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CARBON EMISSION PREDICTION AND SENSITIVITY EVALUATION OF VIRTUAL
POWER PLANTS BASED ON BIG DATA AND MULTISCALE ANALYSIS

JIE LI* ZHOU YANG| WENQIAN JIANG! AND JUNTAO PAN §

Abstract. In order to address the issue of increased prediction errors in the peak carbon emissions of virtual power plants due
to various influencing factors of electricity carbon emissions, the authors propose a study on the prediction and sensitivity evaluation
of virtual power plant carbon emissions based on big data and multi-scale analysis. Firstly, it analyzes the original data sequence
and cumulative sequence, use grey BP neural network to construct a carbon emission peak prediction model, then it analyzes the
factors affecting electricity carbon emissions, and use recursive calculation method to calculate electricity carbon emissions. Then,
it compress the model coefficients to zero through a penalty function and filter out significant variables. Based on the adjacency
characteristics of carbon emission flow, the node carbon potential is calculated through finite recursion, and iterative training
is carried out within the allowable error range to solve the model and obtain the predicted peak carbon emissions of electricity.
The experimental results indicate that the prediction results of the designed method under three scenarios of benchmark setting,
low-carbon, and enhanced low-carbon are 40 million tons, 390 million tons, and 40 million tons, respectively, which are consistent
with the actual results, indicating that the prediction error of this method is lower and the prediction results are more accurate.
The method studied by the authors can provide technical support for carbon emission control and improve prediction accuracy.

Key words: Grey BP neural network, Virtual power plant carbon emissions, Peak prediction, Penalty function

1. Introduction. With the continuous improvement of the electricity market trading system, the trading
models have become more diversified, presenting a mixed trading model of bilateral and joint venture transac-
tions coexisting [1]. However, the existing carbon emission accounting methods are not applicable to all trading
models. For bilateral trading models, especially green bilateral trading, the allocation method of "nearby power
supply, proportional sharing” does not meet the "bilateral” characteristics, and the low-carbon benefits of clean
energy power plants cannot be accurately allocated to users who sign bilateral transactions with them. The
power industry is an indispensable basic industry in modern society. With the continuous increase in energy
demand, the impact of carbon emissions on the environment is becoming increasingly significant. The global
power industry is accelerating its transformation towards clean and low-carbon development [2]. As an impor-
tant component of the power industry, the electricity market coordinates and manages the generation, sales,
transmission, and customer relationships in the power system.

The carbon emissions from virtual power plants are influenced by a variety of dynamic factors. Accurately
forecasting these emissions is crucial for developing effective carbon reduction strategies. By predicting future
carbon dioxide emissions of power plants, it is possible to optimize the power generation mix and implement
specific energy-related carbon reduction measures. At present, there is relatively little research on predicting
carbon emissions from power plants, and many existing achievements rely on the analysis of influencing factors
to predict carbon emissions. Due to the multiple influencing factors of carbon emissions prediction in power
plants, traditional small power plants lack advanced sensor equipment, making it difficult to obtain data on
various factors, resulting in significant limitations in predicting influencing factors. The author aims to predict
and evaluate the sensitivity of carbon emissions from virtual power plants through big data and multi-scale
analysis methods [3]. The development of big data technology provides the energy industry with massive
data and rich analytical tools, which can effectively capture and analyze various data generated during the

*Metering Centre of Guangxi Power Grid Co., Ltd., Nanning, Guangxi, 530023, China.

fMetering Centre of Guangxi Power Grid Co., Ltd., Nanning, Guangxi, 530023, China (Corresponding author, yangz_gxcsge@
163.com)

fMetering Centre of Guangxi Power Grid Co., Ltd., Nanning, Guangxi, 530023, China.

§Metering Centre of Guangxi Power Grid Co., Ltd., Nanning, Guangxi, 530023, China.

837



838 Jie Li, Zhou Yang, Wengian Jiang, Juntao Pan

operation of virtual power plants. The multi-scale analysis method can deeply explore the dynamic changes
and influencing factors of carbon emissions from different time and spatial scales [4,5,6].

