
Salable Computing: Pratie and ExperieneVolume 8, Number 1, pp. 87�100. http://www.spe.org ISSN 1895-1767© 2007 SWPSTHE SUCCESS OF COOPERATIVE STRATEGIES IN THE ITERATED PRISONER'SDILEMMA AND THE CHICKEN GAMEBENGT CARLSSON∗ AND K. INGEMAR JÖNSSON†Abstrat. The prisoner's dilemma has evolved into a standard game for analyzing the suess of ooperative strategies inrepeated games. With the aim of investigating the behavior of strategies in some alternative games we analyzed the outome ofiterated games for both the prisoner's dilemma and the hiken game. In the hiken game, mutual defetion is punished morestrongly than in the prisoner's dilemma, and yields the lowest �tness. We also ran our analyses under di�erent levels of noise. Theresults reveal a striking di�erene in the outome between the games. Iterated hiken game needed more generations to �nd awinning strategy. It also favored nie, forgiving strategies able to forgive a defetion from an opponent. In partiular the well-known strategy tit-for-tat has a poor suessrate under noisy onditions. The hiken game onditions may be relatively ommonin other sienes, and therefore we suggest that this game should reeive more interest as a ooperative game from researherswithin omputer siene.Key words. Game theory, prisoner's dilemma, hiken game, noise, tit-for-tat1. Introdution. Within omputer siene, biology, soial and eonomi sienes the issue of ooperationbetween individuals in an evolutionary ontext is widely disussed. An evolutionary ontext means some on�itof interest between the partiipants preferrably modeled in a game theoretial ontext using on�iting games.A simple, but frequently used, game model is between two partiipants eah with two hoies, either to ooperateor to defet (a 2 ∗ 2 matrix game) played one or repeated. In multi agent systems iterated games have beomea popular tool for analyzing soial behavior and ooperation based on reiproity ([3, 5, 4, 9℄). By allowinggames to be played several times and against several other strategies a �shadow of the future�, i. e. a non-zeroprobability for the agents to meet again in the future, is reated for the urrent game. This inreases theopportunity for ooperative behavior to evolve (e.g., [4℄). A olletion of di�erent models of ooperation andaltruism was disussed in Lehmann and Keller [14℄.Most iterative analyses on ooperation have foused on the payo� environment de�ned as the prisoner'sdilemma (PD) ([5, 9, 13, 20℄). In terms of payo�s, a PD is de�ned when T > R > P > S, where R = reward, S= suker, T = temptation and P = punishment. It should also hold that 2R > T + S aording to table 1.1a.The seond ondition means that the value of the payo�, when shared in ooperation, must be greater than itis when shared by a ooperator and a defetor. Beause it pays more to defet, no matter how the opponenthooses to at, an agent is bound to defet, if the agents are not deriving advantage from repeating the game. If
2R < T +S is allowed there will be no upper limit for the value of the temptation. However, there is no de�nitereason for exluding this possibility. Carlsson and Johansson [11℄ argued that Rapoport and Chammah [23℄introdued this onstraint for pratial more than theoretial reasons. PD belongs to a lass of games whereeah player has a dominating strategy of playing defet in the single play PD.Chiken game (CG) is a similar but muh less studied game than PD, but see Tutzauer et al. [26℄ for areent study. CG is de�ned when T > R > S > P , i. e. mutual defetion is punished more in the CG thanin the PD. In the single-play form, the CG has no dominant strategy (although it has two Nash equilibria inpure strategies, and one mixed equilibrium), and thus no expeted outome as in the PD [16℄. Together withthe generous hiken game (GCG), also alled the battle of sexes [17℄ or oordination game, CG belongs to alass of games where neither player has a dominating strategy. For a GCG, playing defet inreases the payo�for both of them, unless the other agent also plays defet (T > S > R > P ).In table 1.1b, R and P are assumed to be �xed to 1 and 0 respetively. This an be obtained through a twosteps redution where all variables are �rst subtrated by P and then divided by R−P . This makes it possibleto desribe the games with only two parameters S′ = (S − P )/(R − P ) and T ′ = (T − P )/(R − P ). In fat wean apture all possible 2x2 games in a two-dimensional plane.In �gure 1.1 the parameter spae for PD, CG and GCG de�ned by S′ and T ′, is shown. T ′ = 1 marks adividing line between on�it and ooperation. S′ = 0 marks the line between CG and PD. T ′ < 1 means thatplaying ooperate (R) is favored over playing defet (T ) when the other agent ooperates. This prevents an
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88 Bengt Carlsson and K. Ingemar JönssonTable 1.1Pay-o� matries for 2∗2 games where R = reward, S = suker, T = temptation and P = punishment. In b the four variables
R, S, T and P are redued to two variables S′ = (S − P )/(R − P ) and T ′ = (T − P )/(R − P )a Cooperate Defet b Cooperate DefetCooperate R S Cooperate 1 (S − P )/(R − P )Defet T P Defet (T − P )/(R − P ) 0

