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t. The prisoner's dilemma has evolved into a standard game for analyzing the su

ess of 
ooperative strategies inrepeated games. With the aim of investigating the behavior of strategies in some alternative games we analyzed the out
ome ofiterated games for both the prisoner's dilemma and the 
hi
ken game. In the 
hi
ken game, mutual defe
tion is punished morestrongly than in the prisoner's dilemma, and yields the lowest �tness. We also ran our analyses under di�erent levels of noise. Theresults reveal a striking di�eren
e in the out
ome between the games. Iterated 
hi
ken game needed more generations to �nd awinning strategy. It also favored ni
e, forgiving strategies able to forgive a defe
tion from an opponent. In parti
ular the well-known strategy tit-for-tat has a poor su

essrate under noisy 
onditions. The 
hi
ken game 
onditions may be relatively 
ommonin other s
ien
es, and therefore we suggest that this game should re
eive more interest as a 
ooperative game from resear
herswithin 
omputer s
ien
e.Key words. Game theory, prisoner's dilemma, 
hi
ken game, noise, tit-for-tat1. Introdu
tion. Within 
omputer s
ien
e, biology, so
ial and e
onomi
 s
ien
es the issue of 
ooperationbetween individuals in an evolutionary 
ontext is widely dis
ussed. An evolutionary 
ontext means some 
on�i
tof interest between the parti
ipants preferrably modeled in a game theoreti
al 
ontext using 
on�i
ting games.A simple, but frequently used, game model is between two parti
ipants ea
h with two 
hoi
es, either to 
ooperateor to defe
t (a 2 ∗ 2 matrix game) played on
e or repeated. In multi agent systems iterated games have be
omea popular tool for analyzing so
ial behavior and 
ooperation based on re
ipro
ity ([3, 5, 4, 9℄). By allowinggames to be played several times and against several other strategies a �shadow of the future�, i. e. a non-zeroprobability for the agents to meet again in the future, is 
reated for the 
urrent game. This in
reases theopportunity for 
ooperative behavior to evolve (e.g., [4℄). A 
olle
tion of di�erent models of 
ooperation andaltruism was dis
ussed in Lehmann and Keller [14℄.Most iterative analyses on 
ooperation have fo
used on the payo� environment de�ned as the prisoner'sdilemma (PD) ([5, 9, 13, 20℄). In terms of payo�s, a PD is de�ned when T > R > P > S, where R = reward, S= su
ker, T = temptation and P = punishment. It should also hold that 2R > T + S a

ording to table 1.1a.The se
ond 
ondition means that the value of the payo�, when shared in 
ooperation, must be greater than itis when shared by a 
ooperator and a defe
tor. Be
ause it pays more to defe
t, no matter how the opponent
hooses to a
t, an agent is bound to defe
t, if the agents are not deriving advantage from repeating the game. If
2R < T +S is allowed there will be no upper limit for the value of the temptation. However, there is no de�nitereason for ex
luding this possibility. Carlsson and Johansson [11℄ argued that Rapoport and Chammah [23℄introdu
ed this 
onstraint for pra
ti
al more than theoreti
al reasons. PD belongs to a 
lass of games whereea
h player has a dominating strategy of playing defe
t in the single play PD.Chi
ken game (CG) is a similar but mu
h less studied game than PD, but see Tutzauer et al. [26℄ for are
ent study. CG is de�ned when T > R > S > P , i. e. mutual defe
tion is punished more in the CG thanin the PD. In the single-play form, the CG has no dominant strategy (although it has two Nash equilibria inpure strategies, and one mixed equilibrium), and thus no expe
ted out
ome as in the PD [16℄. Together withthe generous 
hi
ken game (GCG), also 
alled the battle of sexes [17℄ or 
oordination game, CG belongs to a
lass of games where neither player has a dominating strategy. For a GCG, playing defe
t in
reases the payo�for both of them, unless the other agent also plays defe
t (T > S > R > P ).In table 1.1b, R and P are assumed to be �xed to 1 and 0 respe
tively. This 
an be obtained through a twosteps redu
tion where all variables are �rst subtra
ted by P and then divided by R−P . This makes it possibleto des
ribe the games with only two parameters S′ = (S − P )/(R − P ) and T ′ = (T − P )/(R − P ). In fa
t we
an 
apture all possible 2x2 games in a two-dimensional plane.In �gure 1.1 the parameter spa
e for PD, CG and GCG de�ned by S′ and T ′, is shown. T ′ = 1 marks adividing line between 
on�i
t and 
ooperation. S′ = 0 marks the line between CG and PD. T ′ < 1 means thatplaying 
ooperate (R) is favored over playing defe
t (T ) when the other agent 
ooperates. This prevents an
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88 Bengt Carlsson and K. Ingemar JönssonTable 1.1Pay-o� matri
es for 2∗2 games where R = reward, S = su
ker, T = temptation and P = punishment. In b the four variables
R, S, T and P are redu
ed to two variables S′ = (S − P )/(R − P ) and T ′ = (T − P )/(R − P )a Cooperate Defe
t b Cooperate Defe
tCooperate R S Cooperate 1 (S − P )/(R − P )Defe
t T P Defe
t (T − P )/(R − P ) 0