2. Literature Review. As the share of renewable energy generation rises and flexible resources like
distributed energy storage and electric vehicles are increasingly integrated, the discrepancy between the power
system’s load demand and the spatiotemporal characteristics of power output has become more pronounced.
Consequently, the virtual power plant (VPP) has been developed. VPPs leverage advanced communication
technologies to efficiently aggregate distributed power sources, controllable loads, and energy storage systems,
allowing them to flexibly respond to scheduling directives and participate in electricity market transactions.
Therefore, how to accurately predict the peak carbon emissions, formulate carbon reduction strategies based
on the prediction results, and control the peak carbon emissions in a short period of time have become urgent
problems in the development process of modern society. Currently, scholars are studying methods for predicting
peak carbon emissions from different perspectives and theories. Yang et al. introduced a flexible carbon emission
mechanism that coordinates energy between electric hydrogen equipment, SMR factories, and gas turbines.
Within this new framework and carbon emission mechanism, the VPP makes purchasing and sales decisions in
both day-ahead and real-time markets while optimizing the operational strategies of its internal components [7].
Xuejin, W. et al. developed a virtual power plant scheduling method utilizing a low-carbon multi-objective two-
stage optimization algorithm. Initially, this method identifies the production and consumption levels of various
energy sources within virtual power plants, such as wind power, thermal power, and hydropower. Subsequently,
aiming to minimize costs and reduce carbon emissions, multi-objective optimization algorithms are employed to
allocate and schedule the energy resources within the virtual power plant [8]. Wu, Y.et al. introduced virtual
power plants (VPP) and power-to-gas (P2G) technologies to enhance energy integration. They first proposed
a VPP structure connected to P2G and developed a physical output model. Then, they constructed a multi-
objective operational optimization model for VPPs, considering electrical interconnection, with the dual goals
of reducing carbon emissions and achieving economic operation. They also proposed a solution method for this
model. Finally, they validated the contributions of P2G, demand response (DR), and gas storage technology
(GST) through case studies [9].

In response to the existing problems of the above methods, the author proposes a research on virtual
power plant carbon emission prediction and sensitivity evaluation based on big data and multi-scale analysis.
It can flexibly set parameters according to actual situations, reduce prediction errors, and improve prediction
accuracy.

3. Method.

3.1. Design of multi-scale state monitoring methods for big data. The multi-scale state monitoring
method proposed by the author for big data is mainly based on the big data provided by the information
system, constructing corresponding state monitoring functions that meet the conditions for state parameter
reconstruction, and monitoring the corresponding state of industrial equipment [10]. At the same time, multi-
scale monitoring of equipment status is carried out through benchmark models and residual fusion of multi-step
information. The flowchart is shown in Figure 3.1.

3.1.1. Data preprocessing. For big data in device information systems, there is a lot of noise and
incompleteness. In order to monitor devices more accurately, it is necessary to preprocess big data, which can
greatly improve the quality of big data and the efficiency of monitoring [11]. Data preprocessing mainly consists
of four steps, namely data cleaning, data integration, data transformation, and data reduction [12]. Among
them, data cleaning refers to smoothing big data, identifying and removing noisy data, removing isolated
points, and processing missing values in big data accordingly; Data integration mainly involves integrating
big data from different sources into the same data storage system according to the same rules, facilitating the
subsequent use of big data; Data transformation refers to the appropriate transformation of data forms through
methods such as data generalization, smooth aggregation, normalization, etc., in order to facilitate subsequent
use; Data specification refers to the specification representation of the obtained dataset, mainly used to ensure
the integrity of the data. The data preprocessing was completed through the above process, providing data
support for the construction of the following benchmark models [13,14].
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Fig. 3.1: Flow chart of multi-scale state monitoring method for big data

3.1.2. Building benchmark models. Based on the preprocessed data mentioned above, the benchmark
model is constructed using deep learning theory. The benchmark model mainly establishes connections be-
tween the operating data and design parameters of equipment through certain mechanisms, with the aim of
constructing corresponding criteria for establishing industrial equipment parameters and providing reference
information for status monitoring. During the operation of the equipment, comparing the reference information
provided by the benchmark model with measurable information can construct corresponding residual sequences.
If the industrial equipment is working normally, the residual is almost zero; otherwise, it indicates abnormal
operation of the equipment. Inconsistencies frequently arise during equipment operation. Consequently, when
creating a benchmark model, it is essential to develop both steady-state and dynamic models simultaneously.
The steady-state benchmark model is primarily constructed using large datasets of steady-state operating condi-
tions, focusing solely on the parameters during stable equipment operation. In contrast, the dynamic benchmark
model is based on extensive data from dynamic operating conditions, reflecting the equipment’s performance
under varying conditions. During the operation of the equipment, its dynamic working condition data accounts
for a large proportion, therefore, this model mainly represents the relationship between this data. To minimize
modeling errors resulting from device delays, inertia, and other factors, deep learning techniques are employed
to develop the model, thereby enhancing its overall quality [15]. The theoretical model of deep learning is
shown in Figure 3.2.

The construction of the benchmark model was completed through the above process, providing reference
information for the final state monitoring.