Fig. 1.1. The areas overed by three kinds of on�iting games in a two-dimensional plane: prisoner's dilemma, hikengame and generous hiken gameagent from being �sel�sh� in a surrounding of ooperation. Con�iting games are expeted when T ′ > 1 beauseof better outome playing temptation (T ).In an evolutionary ontext, the payo� obtained from a partiular game represents the hange in �tness(reprodutive suess) of a player. Maynard Smith [18℄ desribes an evolutionary resoure alloation within a
2x2 game as a hawk and dove game. In the matries of table 1.1 a hawk onstitutes playing D, and a doveonstitutes playing C. A hawk gets all the resoures playing against a dove. Two doves share the resourewhereas two hawks esalate a �ght about the resoure. If the ost of obtaining the resoure for the hawks isgreater than the resoure there is a CG, otherwise there is a PD. In a generous CG (not a hawk and dove game)more resoures are obtained for both agents when one agent defets ompared to both playing ooperate ordefet.Reent analyses have foused on the e�ets of mistakes in the implementation of strategies. In partiular,suh mistakes, usually alled noise, may allow evolutionary stability of pure strategies in iterated games [9℄. Twoseparate ases are generally onsidered: the trembling hand noise and misinterpretations. Within the tremblinghand noise ([24, 4℄) a perfet strategy would take into aount that agents oasionally do not perform theintended ation1. In the misinterpretations ase an agent may not have hosen the �wrong� ation. Instead it isinterpreted as suh by at least one of its opponents, resulting in agents keeping di�erent opinions about whathappened in the game. This introdution of mistakes represents an important step, as real biologial systemsas well as omputer systems will usually involve unertainty at some level.Here, we study the behavior of strategies in iterated games within the prisoner's dilemma and hiken gamepayo� strutures, under di�erent levels of noise. We �rst give a bakground to our simulations, inluding around robin tournament and a haraterization of the strategies that we use. We then present the outome ofiterated population tournaments, and disuss the impliations of our results for game theoretial studies on theevolution of ooperation.

1In this metaphor an agent hooses between two buttons. The trembling hand may, by mistake, ause the agent to press thewrong button



The Suess of Cooperative Strategies in the Iterated Prisoner's Dilemma and the Chiken Game 892. Games, Strategies, and Simulation Proedures.2.1. Games. A game an be modeled as a strategi or an extensive game. A strategi game is a modelof a situation in whih eah agent hooses his plan of ation one and for all, and all agents' deisions aremade simultaneously while an extensive game spei�es the possible orders of events. The strategi agent is notinformed of the plan of ation hosen by any other agent while an extensive agent an onsider its plan of ationwhenever a deision has to be made. All the agents in our analyses are strategi. All strategies may a�et themoves of the other agent, i. e. to play C or D, but not the payo� value, so the latter does not in�uene thestrategy. The kind of games that we simulate here have been alled eologial simulations, as distinguished fromevolutionary simulations in whih new strategies may arise in the ourse of the game by mutation ([3℄). However,eologial simulations inlude all omponents neessary for the mimiking of an evolutionary proess: variationin types (strategies), seletion of these types resulting from the di�erential payo�s obtained in the ontests, anddi�erential propagation of strategies over generations. Consequently, we �nd the distintion between eologialand evolutionary simulations based on the riteria of mutation rather misleading.The PDs and CGs that we analyze are repeated games with memory, usually alled iterated games. Initerated games some bakground information is known about what happened in the game up to now. In oursimulation the strategies know the previous moves of their antagonist2. In all our simulations, interationsamong players are pair-wise, i. e. a player interats with only one player at a time2.2. Nie and Mean Strategies. Axelrod ([1, 5, 2, 3℄) ategorized strategies as nie or mean. A niestrategy never plays defetion before the other player defets, whereas a mean strategy never plays ooperationbefore the opponent ooperates. Thus the nie and mean terminology desribes an agent's next move.Aording to the ategorization of Axelrod Tit-for-tat, TfT, is a nie strategy, but it ould as well beregarded as a repeating strategy. Another ategory of strategies is a group of forgiving strategies onsisting ofSimpleton, Grofman, and Fair. They an, unlike TfT, avoid getting into mutual defetion by playing ooperate.If the opponent does not respond to this forgiving behavior they start to play defet again. Finally we separatea group of revenging strategies, whih retaliate a defetion at some point of the game with defetion for the restof the game. Friedman and Davis belong to this group of strategies.The priniple