Fig. 1.1. The areas 
overed by three kinds of 
on�i
ting games in a two-dimensional plane: prisoner's dilemma, 
hi
kengame and generous 
hi
ken gameagent from being �sel�sh� in a surrounding of 
ooperation. Con�i
ting games are expe
ted when T ′ > 1 be
auseof better out
ome playing temptation (T ).In an evolutionary 
ontext, the payo� obtained from a parti
ular game represents the 
hange in �tness(reprodu
tive su

ess) of a player. Maynard Smith [18℄ des
ribes an evolutionary resour
e allo
ation within a
2x2 game as a hawk and dove game. In the matri
es of table 1.1 a hawk 
onstitutes playing D, and a dove
onstitutes playing C. A hawk gets all the resour
es playing against a dove. Two doves share the resour
ewhereas two hawks es
alate a �ght about the resour
e. If the 
ost of obtaining the resour
e for the hawks isgreater than the resour
e there is a CG, otherwise there is a PD. In a generous CG (not a hawk and dove game)more resour
es are obtained for both agents when one agent defe
ts 
ompared to both playing 
ooperate ordefe
t.Re
ent analyses have fo
used on the e�e
ts of mistakes in the implementation of strategies. In parti
ular,su
h mistakes, usually 
alled noise, may allow evolutionary stability of pure strategies in iterated games [9℄. Twoseparate 
ases are generally 
onsidered: the trembling hand noise and misinterpretations. Within the tremblinghand noise ([24, 4℄) a perfe
t strategy would take into a

ount that agents o

asionally do not perform theintended a
tion1. In the misinterpretations 
ase an agent may not have 
hosen the �wrong� a
tion. Instead it isinterpreted as su
h by at least one of its opponents, resulting in agents keeping di�erent opinions about whathappened in the game. This introdu
tion of mistakes represents an important step, as real biologi
al systemsas well as 
omputer systems will usually involve un
ertainty at some level.Here, we study the behavior of strategies in iterated games within the prisoner's dilemma and 
hi
ken gamepayo� stru
tures, under di�erent levels of noise. We �rst give a ba
kground to our simulations, in
luding around robin tournament and a 
hara
terization of the strategies that we use. We then present the out
ome ofiterated population tournaments, and dis
uss the impli
ations of our results for game theoreti
al studies on theevolution of 
ooperation.

1In this metaphor an agent 
hooses between two buttons. The trembling hand may, by mistake, 
ause the agent to press thewrong button
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ess of Cooperative Strategies in the Iterated Prisoner's Dilemma and the Chi
ken Game 892. Games, Strategies, and Simulation Pro
edures.2.1. Games. A game 
an be modeled as a strategi
 or an extensive game. A strategi
 game is a modelof a situation in whi
h ea
h agent 
hooses his plan of a
tion on
e and for all, and all agents' de
isions aremade simultaneously while an extensive game spe
i�es the possible orders of events. The strategi
 agent is notinformed of the plan of a
tion 
hosen by any other agent while an extensive agent 
an 
onsider its plan of a
tionwhenever a de
ision has to be made. All the agents in our analyses are strategi
. All strategies may a�e
t themoves of the other agent, i. e. to play C or D, but not the payo� value, so the latter does not in�uen
e thestrategy. The kind of games that we simulate here have been 
alled e
ologi
al simulations, as distinguished fromevolutionary simulations in whi
h new strategies may arise in the 
ourse of the game by mutation ([3℄). However,e
ologi
al simulations in
lude all 
omponents ne
essary for the mimi
king of an evolutionary pro
ess: variationin types (strategies), sele
tion of these types resulting from the di�erential payo�s obtained in the 
ontests, anddi�erential propagation of strategies over generations. Consequently, we �nd the distin
tion between e
ologi
aland evolutionary simulations based on the 
riteria of mutation rather misleading.The PDs and CGs that we analyze are repeated games with memory, usually 
alled iterated games. Initerated games some ba
kground information is known about what happened in the game up to now. In oursimulation the strategies know the previous moves of their antagonist2. In all our simulations, intera
tionsamong players are pair-wise, i. e. a player intera
ts with only one player at a time2.2. Ni
e and Mean Strategies. Axelrod ([1, 5, 2, 3℄) 
ategorized strategies as ni
e or mean. A ni
estrategy never plays defe
tion before the other player defe
ts, whereas a mean strategy never plays 
ooperationbefore the opponent 
ooperates. Thus the ni
e and mean terminology des
ribes an agent's next move.A

