ we define price thresholds (in addition to the old volume thresholds) ¢; that have the
following property. If the price in a class exceeds player i’s price threshold, then player 7 is not satisfied. We
assume that b; < b; if and only if ¢; > ¢;, i.e users who demand better quality of service (smaller traffic volume
in their class) are willing to pay more.

We conjecture that in addition to being realistic, such price thresholds also tend to improve the speed of
convergence to Nash equilibria. This is because of players spending less time looping in non-terminal cycles.
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To test this conjecture we ran a computer program simulating a game in class PQ. Later we added pricing
thresholds to the game which has considerably improved time lapsed before convergence to Nash equilibria.
Game parameters were chosen such that Nash equilibrium would always exist. Parameters of the game were
M = number of classes, M /T = number of types of users that have the same volume and volume threshold, K =
number of users of the same type that can fit in one class without exceeding their volume threshold. Volumes
were in increments of one, i.e there are T x K users that have volume 1 and volume threshold K, T % K users
that have volume 2 and threshold 2K, ..., T * K users that have volume M /T and threshold M *« K/T. Thus
there are a total of M * K users. For example let K = 10, M = 20,7 = 5. This means that there are 20 classes,
4 types of users and at most 10 users of any one type can fit into one class. Users are

A1(1,10), ..., As0(1,10), B1(2,20), ..., Bso(2,20),C1(3,30),...,Cs(3, 30),

Dy (4,40), . .., Dso(4, 40).

Initially all users are in the dummy class (DC). A game proceeds by picking one of the M x K users at
random and this user moves either to the largest class where his threshold would not be exceeded or to the
DC. Even if this move exceeds the volume threshold of some other users in the destination class of the moving
user, these unsatisfied users cannot move until it is their turn to move and turns are determined at random.
Eventually a Nash equilibrium was always reached, where all users of the first type were in T classes, all users
of the second type were in the second set of T' classes etc. Results are shown in table 4.1. “Moves1” denotes the
total number of user moves until Nash equilibrium was reached.

Later a simulation of pricing thresholds was added to the experiment. Effectively it would prohibit a user
i that has volume threshold b; to move into any class j such that ¢; + A\; < b; — A where A is some constant.
The reason for this is that class j is too expensive for the i*" user.

TaBLE 4.1

K M T Movesl A Moves2
5 20 1 161,000 5 7,000
10 20 1 17,077,000 10 9,000
20 20 2 1,354,000 20 25,000
50 20 1 56,000 50 35,000
100 20 1 49,000 100 46,000
100 20 10 3,000 100 5,000
1000 20 10 35,000 1000 49000

5 40 1 2,360,000 5 190,000
5 50 1 8,391,000 5 940000

When A = oo this is equivalent to the old experiment without pricing thresholds. In general introduction of
small A significantly improved number of moves that was needed to reach the Nash equilibrium. See “Moves2”
in the table 4.1.

5. Conclusions, Directions. Here we summarize known results about Nash Equilibria for various sub-

classes of Q and PO.

NE/GenPotential always exists Price of anarchy | Price of stability | Complexity of finding NE
Q Yes/Yes € € O(n?)
Q¢ Yes/Yes 1/2 1 O(n)
PQ No/No € € NP-Complete
PQg Yes/No 1/2 1 O(n)
PQoo Yes/No 1/2 1 O(n)

Existence of Nash Equilbria for Q (and Qg, since Qg C Q) is shown in Theorem 3.1. Example of nonex-
istence of Nash Equilbria in PQ is demonstrated in Figure 2.2. For PQg¢ entry “Yes" refers to §—approximate
Nash Equilibria, not regular Nash Equilibria. This (and P Q. case) is shown in Theorem 4.2. The nonexistence
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of generalized potential functions for these classes is shown in Theorem 4.3. Prices of anarchy and stability of
Q are shown in Theorem 3.2, of Q¢ in Theorem 3.4, of PQ in Theorem 4.1 (assuming that Nash Equilibrium
exists), of PQg and PQ., in Theorem 4.4. Complexity of finding a Nash Equilibrium in games of class Q is
shown in Theorem 3.5, case of Q¢ is Theorem 3.3, for games in P Q this problem is NP-Complete (Theorem 4.5)
for games in PQ¢ and P Q. result follows from Theorem 4.2.

3

5.1. Open questions. The class PQ contains both games that have Nash equibria and those who do not.

What is the structure of games in class PQ where Nash equilibria or approximate Nash equilibria (additive
or multiplicative) are guaranteed to exist but they are hard to compute? For example, are there PLS-complete
games in the class PQ? For the subclasses such as PQg Nash equilibria existence is easy to determine, and
(approximate) Nash equilibria are easy to compute. Formally state and prove the conjecture of Section 4.3
concerning the usage of price thresholds and speed of convergence to Nash equilibria.
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