for the ategorization of strategies into nie and forgiving against defeting strategies, whihuse threats and punishments, is unlear. For instane, why is TfT not just treated as a strategy repeating theation of the other strategy instead?2.3. Generous and Greedy Strategies. One alternative way of ategorizing strategies is to group themtogether as being generous, even-mathed, or greedy ([11, 10℄). If a strategy more often plays as a suker, nS ,than playing temptation, nT , then it is a generous strategy nS > nT . An even-mathed strategy has nS ≈ nTand a greedy strategy has nS < nT where nS and nT are the proportion an agent plays suker and temptation,respetively.Boerlijst, et al [8℄ uses a similar ategorization into good or bad standings. An agent is in good standing ifit has ooperated in the previous round or if it has defeted while provoked, i. e., if the agent is in good standingit should not be greedy unless the other agent was greedy the round before. In every other ase of defetionthe agent is in bad standing, i. e. it tries to be greedy. The generous and greedy ategorization uses a stableapproah, a one and for all ategorization3, ontrary to the more dynami good and bad standing dealing withwhat happened in the previous move.The stable approah of the generous and greedy ategorization makes it easier to analyze this model. Thebasis of the partition is that it is a zero-sum game at the meta-level in that the sum of proportions of thestrategies nS must equal the sum of the strategies nT . In other words, if there is a generous strategy, then theremust also be a greedy strategy.The lassi�ation of a strategy an hange depending on the surrounding strategies. Let us assume we havethe following four strategies:
• Always Cooperate (AllC) has 100 per ent o-operate nR + nS when meeting another strategy. AllCwill never at as a greedy strategy.
• Always Defet (AllD) has 100 perent defet nT + nP when meeting another strategy. AllD will neverat as a generous strategy.

2One of the strategies, Fair, also remembers its own previous moves
3For a ertain set of strategies
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Fig. 2.1. Proportions of R, S, T and P for di�erent strategies. There is a generous strategy if nS > nT and a greedy strategyif nS < nT

• Tit-for-tat (TfT) always repeats the move of the other ontestant, making it a repeating strategy. TfTnaturally entails that nS ≈ nT .
• Random plays ooperate and defet approximately half of the time eah. The proportions of nS and

nT will be determined by the surrounding strategies.Random will be a greedy strategy in a surrounding of AllC and Random, and a generous strategy in asurrounding of AllD and Random. Both TfT and Random will behave as an even-mathed strategy in thepresene of only these two strategies as well as in a surrounding of all four strategies, with AllC and AllDpartiipating in the same proportions. All strategies are even-mathed when there is only a single strategy left.The strategies used in our iterated prisoner's dilemma (IPD) and iterated hiken game (ICG), in all 14di�erent strategies plus playing Random, are presented in table 2.1. AllC, AllD and Random do not need anymemory funtion at all beause they always do the same thing (whih for Random means always randomize).TfT and ATfT need to look bak one move beause they repeat or reverse the move of its opponent. Most ofthe other strategies also need to look bak one move but may respond to defetion or show forgiveness.AllC de�nitely belongs to a group of generous strategies and so do 95% Cooperate (95%C), tit-for-two-tats(Tf2T), Grofman, Fair, and Simpleton, in this spei� environment.The even-mathed group of strategies inludes TfT, Random, and Anti-tit-for-tat (ATfT).Within the group of greedy strategies, Feld, Davis, and Friedman belong to a smaller family of strategiesdoing more o-operation moves than Random, i. e. having signi�antly more than 50 % R or S. An analogousfamily onsists of Joss, Tester, and AllD. These strategies o-operate less frequently than does Random.What will happen to a partiular strategy depends both on the surrounding strategies and on the hara-teristis of the strategy. For example, AllC will always be generous while 95%C will hange to a greedy strategywhen these two are the only strategies left. The desribed relation between strategies is independent of whatkind of game is played, but the atual outome of the game is related to the payo� matrix.2.4. Simulation Proedures. The set of strategies used in our �rst simulation inludes some of Axelrod'soriginal strategies and a few, later reported, suessful strategies. Of ourse, these strategies represent only avery limited number of all possible strategies. However, the emphasis in our work is on di�erenes between IPDand ICG. Whether there exists a single "`best of the game"' strategy is outside the sope of our analyses.Mistakes in the implementation of strategies (noise) were inorporated by attahing a ertain probability pbetween 0.02 and 20% to play the alternative ation (C or D), and a orresponding probability (1 − p) to playthe original ation.