ording to the 
ategorization of Axelrod Tit-for-tat, TfT, is a ni
e strategy, but it 
ould as well beregarded as a repeating strategy. Another 
ategory of strategies is a group of forgiving strategies 
onsisting ofSimpleton, Grofman, and Fair. They 
an, unlike TfT, avoid getting into mutual defe
tion by playing 
ooperate.If the opponent does not respond to this forgiving behavior they start to play defe
t again. Finally we separatea group of revenging strategies, whi
h retaliate a defe
tion at some point of the game with defe
tion for the restof the game. Friedman and Davis belong to this group of strategies.The prin
iple for the 
ategorization of strategies into ni
e and forgiving against defe
ting strategies, whi
huse threats and punishments, is un
lear. For instan
e, why is TfT not just treated as a strategy repeating thea
tion of the other strategy instead?2.3. Generous and Greedy Strategies. One alternative way of 
ategorizing strategies is to group themtogether as being generous, even-mat
hed, or greedy ([11, 10℄). If a strategy more often plays as a su
ker, nS ,than playing temptation, nT , then it is a generous strategy nS > nT . An even-mat
hed strategy has nS ≈ nTand a greedy strategy has nS < nT where nS and nT are the proportion an agent plays su
ker and temptation,respe
tively.Boerlijst, et al [8℄ uses a similar 
ategorization into good or bad standings. An agent is in good standing ifit has 
ooperated in the previous round or if it has defe
ted while provoked, i. e., if the agent is in good standingit should not be greedy unless the other agent was greedy the round before. In every other 
ase of defe
tionthe agent is in bad standing, i. e. it tries to be greedy. The generous and greedy 
ategorization uses a stableapproa
h, a on
e and for all 
ategorization3, 
ontrary to the more dynami
 good and bad standing dealing withwhat happened in the previous move.The stable approa
h of the generous and greedy 
ategorization makes it easier to analyze this model. Thebasis of the partition is that it is a zero-sum game at the meta-level in that the sum of proportions of thestrategies nS must equal the sum of the strategies nT . In other words, if there is a generous strategy, then theremust also be a greedy strategy.The 
lassi�
ation of a strategy 
an 
hange depending on the surrounding strategies. Let us assume we havethe following four strategies:
• Always Cooperate (AllC) has 100 per 
ent 
o-operate nR + nS when meeting another strategy. AllCwill never a
t as a greedy strategy.
• Always Defe
t (AllD) has 100 per
ent defe
t nT + nP when meeting another strategy. AllD will nevera
t as a generous strategy.

2One of the strategies, Fair, also remembers its own previous moves
3For a 
ertain set of strategies
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Fig. 2.1. Proportions of R, S, T and P for di�erent strategies. There is a generous strategy if nS > nT and a greedy strategyif nS < nT

• Tit-for-tat (TfT) always repeats the move of the other 
ontestant, making it a repeating strategy. TfTnaturally entails that nS ≈ nT .
• Random plays 
ooperate and defe
t approximately half of the time ea
h. The proportions of nS and

nT will be determined by the surrounding strategies.Random will be a greedy strategy in a surrounding of AllC and Random, and a generous strategy in asurrounding of AllD and Random. Both TfT and Random will behave as an even-mat
hed strategy in thepresen
e of only these two strategies as well as in a surrounding of all four strategies, with AllC and AllDparti
ipating in the same proportions. All strategies are even-mat
hed when there is only a single strategy left.The strategies used in our iterated prisoner's dilemma (IPD) and iterated 
hi
ken game (ICG), in all 14di�erent strategies plus playing Random, are presented in table 2.1. AllC, AllD and Random do not need anymemory fun
tion at all be
ause they always do the same thing (whi
h for Random means always randomize).TfT and ATfT need to look ba
k one move be
ause they repeat or reverse the move of its opponent. Most ofthe other strategies also need to look ba
k one move but may respond to defe
tion or show forgiveness.AllC de�nitely belongs to a group of generous strategies and so do 95% Cooperate (95%C), tit-for-two-tats(Tf2T), Grofman, Fair, and Simpleton, in this spe
i�
 environment.The even-mat
hed group of strategies in
ludes TfT, Random, and Anti-tit-for-tat (ATfT).Within the group of greedy strategies, Feld, Davis, and Friedman belong to a smaller family of strategiesdoing more 
o-operation moves than Random, i. e. having signi�
antly more than 50 % R or S. An analogousfamily 
onsists of Joss, Tester, and AllD. These strategies 
o-operate less frequently than does Random.What will happen to a parti
ular strategy depends both on the surrounding strategies and on the 
hara
-teristi
s of the strategy. For example, AllC will always be generous while 95%C will 
hange to a greedy strategywhen these two are the only strategies left. The des
ribed relation between strategies is independent of whatkind of game is played, but the a
tual out
ome of the game is related to the payo� matrix.2.4. Simulation Pro
edures. The set of strategies used in our �rst simulation in
ludes some of Axelrod'soriginal strategies and a few, later reported, su

essful strategies. Of 
ourse, these strategies represent only avery limited number of all possible strategies. However, the emphasis in our work is on di�eren
es between IPDand ICG. Whether there exists a single "`best of the game"' strategy is outside the s
ope of our analyses.Mistakes in the implementation of strategies (noise) were in
orporated by atta
hing a 
ertain probability pbetween 0.02 and 20% to play the alternative a
tion (C or D), and a 
orresponding probability (1 − p) to playthe original a
tion.
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ken Game 91Table 2.1Des
ription of the di�erent strategies used in the �rst simulation (see se
tion 3.1)Strategy First move Des
riptionAllC C Cooperates all the time95%C C Cooperates 95% of the timeTf2T C tit-for-two-tats, Cooperates until its opponent defe
ts twi
e,and then defe
ts until its opponent starts to 
ooperate againGrofman C Cooperates if R or P was played, otherwise it 
ooperates witha probability of 2/7Fair C A strategy with three possible states, - 'satis�ed' (C), 'apolo-gizing' (C) and 'angry' (D). It starts in the satis�ed state and
ooperates until its opponent defe
ts; then it swit
hes to itsangry state, and defe
ts until its opponent 
ooperates, beforereturning to the satis�ed state. If Fair a