The Suess of Cooperative Strategies in the Iterated Prisoner's Dilemma and the Chiken Game 91Table 2.1Desription of the di�erent strategies used in the �rst simulation (see setion 3.1)Strategy First move DesriptionAllC C Cooperates all the time95%C C Cooperates 95% of the timeTf2T C tit-for-two-tats, Cooperates until its opponent defets twie,and then defets until its opponent starts to ooperate againGrofman C Cooperates if R or P was played, otherwise it ooperates witha probability of 2/7Fair C A strategy with three possible states, - 'satis�ed' (C), 'apolo-gizing' (C) and 'angry' (D). It starts in the satis�ed state andooperates until its opponent defets; then it swithes to itsangry state, and defets until its opponent ooperates, beforereturning to the satis�ed state. If Fair aidentally defets,the apologizing state is entered and it stays ooperating un-til its opponent forgives the mistake and starts to ooperateagainSimpleton C Like Grofman, it ooperates whenever the previous moveswere the same, but it always defets when the moves di�ered(e.g.S)TfT C Tit-for-tat. Repeats the moves of the opponentFeld C Basially a tit-for-tat, but with a linearly inreasing (from 0with 0.25% per iteration up to iteration 200) probability ofplaying D instead of CDavis C Cooperates on the �rst 10 moves, and then, if there is a de-fetion, it defets until the end of the gameFriedman C Cooperates as long as its opponent does so. One the oppo-nent defets, Friedman defets for the rest of the gameATfT D Anti-tit-for-tat. Plays the omplementary move of the oppo-nentJoss C A TfT-variant that ooperates with a probability of 90%,when opponent ooperated and defets when opponent de-fetedTester D Alters D and C until its opponent defets, then it plays a Cand TfTAll D D Defets all the timeOur population tournament involves two sets of analyses. In the �rst set, the strategies are allowed toompete within a round robin tournament with the aim of obtaining a general evaluation of the tendeny ofdi�erent strategies to play ooperate and defet. In a round robin tournament, eah strategy is paired one withall other strategies plus its twin. The results from the round robin tournament are used within the populationtournament but will not be presented here (for the results see [10℄). In the seond set, the ompetitive abilitiesof strategies in iterated population tournaments were studies within the IPD and the ICG. We also onduteda seond simulation of the IPD and the ICG where two sets of strategies were used. We used the strategies in�gure 2.2 represented by �nite automata [15℄. The play between two automata is a stohasti proess where all�nite memory strategies an be represented by inreasingly ompliated �nite automata. Memory-0 strategies,like AllC and AllD, do not involve any memory apaity at all. If the strategy in use only has to look bak atone draw, there is a memory-1 strategy (a hoie between two irles dependent of the other agent's move). Allthe strategies in �gure 2.2 belong to memory-0 or memory-1 strategies.Both sets of strategies inlude AllD, AllC, TfT, ATfT and Random. In the �rst set of strategies, theooperative-set �ve AllC variants (100, 99.99, 99.9, 99 and 90% probability of playing C) are added. In theseond set of strategies, the defetive-set the orresponding �ve AllD variants (100, 99.99, 99.9, 99 and 90%
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Fig. 2.2. a) AllD (and variants) b) TfT ) ATfT d) AllC (and variants). On the transition edges, the left symbol orrespondto an ation done by a strategy against an opponent performing the right symbol, where an X denotes an arbitrary ation. Y inCy and Dy denotes a probability fator for playing C and D respetivelyprobability of playing D) are added. Cy and Dy in �gure 2.2 show a probability fator y 100, 99.99, 99.9, 99,90% or for the Random strategy 50% for playing C and D respetively.3. Population Tournament With Noise.3.1. First Simulation. We evaluated the strategies in table 2.1 by allowing them to ompete within around robin tournament.To obtain a more general treatment of IPD and ICG, we used several variants of payo� matries withinthese games, based on the general matrix of table 3.1. In this matrix, C stands for ooperate; D for defet and
q is a ost variable. Table 3.1Payo� values used in our simulation. q is a ost parameter. 0 < q < 0.5 de�nes a prisoner's dilemma game, while q > 0.5de�nes a hiken game Player 2Player 1 C DC 1.5 1D 2 1.5 - qThe payo� for a D agent playing against a C agent is 2, while the orresponding payo� for a C agent playingagainst a D agent is 1, et. Two C agents share the resoure and get 1.5 eah.The outome of a ontest with two D agents depends on q. For 0 < q < 0.5, a PD game is de�ned,and for q > 0.5 we have a CG. Simulations were run with the values for (1.5 − q) set to 1.4 and 1.1 forPD, and to 0.9, 0.6, and 0.0 for the CG (these values are hosen with the purpose to span a wide range ofthe games but are otherwise arbitrarily hosen). We also inluded Axelrod's original matrix Ax (R = 3, S =
0, T = 5 and P = 1) and a ompromise dilemma game CD (R = 2, S = 2, T = 3 and P = 1). A CD isloated on the borderline between the CG area and the generous CG area. In the disussion part we alsoompare the mentioned strategies with a oordination game CoG (R = 2, S = 0, T = 0 and P = 1), the onlygame with T ′ < 1. CoG is inluded as a referene game and does not belong to the on�iting games. In�gure 3.1 all these games are shown within the two-dimensional plane. The CD is losely related to the hikengame and CoG is a game with two Nash equilibria, playing (C,C) or playing (D,D) (see also Johansson et
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Fig. 3.1. The di�erent game matries represented as dots in a 2-dimensional diagram. CoG is the oordination game, CDthe ompromise dilemma and Ax is the original Axelrod game. The unmarked dots represent 0.0, 0.6, 0.9, 1.1 and 1.4 from upperleft to lower rightal. [12℄). Eah game in the tournament was played on average 100 times (randomly stopped)4 and repeated5000 times.In the seond part of the simulation, strategies were allowed to ompete within a population tournamentfor the iterated games. These simulations were based on the same payo� matries for IPD and ICG as in theinitial round robin tournament. Based on the suess in the single round-robin tournaments, strategies wereallowed to reprodue opies into the next round robin tournament, reating a population tournament, i. e. aquality ompetition in the round-robin tournament (make a good sore) is transformed to an inreased numberof opies in the population tournament. Eah of the �fteen strategies starts with 100 opies resulting in atotal population of 1500. The number of opies for eah strategy hanges, but the total of 1500 opies remainsonstant. The proportions of the di�erent strategies propagated into a new generation were based on the payo�sores obtained in the preeding round-robin tournament. A given strategy interats with the other strategiesin the proportions that they our in their global population. The games were allowed to ontinue until a singlewinning strategy was identi�ed, i. e. the whole population onsists of the same strategy, or until the number ofgenerations reahed 10,000. In most of the simulations, a winning strategy was found before reahing this limit.Also, if a pure population of agents with the random strategy are allowed to ompete with eah other ina population game, a single winning strategy will be found after a number of generations, i. e. there are smallsimulation variations between di�erent agents in their atual play of C and D moves. As seen in �gure 3.2, withinreased total population size of agents the number of generations for �nding a winning strategy inreases.This almost linear inrease (r = 0.99) is only marginally dependent of what game is played.Randomized strategies with 100 individuals are aording to �gure 3.2 supposed to halt, i. e. all 1500individuals belong to the same initial strategy, after approximately 2800 generations in a population game.Whih strategy that wins will vary between the games. There are two possible kinds of winning strategies: purestrategies that halt, and mixed strategies (two or more pure strategies) that do not halt. If there is an ativehoie of a pure strategy it should halt before 2800 generations, beause otherwise playing random ould betreated as a winning pure strategy. There is no reason to believe that a single strategy winner should be foundby extending the simulation beyond 10000 generations. If there exists a pure solution, this solution should turnup muh earlier.The e�et of unertainty (noise) in the hoie of ations (C or D) by the agents within the tournamentswas analyzed by repeating the tournaments in environments of varying levels of noise. Tournaments were run
4If an agent knows exatly or with a ertain probability when a game will end, it may use suh information to improve itsbehavior. Beause of this, the length of the games was determined probabilisti, with an equal hane of ending the game witheah given move (see also [1℄)
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Fig. 3.2. Number of generations for �nding a winning strategy among 15 random strategies with a varying population sizeat 0, 0.02, 0.2, 2, and 20% noise. The probability of making a mistake was neither dependent on the sequeneof behaviors up to a ertain generation, nor on the identity of the player. Noise will a�et the implementationof all strategies exept for the strategy Random. We foused on three di�erent aspets when omparing theIPDs and ICGs, whih will be further analyzed in the disussion part:1. The number of generations for �nding a winning strategy.2. Di�erenes in robustness for the investigated strategies.3. The behavior of the, generally regarded, ooperative strategy TfT in IPD and ICG.3.2. Seond Simulation. To obtain a more general treatment of IPD and ICG, we used several variantsof payo� matries within these games, based on the general matrix of table 3.2.Table 3.2A payo� matrix for PD and CG. C stands for ooperate, D for defet, and s1 and s2 are ost variables. If s1 > 1 it is a PD.If s1 < 1 it is a CG Cooperate (C) Defet (D)Cooperate (C) 1 1-s1Defet (D) 1+s2 0In the �rst set of simulations we investigated the suessfulness of the agents using di�erent strategies (onestrategy per agent) in a round-robin tournament. Sine this is independent of the atual payo� value, the sameround-robin tournament an be used for both IPD and ICG. Every agent was paired with all the other agentsplus a opy of itself. Every meeting between agents in the tournament was repeated on average 100 times(randomly stopped) and played for 5000 times.The result from the two-by-two meetings between agents using di�erent strategies in the round robintournament was used in a population tournament. The tournament starts with a population of 100 agents foreah strategy, making a total population of 900. The simulation halts when there is a winning strategy (all900 agents use the same strategy) or when the number of generations exeeds 10.000. Agents are allowed tohange strategy and the population size remains the same during the whole ontest. For the IPD the followingparameters were used: s1 ∈ {1.1, 1.2 . . .2.0} and s2 ∈ {0.1, 0.2 . . .1.0, 2.0}, making a total of 110 di�erent games.For the ICG games with parameter settings s1 ∈ {0.1, 0.2 . . .0.9} and s2 ∈ {0.1, 0.2 . . .1.0, 2.0} a total of 99di�erent games were run. Eah game is repeated during 100 plays and the average suess is alulated for eahstrategy. For eah kind of game there is both the ooperative set and the defetive set explained in setion 2.4.