identally defe
ts,the apologizing state is entered and it stays 
ooperating un-til its opponent forgives the mistake and starts to 
ooperateagainSimpleton C Like Grofman, it 
ooperates whenever the previous moveswere the same, but it always defe
ts when the moves di�ered(e.g.S)TfT C Tit-for-tat. Repeats the moves of the opponentFeld C Basi
ally a tit-for-tat, but with a linearly in
reasing (from 0with 0.25% per iteration up to iteration 200) probability ofplaying D instead of CDavis C Cooperates on the �rst 10 moves, and then, if there is a de-fe
tion, it defe
ts until the end of the gameFriedman C Cooperates as long as its opponent does so. On
e the oppo-nent defe
ts, Friedman defe
ts for the rest of the gameATfT D Anti-tit-for-tat. Plays the 
omplementary move of the oppo-nentJoss C A TfT-variant that 
ooperates with a probability of 90%,when opponent 
ooperated and defe
ts when opponent de-fe
tedTester D Alters D and C until its opponent defe
ts, then it plays a Cand TfTAll D D Defe
ts all the timeOur population tournament involves two sets of analyses. In the �rst set, the strategies are allowed to
ompete within a round robin tournament with the aim of obtaining a general evaluation of the tenden
y ofdi�erent strategies to play 
ooperate and defe
t. In a round robin tournament, ea
h strategy is paired on
e withall other strategies plus its twin. The results from the round robin tournament are used within the populationtournament but will not be presented here (for the results see [10℄). In the se
ond set, the 
ompetitive abilitiesof strategies in iterated population tournaments were studies within the IPD and the ICG. We also 
ondu
teda se
ond simulation of the IPD and the ICG where two sets of strategies were used. We used the strategies in�gure 2.2 represented by �nite automata [15℄. The play between two automata is a sto
hasti
 pro
ess where all�nite memory strategies 
an be represented by in
reasingly 
ompli
ated �nite automata. Memory-0 strategies,like AllC and AllD, do not involve any memory 
apa
ity at all. If the strategy in use only has to look ba
k atone draw, there is a memory-1 strategy (a 
hoi
e between two 
ir
les dependent of the other agent's move). Allthe strategies in �gure 2.2 belong to memory-0 or memory-1 strategies.Both sets of strategies in
lude AllD, AllC, TfT, ATfT and Random. In the �rst set of strategies, the
ooperative-set �ve AllC variants (100, 99.99, 99.9, 99 and 90% probability of playing C) are added. In these
ond set of strategies, the defe
tive-set the 
orresponding �ve AllD variants (100, 99.99, 99.9, 99 and 90%
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Fig. 2.2. a) AllD (and variants) b) TfT 
) ATfT d) AllC (and variants). On the transition edges, the left symbol 
orrespondto an a
tion done by a strategy against an opponent performing the right symbol, where an X denotes an arbitrary a
tion. Y inCy and Dy denotes a probability fa
tor for playing C and D respe
tivelyprobability of playing D) are added. Cy and Dy in �gure 2.2 show a probability fa
tor y 100, 99.99, 99.9, 99,90% or for the Random strategy 50% for playing C and D respe
tively.3. Population Tournament With Noise.3.1. First Simulation. We evaluated the strategies in table 2.1 by allowing them to 
ompete within around robin tournament.To obtain a more general treatment of IPD and ICG, we used several variants of payo� matri
es withinthese games, based on the general matrix of table 3.1. In this matrix, C stands for 
ooperate; D for defe
t and
q is a 
ost variable. Table 3.1Payo� values used in our simulation. q is a 
ost parameter. 0 < q < 0.5 de�nes a prisoner's dilemma game, while q > 0.5de�nes a 
hi
ken game Player 2Player 1 C DC 1.5 1D 2 1.5 - qThe payo� for a D agent playing against a C agent is 2, while the 
orresponding payo� for a C agent playingagainst a D agent is 1, et
. Two C agents share the resour
e and get 1.5 ea
h.The out
ome of a 
ontest with two D agents depends on q. For 0 < q < 0.5, a PD game is de�ned,and for q > 0.5 we have a CG. Simulations were run with the values for (1.5 − q) set to 1.4 and 1.1 forPD, and to 0.9, 0.6, and 0.0 for the CG (these values are 
hosen with the purpose to span a wide range ofthe games but are otherwise arbitrarily 
hosen). We also in
luded Axelrod's original matrix Ax (R = 3, S =
0, T = 5 and P = 1) and a 
ompromise dilemma game CD (R = 2, S = 2, T = 3 and P = 1). A CD islo
ated on the borderline between the CG area and the generous CG area. In the dis
ussion part we also
ompare the mentioned strategies with a 
oordination game CoG (R = 2, S = 0, T = 0 and P = 1), the onlygame with T ′ < 1. CoG is in
luded as a referen
e game and does not belong to the 
on�i
ting games. In�gure 3.1 all these games are shown within the two-dimensional plane. The CD is 
losely related to the 
hi
kengame and CoG is a game with two Nash equilibria, playing (C,C) or playing (D,D) (see also Johansson et
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Fig. 3.1. The di�erent game matri
es represented as dots in a 2-dimensional diagram. CoG is the 
oordination game, CDthe 
ompromise dilemma and Ax is the original Axelrod game. The unmarked dots represent 0.0, 0.6, 0.9, 1.1 and 1.4 from upperleft to lower rightal. [12℄). Ea
h game in the tournament was played on average 100 times (randomly stopped)4 and repeated5000 times.In the se
ond part of the simulation, strategies were allowed to 
ompete within a population tournamentfor the iterated games. These simulations were based on the same payo� matri
es for IPD and ICG as in theinitial round robin tournament. Based on the su