The Suess of Cooperative Strategies in the Iterated Prisoner's Dilemma and the Chiken Game 954. Results.4.1. First Simulation. In �gure 4.1 and �gure 4.2 the suess of individual strategies in IPD, ICG andCD population games at no noise and 0.2% of noise are shown. The repeating strategy TfT is represented bya solid line, the generous strategies Simpleton, Grofman, and Fair by dashed lines, and the greedy strategiesFriedman and Davis by dotted lines.In the IPD games TfT, Friedman and Davis are the most suessful with no noise (�gure 4.1), while TfT,Grofman, Fair and Friedman are the most suessful with 0.2% noise (�gure 4.2). For the other levels of noise(not shown in �gures) TfT, and for Axelrod's matrix also Tf2T, is dominating with 0.02%. With 2% noiseDavis and TfT dominates, and �nally AllD and Friedman are the dominating strategies with 20% noise.At no noise all three groups of strategies are approximately equally suessful in ICG (�gure 4.1), witha minor advantage for the generous strategies Simpleton, Grofman, and Fair. This advantage inreases withinreasing noise. The greedy strategies Friedman and Davis disappear at 0.02% noise and TfT at 0.2% noise(�gure 4.2) leaving the generous strategies alone at 0.2% and 2% noise. At 20% noise AllD supplements the setof suessful strategies.

Fig. 4.1. Perentage of runs won by strategies in the population games for di�erent hiken games (0.9, 0.6, 0), prisoner±dilemmas (1.4, Ax, 1.1) and the ompromise dilemma with 0% noiseThe greedy strategies Friedman and Davis ompletely outperform Simpleton, Grofman, Fair and TfT strate-gies in CD. With inreasing noise ATfT (0.2-20% noise) and AllD (20% noise) beome more suessful as partof a mixed set of strategies, beause CD does not �nd a single winner (Figure 10).Finally, in CoG Tf2T and TfT are dominating with 0% noise. Tf2T together with AllC and Grofmanonstitute all the winning strategies with 0.02%, 0.2% and 2% noise. 95%C is the only winner with 20% noise.With inreased noise the group of Simpleton, Grofman, and Fair beome more and more suessful inICG up to and inluding 2% noise. When noise is introdued, IPDs favor the repeated TfT. With inreasednoise the greedy Friedman and Davis disappears for both ICG and IPD. Finally, with 20% noise AllD is thedominating strategy. More and more defeting strategies will dominate with inreasing noise in IPD. Finally inCD the greedy strategies Friedman and Davis dominates. In ontrast to IPD and CD ooperating and generousstrategies dominate in ICG whih makes the ICG the best andidate for �nding robust strategies.On average there was 80% aordane (for all levels of noise) between winning strategies in di�erent ICG,i. e. four out of �ve strategies being the same. In the IPD there was a disrepany with only on average 35% ofthe winning strategies being the same. The performane of the 0.4 and Ax matries are similar within the ICG.This was espeially notable for both matries without noise (on average 75%) and for the 0.4 matries with 2and 20% noise (on average 55%).
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Fig. 4.2. Perentage of runs won by strategies in the population games for di�erent hiken games (0.9, 0.6, 0), prisoner±dilemmas (1.4, Ax, 1.1) and the ompromise dilemma with 0.2% noise

Fig. 4.3. Number of generations for �nding a winning strategy in hiken games, prisoner± dilemmas and ompromisedilemma at di�erent levels of noiseIn �gure 4.3, the number of generations needed to �nd a winning strategy is plotted for di�erent levelof noise. The dotted line shows the expeted generations (2800) for ompeting Random strategies mentionedearlier. At 0 or low levels of noise more generations are needed in the ICG for �nding a winner than in IPD.The lowest numbers of generations are needed with 2% of noise and the highest with 0% and 20% noise. Thereis no single strategy winner for the CD game with 0.2% noise and aboveIn summary; oordination games give mutual ooperation the highest results, whih favors nie, but to aless extent too forgiving, strategies. Compared to the ICG, IPD is less punishing towards mutual defetion,



The Suess of Cooperative Strategies in the Iterated Prisoner's Dilemma and the Chiken Game 97Table 4.1The di�erene between pure and mixed-strategies in IPD and ICG. For details see textIPD ICGCooperativeset Defetive set Cooperativeset Defetive setPure strategies TfT 78% AllD20% TfT 75% AllD20% TfT 3% TfT 2%Mixed strate-gies none none 2-strat 61% 3-strat 33% 2-strat 69% 3-strat 24%whih allows repeating and greedy strategies to beome more suessful. Finally in the ompromise dilemma,where playing the opposite to the opponent is favored, greedy and/or a mixture of di�erent strategies arefavored. With inreased noise (2% or below), generous strategies beome more and more suessful in ICGwhile repeating and greedy strategies are more suessful in IPD.4.2. Seond Simulation. In a surrounding of a ooperative or a defetive set of strategies a majordi�erene between pure and mixed strategies for IPD and ICG are shown in table 4.1. IPD has no suessfulmixed strategies at all, while ICG favors mixed-strategies for an overwhelming majority of the games. Somedetails not shown in table 4.1 are disussed below.For the ooperative set there is a single strategy winner after on average 167 generations. TfT wins 78%of the plays and is dominating in 91 out of 110 games5. AllD is dominating in the rest of the games and wins20% of the plays.For the defetive-set there is a single strategy winning in 47 generations on average. TfT is dominating 84games, AllD 21 games and 99.99D, playing D 99.99% of the time, 5 games out of 110 games in all. TfT wins75% of the plays, AllD 20% and 99.99D 4%.In the ooperative-set there are two formations of mixed strategies winning most of the games; one withtwo strategies and the other with three strategies involved. This means that when the play was �nished after10000 generations not a single play ould separate these strategies �nding a single winner. The two-strategyset ATfT and AllD wins 61% of the plays and the three-strategy set ATfT, AllD and AllCtot wins 33% of theplays. AllCtot means that one and just one of the strategies AllC, 99.99C, 99.9C, 99C or 90C is the winningstrategy. For 3% of the games there was a single TfT winner within relatively few generations (on average 754generations).In the defetive-set there is the same two formations winning most of the games. ATfT + AllDtot wins69% of the plays and ATfT + AllC + AllDtot wins 24% of the plays. AllDtot means that one and just one ofthe strategies AllD, 99.99D, 99.9D, 99D or 90D is the winning strategy. TfT is a single winning strategy in 2%of the plays, whih needs on average 573 generations before winning a play.In the C-variant set all AllC variants are generous and TfT is even mathed. AllD, ATfT and Random areall greedy strategies. In the D-variant set all AllD variants are greedy and TfT is still even-mathed. AllC,ATfT and Random are now representing generous strategies.In the IPD the even-mathed TfT is a dominating strategy in both the C- and D-variant set with the greedyAllD as the only primary alternative. So the IPD will end up being a fully ooperative game (TfT) or a fullydefeting game (AllD) after relatively few generations. This is the ase both for the C-variant set and, withineven fewer generations, for the D-variant set.In ICG there is instead a mixed solution between two or three strategies. In the C-variant ATfT and AllDform a greedy two-strategy set6. In the three-strategy variant the generous AllCtot join the other two. In all,generous strategies only onstitute about 10% of the mixed strategies. In the D-variant the generous ATfTforms various strategy sets with the greedy AllDtot.5. DISCUSSION. In our investigation we found ICG to be a strong andidate for being the majorooperate game. ICG seems to failitate ooperation as muh as or even more than IPD, espeially under noisyonditions. Axelrod regarded TfT to be a leading ooperative strategy, but in our investigation we found TfT
5A game is dominated by a ertain strategy if it wins more than 50 out of 100 plays
6With just ATfT and AllD left ATfT will behave as a generous strategy even though it starts o� as a greedy strategy in theC-variant environment