ess in the single round-robin tournaments, strategies wereallowed to reprodu
e 
opies into the next round robin tournament, 
reating a population tournament, i. e. aquality 
ompetition in the round-robin tournament (make a good s
ore) is transformed to an in
reased numberof 
opies in the population tournament. Ea
h of the �fteen strategies starts with 100 
opies resulting in atotal population of 1500. The number of 
opies for ea
h strategy 
hanges, but the total of 1500 
opies remains
onstant. The proportions of the di�erent strategies propagated into a new generation were based on the payo�s
ores obtained in the pre
eding round-robin tournament. A given strategy intera
ts with the other strategiesin the proportions that they o

ur in their global population. The games were allowed to 
ontinue until a singlewinning strategy was identi�ed, i. e. the whole population 
onsists of the same strategy, or until the number ofgenerations rea
hed 10,000. In most of the simulations, a winning strategy was found before rea
hing this limit.Also, if a pure population of agents with the random strategy are allowed to 
ompete with ea
h other ina population game, a single winning strategy will be found after a number of generations, i. e. there are smallsimulation variations between di�erent agents in their a
tual play of C and D moves. As seen in �gure 3.2, within
reased total population size of agents the number of generations for �nding a winning strategy in
reases.This almost linear in
rease (r = 0.99) is only marginally dependent of what game is played.Randomized strategies with 100 individuals are a

ording to �gure 3.2 supposed to halt, i. e. all 1500individuals belong to the same initial strategy, after approximately 2800 generations in a population game.Whi
h strategy that wins will vary between the games. There are two possible kinds of winning strategies: purestrategies that halt, and mixed strategies (two or more pure strategies) that do not halt. If there is an a
tive
hoi
e of a pure strategy it should halt before 2800 generations, be
ause otherwise playing random 
ould betreated as a winning pure strategy. There is no reason to believe that a single strategy winner should be foundby extending the simulation beyond 10000 generations. If there exists a pure solution, this solution should turnup mu
h earlier.The e�e
t of un
ertainty (noise) in the 
hoi
e of a
tions (C or D) by the agents within the tournamentswas analyzed by repeating the tournaments in environments of varying levels of noise. Tournaments were run
4If an agent knows exa
tly or with a 
ertain probability when a game will end, it may use su
h information to improve itsbehavior. Be
ause of this, the length of the games was determined probabilisti
, with an equal 
han
e of ending the game withea
h given move (see also [1℄)
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Fig. 3.2. Number of generations for �nding a winning strategy among 15 random strategies with a varying population sizeat 0, 0.02, 0.2, 2, and 20% noise. The probability of making a mistake was neither dependent on the sequen
eof behaviors up to a 
ertain generation, nor on the identity of the player. Noise will a�e
t the implementationof all strategies ex
ept for the strategy Random. We fo
used on three di�erent aspe
ts when 
omparing theIPDs and ICGs, whi
h will be further analyzed in the dis
ussion part:1. The number of generations for �nding a winning strategy.2. Di�eren
es in robustness for the investigated strategies.3. The behavior of the, generally regarded, 
ooperative strategy TfT in IPD and ICG.3.2. Se
ond Simulation. To obtain a more general treatment of IPD and ICG, we used several variantsof payo� matri
es within these games, based on the general matrix of table 3.2.Table 3.2A payo� matrix for PD and CG. C stands for 
ooperate, D for defe
t, and s1 and s2 are 
ost variables. If s1 > 1 it is a PD.If s1 < 1 it is a CG Cooperate (C) Defe
t (D)Cooperate (C) 1 1-s1Defe
t (D) 1+s2 0In the �rst set of simulations we investigated the su

essfulness of the agents using di�erent strategies (onestrategy per agent) in a round-robin tournament. Sin
e this is independent of the a
tual payo� value, the sameround-robin tournament 
an be used for both IPD and ICG. Every agent was paired with all the other agentsplus a 
opy of itself. Every meeting between agents in the tournament was repeated on average 100 times(randomly stopped) and played for 5000 times.The result from the two-by-two meetings between agents using di�erent strategies in the round robintournament was used in a population tournament. The tournament starts with a population of 100 agents forea
h strategy, making a total population of 900. The simulation halts when there is a winning strategy (all900 agents use the same strategy) or when the number of generations ex
eeds 10.000. Agents are allowed to
hange strategy and the population size remains the same during the whole 
ontest. For the IPD the followingparameters were used: s1 ∈ {1.1, 1.2 . . .2.0} and s2 ∈ {0.1, 0.2 . . .1.0, 2.0}, making a total of 110 di�erent games.For the ICG games with parameter settings s1 ∈ {0.1, 0.2 . . .0.9} and s2 ∈ {0.1, 0.2 . . .1.0, 2.0} a total of 99di�erent games were run. Ea
h game is repeated during 100 plays and the average su