98 Bengt Carlsson and K. Ingemar Jönssonto have poor suess under noisy onditions within ICG. These statements will be further addressed in thedisussion below.If it is true that more ooperating strategies are favored in ICG, we should also expet nie and forgivingstrategies to be suessful in this game. In the ICG, both players that play defet are faring the worst, whihshould favor generous strategies. Both ICG and oordination game favors nie, non-revenging, strategies, butunlike oordination game ICG may forgive a defetion from the opponent. This makes ICG a primary andidatefor being the main ooperative game, favoring both nieness and forgivingness.Most studies today onsider the IPD as a ooperative game where nie and forgiving strategies are suessful.A typial winning strategy, like TfT, ends up as an agent playing ooperate all the time. There are ontraditoryarguments about ooperation within hiken games. The advantage of ooperation may be expeted to bestronger, beause the ost of defetion is higher than in the prisoner's dilemma. Lipman [16℄ suggests that inICG, mutual ooperation is less learly the best outome beause there is no dominant strategy. Eah agentprefers the equilibrium in whih it defets and the other ooperates, but has no way to fore the other agentto ooperate. A mixed strategy or a set of strategies, unlike a single dominant strategy, may favor mutualooperation. With pure and mixed strategies we here refer to the set of strategies (played by individuals)winning the population tournament. A mixed strategy is a ombination of two or more strategies from thegiven set of strategies i. e. an extended strategy set ould inlude the former mixed strategy as a pure strategy.In the normalized matries stohasti memory-0 and memory-1 strategies are used. The main di�erenebetween IPD and ICG is best shown by the two strategies TfT and ATfT. TfT does the same as its opponent.This is a suessful way of behaving if there is a pure-strategy solution beause it fores the winning strategyto ooperate or defet, but not doing both. ATfT is doing very badly in IPD beause it tries to jump betweenplaying ooperate and defet.In ICG we have a totally di�erent assumption beause a mixed-strategy solution is favored (at least inthe present simulation). ATfT does the opposite as its opponent but annot by itself form a mixed-strategysolution. It has to rely on other ooperative or defet strategies. In all di�erent ICG ATfT is one of theremaining strategies, while TfT is only oasionally winning a play.For a simple strategy setting like the ooperative and defetive-set, ICG will not �nd a pure strategy winnerat all but a mixture between two or more strategies, while IPD quikly �nds a single winner.Unlike the single play PD, whih always favors defet, the IPD will favor playing ooperate. In CG theadvantage of ooperation should be even stronger, beause it osts more to defet ompared to the PD, butin our simulation greedier strategies were favored with memory-0 and memory-1 strategies. We think this newparadox an be explained by a greater robustness of the hiken game. This robustness may be present if morestrategies, like the strategies in the two other simulations, are allowed and/or noise is introdued. Robustnessis expressed by two or more strategies winning the game instead of a single winner or by a more sophistiatedsingle winner. Suh a winner ould be TfT, Pavlov, or Fair in the presene of noise, instead of TfT. Also, withminor exeptions this is also true for noise between 0.02% and 20%.An interesting exeption to the higher suess of ooperating strategies within ICG is the poor suessunder noisy onditions of TfT. The vulnerability of TfT to errors in the implementation of ations within theIPD is well known and has been disussed extensively ([3, 19, 4, 27, 7, 21, 22℄). The even poorer ability ofTfT to handle noise within the ICG, is however a novel �nding. The lassial desription by Axelrod [3℄ ofa suessful strategy in a deterministi (non-noisy) environment is that it should be nie (not be the �rst todefet), provoable (immediately punish defetion), forgiving (immediately reiproate ooperation), and simple(easily reognizable). Obviously, under noisy onditions TfT either behaves less nie, provoable, forgiving, andsimple, or these harateristis are of less value in the ICG. Axelrod and Dion [4℄ suggested that the di�ultyfor TfT to handle noise is an inherent onsequene of generosity: vulnerability to exploitation. Errors in theimplementation of strategies give rise to unonditional ooperation, whih underuts the e�etiveness of simpleand reiproating strategies. It also introdues mutual defetion among TfT players, reduing their obtainedpayo�s [22℄. In the long run, the average payo�s of two interating TfT players in a noisy environment onvergeto that of two interating Random players [19℄. Thus, the main problem for TfT in a noisy environment maybe to ope with opies of itself.A solution to the problem of noise for a strategy is to punish defetion in the other player less readily thandoes TfT. This an be done either by not immediately responding to an opponent's defetion or by avoidaneof responding to the other player's defetion after one has made an unintended defetion [19℄; see also [27℄.Thus, some modi�ed versions of TfT, Contrite tit-for-tat (CTfT) and generous tit-for-tat (GTfT) have proved
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