ess is 
al
ulated for ea
hstrategy. For ea
h kind of game there is both the 
ooperative set and the defe
tive set explained in se
tion 2.4.
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ken Game 954. Results.4.1. First Simulation. In �gure 4.1 and �gure 4.2 the su

ess of individual strategies in IPD, ICG andCD population games at no noise and 0.2% of noise are shown. The repeating strategy TfT is represented bya solid line, the generous strategies Simpleton, Grofman, and Fair by dashed lines, and the greedy strategiesFriedman and Davis by dotted lines.In the IPD games TfT, Friedman and Davis are the most su

essful with no noise (�gure 4.1), while TfT,Grofman, Fair and Friedman are the most su

essful with 0.2% noise (�gure 4.2). For the other levels of noise(not shown in �gures) TfT, and for Axelrod's matrix also Tf2T, is dominating with 0.02%. With 2% noiseDavis and TfT dominates, and �nally AllD and Friedman are the dominating strategies with 20% noise.At no noise all three groups of strategies are approximately equally su

essful in ICG (�gure 4.1), witha minor advantage for the generous strategies Simpleton, Grofman, and Fair. This advantage in
reases within
reasing noise. The greedy strategies Friedman and Davis disappear at 0.02% noise and TfT at 0.2% noise(�gure 4.2) leaving the generous strategies alone at 0.2% and 2% noise. At 20% noise AllD supplements the setof su

essful strategies.

Fig. 4.1. Per
entage of runs won by strategies in the population games for di�erent 
hi
ken games (0.9, 0.6, 0), prisoner±dilemmas (1.4, Ax, 1.1) and the 
ompromise dilemma with 0% noiseThe greedy strategies Friedman and Davis 
ompletely outperform Simpleton, Grofman, Fair and TfT strate-gies in CD. With in
reasing noise ATfT (0.2-20% noise) and AllD (20% noise) be
ome more su

essful as partof a mixed set of strategies, be
ause CD does not �nd a single winner (Figure 10).Finally, in CoG Tf2T and TfT are dominating with 0% noise. Tf2T together with AllC and Grofman
onstitute all the winning strategies with 0.02%, 0.2% and 2% noise. 95%C is the only winner with 20% noise.With in
reased noise the group of Simpleton, Grofman, and Fair be
ome more and more su

essful inICG up to and in
luding 2% noise. When noise is introdu
ed, IPDs favor the repeated TfT. With in
reasednoise the greedy Friedman and Davis disappears for both ICG and IPD. Finally, with 20% noise AllD is thedominating strategy. More and more defe
ting strategies will dominate with in
reasing noise in IPD. Finally inCD the greedy strategies Friedman and Davis dominates. In 
ontrast to IPD and CD 
ooperating and generousstrategies dominate in ICG whi
h makes the ICG the best 
andidate for �nding robust strategies.On average there was 80% a

ordan
e (for all levels of noise) between winning strategies in di�erent ICG,i. e. four out of �ve strategies being the same. In the IPD there was a dis
repan
y with only on average 35% ofthe winning strategies being the same. The performan
e of the 0.4 and Ax matri
es are similar within the ICG.This was espe
ially notable for both matri
es without noise (on average 75%) and for the 0.4 matri
es with 2and 20% noise (on average 55%).
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Fig. 4.2. Per
entage of runs won by strategies in the population games for di�erent 
hi
ken games (0.9, 0.6, 0), prisoner±dilemmas (1.4, Ax, 1.1) and the 
ompromise dilemma with 0.2% noise

Fig. 4.3. Number of generations for �nding a winning strategy in 
hi
ken games, prisoner± dilemmas and 
ompromisedilemma at di�erent levels of noiseIn �gure 4.3, the number of generations needed to �nd a winning strategy is plotted for di�erent levelof noise. The dotted line shows the expe
ted generations (2800) for 
ompeting Random strategies mentionedearlier. At 0 or low levels of noise more generations are needed in the ICG for �nding a winner than in IPD.The lowest numbers of generations are needed with 2% of noise and the highest with 0% and 20% noise. Thereis no single strategy winner for the CD game with 0.2% noise and aboveIn summary; 
oordination games give mutual 
ooperation the highest results, whi
h favors ni
e, but to aless extent too forgiving, strategies. Compared to the ICG, IPD is less punishing towards mutual defe
tion,
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ken Game 97Table 4.1The di�eren
e between pure and mixed-strategies in IPD and ICG. For details see textIPD ICGCooperativeset Defe
tive set Cooperativeset Defe
tive setPure strategies TfT 78% AllD20% TfT 75% AllD20% TfT 3% TfT 2%Mixed strate-gies none none 2-strat 61% 3-strat 33% 2-strat 69% 3-strat 24%whi
h allows repeating and greedy strategies to be
ome more su

essful. Finally in the 
ompromise dilemma,where playing the opposite to the opponent is favored, greedy and/or a mixture of di�erent strategies arefavored. With in
reased noise (2% or below), generous strategies be
ome more and more su

essful in ICGwhile repeating and greedy strategies are more su

essful in IPD.4.2. Se
ond Simulation. In a surrounding of a 
ooperative or a defe
tive set of strategies a majordi�eren
e between pure and mixed strategies for IPD and ICG are shown in table 4.1. IPD has no su

essfulmixed strategies at all, while ICG favors mixed-strategies for an overwhelming majority of the games. Somedetails not shown in table 4.1 are dis
ussed below.For the 
ooperative set there is a single strategy winner after on average 167 generations. TfT wins 78%of the plays and is dominating in 91 out of 110 games5. AllD is dominating in the rest of the games and wins20% of the plays.For the defe
tive-set there is a single strategy winning in 47 generations on average. TfT is dominating 84games, AllD 21 games and 99.99D, playing D 99.99% of the time, 5 games out of 110 games in all. TfT wins75% of the plays, AllD 20% and 99.99D 4%.In the 
ooperative-set there are two formations of mixed strategies winning most of the games; one withtwo strategies and the other with three strategies involved. This means that when the play was �nished after10000 generations not a single play 
ould separate these strategies �nding a single winner. The two-strategyset ATfT and AllD wins 61% of the plays and the three-strategy set ATfT, AllD and AllCtot wins 33% of theplays. AllCtot means that one and just one of the strategies AllC, 99.99C, 99.9C, 99C or 90C is the winningstrategy. For 3% of the games there was a single TfT winner within relatively few generations (on average 754generations).In the defe
tive-set there is the same two formations winning most of the games. ATfT + AllDtot wins69% of the plays and ATfT + AllC + AllDtot wins 24% of the plays. AllDtot means that one and just one ofthe strategies AllD, 99.99D, 99.9D, 99D or 90D is the winning strategy. TfT is a single winning strategy in 2%of the plays, whi
h needs on average 573 generations before winning a play.In the C-variant set all AllC variants are generous and TfT is even mat
hed. AllD, ATfT and Random areall greedy strategies. In the D-variant set all AllD variants are greedy and TfT is still even-mat
hed. AllC,ATfT and Random are now representing generous strategies.In the IPD the even-mat
hed TfT is a dominating strategy in both the C- and D-variant set with the greedyAllD as the only primary alternative. So the IPD will end up being a fully 
ooperative game (TfT) or a fullydefe
ting game (AllD) after relatively few generations. This is the 
ase both for the C-variant set and, withineven fewer generations, for the D-variant set.In ICG there is instead a mixed solution between two or three strategies. In the C-variant ATfT and AllDform a greedy two-strategy set6. In the three-strategy variant the generous AllCtot join the other two. In all,generous strategies only 
onstitute about 10% of the mixed strategies. In the D-variant the generous ATfTforms various strategy sets with the greedy AllDtot.5. DISCUSSION. In our investigation we found ICG to be a strong 
andidate for being the major
ooperate game. ICG seems to fa
ilitate 
ooperation as mu
h as or even more than IPD, espe
ially under noisy
onditions. Axelrod regarded TfT to be a leading 
ooperative strategy, but in our investigation we found TfT
5A game is dominated by a 
ertain strategy if it wins more than 50 out of 100 plays
6With just ATfT and AllD left ATfT will behave as a generous strategy even though it starts o� as a greedy strategy in theC-variant environment
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ess under noisy 
onditions within ICG. These statements will be further addressed in thedis
ussion below.If it is true that more 
ooperating strategies are favored in ICG, we should also expe
t ni
e and forgivingstrategies to be su

essful in this game. In the ICG, both players that play defe
t are faring the worst, whi
hshould favor generous strategies. Both ICG and 
oordination game favors ni
e, non-revenging, strategies, butunlike 
oordination game ICG may forgive a defe
tion from the opponent. This makes ICG a primary 
andidatefor being the main 
ooperative game, favoring both ni
eness and forgivingness.Most studies today 
onsider the IPD as a 
ooperative game where ni
e and forgiving strategies are su

essful.A typi
al winning strategy, like TfT, ends up as an agent playing 
ooperate all the time. There are 
ontradi
toryarguments about 
ooperation within 
hi
ken games. The advantage of 
ooperation may be expe
ted to bestronger, be
ause the 
ost of defe
tion is higher than in the prisoner's dilemma. Lipman [16℄ suggests that inICG, mutual 
ooperation is less 
learly the best out
ome be
ause there is no dominant strategy. Ea
h agentprefers the equilibrium in whi
h it defe
ts and the other 
ooperates, but has no way to for
e the other agentto 
ooperate. A mixed strategy or a set of strategies, unlike a single dominant strategy, may favor mutual
ooperation. With pure and mixed strategies we here refer to the set of strategies (played by individuals)winning the population tournament. A mixed strategy is a 
ombination of two or more strategies from thegiven set of strategies i. e. an extended strategy set 
ould in
lude the former mixed strategy as a pure strategy.In the normalized matri
es sto
hasti
 memory-0 and memory-1 strategies are used. The main di�eren
ebetween IPD and ICG is best shown by the two strategies TfT and ATfT. TfT does the same as its opponent.This is a su

essful way of behaving if there is a pure-strategy solution be
ause it for
es the winning strategyto 
ooperate or defe
t, but not doing both. ATfT is doing very badly in IPD be
ause it tries to jump betweenplaying 
ooperate and defe
t.In ICG we have a totally di�erent assumption be
ause a mixed-strategy solution is favored (at least inthe present simulation). ATfT does the opposite as its opponent but 
annot by itself form a mixed-strategysolution. It has to rely on other 
ooperative or defe
t strategies. In all di�erent ICG ATfT is one of theremaining strategies, while TfT is only o

asionally winning a play.For a simple strategy setting like the 
ooperative and defe
tive-set, ICG will not �nd a pure strategy winnerat all but a mixture between two or more strategies, while IPD qui
kly �nds a single winner.Unlike the single play PD, whi
h always favors defe
t, the IPD will favor playing 
ooperate. In CG theadvantage of 
ooperation should be even stronger, be
ause it 
osts more to defe
t 
ompared to the PD, butin our simulation greedier strategies were favored with memory-0 and memory-1 strategies. We think this newparadox 
an be explained by a greater robustness of the 
hi
ken game. This robustness may be present if morestrategies, like the strategies in the two other simulations, are allowed and/or noise is introdu
ed. Robustnessis expressed by two or more strategies winning the game instead of a single winner or by a more sophisti
atedsingle winner. Su
h a winner 
ould be 
TfT, Pavlov, or Fair in the presen
e of noise, instead of TfT. Also, withminor ex
eptions this is also true for noise between 0.02% and 20%.An interesting ex
eption to the higher su

ess of 
ooperating strategies within ICG is the poor su

essunder noisy 
onditions of TfT. The vulnerability of TfT to errors in the implementation of a
tions within theIPD is well known and has been dis
ussed extensively ([3, 19, 4, 27, 7, 21, 22℄). The even poorer ability ofTfT to handle noise within the ICG, is however a novel �nding. The 
lassi
al des
ription by Axelrod [3℄ ofa su

essful strategy in a deterministi
 (non-noisy) environment is that it should be ni
e (not be the �rst todefe
t), provo
able (immediately punish defe
tion), forgiving (immediately re
ipro
ate 
ooperation), and simple(easily re
ognizable). Obviously, under noisy 
onditions TfT either behaves less ni
e, provo
able, forgiving, andsimple, or these 
hara
teristi
s are of less value in the ICG. Axelrod and Dion [4℄ suggested that the di�
ultyfor TfT to handle noise is an inherent 
onsequen
e of generosity: vulnerability to exploitation. Errors in theimplementation of strategies give rise to un
onditional 
ooperation, whi
h under
uts the e�e
tiveness of simpleand re
ipro
ating strategies. It also introdu
es mutual defe
tion among TfT players, redu
ing their obtainedpayo�s [22℄. In the long run, the average payo�s of two intera
ting TfT players in a noisy environment 
onvergeto that of two intera
ting Random players [19℄. Thus, the main problem for TfT in a noisy environment maybe to 
ope with 
opies of itself.A solution to the problem of noise for a strategy is to punish defe
tion in the other player less readily thandoes TfT. This 
an be done either by not immediately responding to an opponent's defe
tion or by avoidan
eof responding to the other player's defe
tion after one has made an unintended defe
tion [19℄; see also [27℄.Thus, some modi�ed versions of TfT, Contrite tit-for-tat (CTfT) and generous tit-for-tat (GTfT) have proved
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ken Game 99to 
ope mu
h better with noise than the original TfT ([27, 9℄). Bendor [6℄ 
on
ludes that un
ertainty sometimesa�e
ts ni
e strategies negatively but he also proposes that re
ipro
ating but untrustworthy strategies may startto 
ooperate be
ause of unintended a
tions.Several attempts have been made to 
lassify strategies a

ording to their willingness to play 
ooperateand defe
t, respe
tively, the 
lassi
al being Axelrod's [1℄ distin
tion between ni
e and mean strategies based onwhether a strategy's �rst draw is 
ooperate or defe
t, respe
tively. Under noisy 
onditions, the stati
 des
riptionof a strategy based on its behavior under non-noisy be
omes more or less meaningless. Naturally, a ni
e strategythen be
omes meaner, and a mean strategy be
omes ni
er, but the a
tual behavior is di�
ult to evaluate.6. CONCLUSION. In our opinion, the dis
ussion about the evolution of 
ooperative behavior has reliedtoo heavily on analyses within the prisoner's dilemma 
ontext. The di�eren
es in the out
ome of IPD and ICGshown in our study suggest that future game theoreti
al analyses on 
ooperation should explore alternativepayo� environments. The 
hi
ken game was dis
ussed as a spe
ial 
ase within the general hawk and dove
ontext by Maynard Smith [18℄, but for some reason subsequent game theoreti
al studies has almost ex
lusivelyfo
used on the prisoner's dilemma. This is unfortunate, sin
e the 
hi
ken game appears to us to be a veryinteresting game in explaining the evolution of 
ooperative behavior. If we give the involved agents the abilityto establish trust the di�eren
e between the two kinds of games are easier to understand. In the PD establishing
redibility between the agents means establishing trust, whereas in CG, it involves 
reating fear, i. e. avoidingsituations where there is too mu
h to lose [25℄. This makes ICG a strong 
andidate for being a major 
ooperategame together with IPD. We therefore hope that in future studies, more attention will be paid to the role of
hi
ken games in the evolution of agents with 
ooperative behavior within multi agent systems.REFERENCES[1℄ R. Axelrod, E�e
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