3.2. Construction of prediction model based on grey BP neural network. Carbon emissions are
a dynamic process influenced by multiple factors, and artificial neural network models have been proven to
have high applicability for predicting carbon emissions. In the construction of artificial neural network carbon
emission prediction models, accurately identifying the influencing factors of carbon emissions is the key to
improving the accuracy of input layer data in the artificial neural network model, which plays an important
role in improving the prediction accuracy of the model. By combining the dynamic variability, nonlinearity, and
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sociality of carbon emissions, optimizing the carbon emission prediction model through parameter optimization,
weight initialization, model structure adjustment, learning rate scheduling, and other methods, or constructing
a linear nonlinear coupled combination model, the prediction efficiency of the model can be effectively improved.
As a data-driven prediction model, the predictive performance of artificial neural network models is affected by
initial values, which leads to the network easily falling into local optima and training easily entering overfitting
or premature fitting. With the increasing demand for accuracy in carbon emission prediction, further research
is needed on the optimization methods of artificial neural network models. The grey BP neural network based
on error backpropagation has the advantage of continuously approaching the limit value of the function, which
leads to the existence of the optimal solution in the prediction results. In addition, the number of layers,
units, and training factors of the model structure can be set according to different environments, making the
prediction process more flexible and random, and improving prediction accuracy and efficiency. The grey BP
neural network can train a large amount of data and clarify the relationships between the data. By using a
fast descent method to continuously adjust the network weights and thresholds through reverse propagation,
the error of the network is reduced. The core idea of this method is to introduce a new learning method,
which iteratively modifies and trains the network’s reverse propagation to ensure that the output vector of the
network is consistent with the desired vector [16].

The grey BP neural network model considers random variables as gray variables that vary within a certain
interval. After processing, the accumulated sequence shows an exponential growth trend. In this case, the
original data sequence and the accumulated sequence are:

¢ = [c0(1),0(2),c0(3), -, O (n)] (3.1)

™ = [cM(1),eM(2),cM(3),- -+, M (n)] (3.2)

Using the original data sequence and cumulative sequence as input values, a carbon emission peak prediction
model based on grey BP neural network is constructed, as shown in Figure 3.3.

Model training is considered complete when the sum of squared errors in the network’s output layer falls
below a specified threshold. This approach effectively reduces the weighted order deviation within the network
[17]. The specific steps of model training are to initialize each node and randomly assign weights and thresholds
to each node. After completing the parameter settings, calculate the connection weights and thresholds for the
input layer and output layer respectively. Choose the next input method and iterate repeatedly until the
network output meets the requirements.
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3.3. Solving the Peak Carbon Emission Prediction Model for Virtual Power Plants. In order to
solve the carbon emission peak prediction model for virtual power plants, a recursive algorithm is introduced into
the grey BP neural network. This algorithm selects a random carbon emission path, calculates the corresponding
impact weights of each factor, and then obtains the corresponding path carbon emission values. The randomly
selected new carbon emission path is:

Liy1=Li+ X® L'(¢) (33)

In the formula, L; represents the i-th carbon emission path; A represents the carbon emission coefficient;
L'(€) represents the carbon emission path extraction function. In the process of calculating the carbon emissions
of virtual power plants, the recursive calculation method is used to calculate the carbon emissions of virtual
power plants. The formula is:

J
C:ZainiX)\i (34)

=1

In the formula, a; represents the i-th electricity consumption mode; f; represents the i-th power conversion
coefficient; \; represents the i-th type of electricity carbon emission coefficient; j represents the number of
electrical equipment. The recursive algorithm adopts a random selection of carbon emission paths for electricity,
mainly by analyzing the influencing factors of carbon emissions on different paths to obtain the maximum and
minimum carbon emission cycles. The specific operation process is as follows:

Step 1. Randomly obtain the carbon emissions of each path, and by introducing differential equation
parameters and weighting them, a new grey BP neural network model is obtained.

Step 2. Normalization method is used to eliminate non-linear relationships between data and introduce
them into the model. The Lasso regression analysis method was used to analyze the impact of various factors
on the prediction of peak carbon emissions. Lasso regression analysis compresses the coefficients in the model
using a penalty function, turning some factors to 0 to filter out significant variables.

Assuming a as the independent variable and b as the dependent variable, the standard value of the predicted
sample obtained after m samples is (a, b), and the kth predicted value of the independent variable a is:

T = (Th1, Thas o s Thom) (3.5)
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In the formula, T represents the prediction period. The regression model of the dependent variable on the
independent variable can be expressed as:

J
i=1

In the formula, €; represents a random natural number. If you want to filter out variables that have a
significant impact, you need to add a condition to the formula, and the constraint expression is:

(3.7)

arg(ty,ta, -, t)min||b — tal|?
[¢]
s.t.zj ST < ¢

In the formula, t represents the harmonic parameter; ¢ represents the optimal adjustment threshold. Lasso
regression is the process of continuously adjusting harmonic parameter values, reducing regression coefficients,
compressing variable coefficients until they reach 0, in order to obtain significant variables, namely carbon
emission peaks [18].

Step 3. Due to the adjacency of electricity carbon emissions calculation, when calculating the carbon
emissions of a node, only the carbon emissions of neighboring nodes need to be obtained, and there is no need
to know the carbon emission flow information of that node.

By allocating power to each node, the connections between each node can be obtained. Based on the
adjacency of carbon emissions in the power grid, calculate the carbon potential from the initial point to
different nodes in sequence. In each iteration, after determining the carbon potential of a certain node, all
node carbon potentials can be obtained. Therefore, each iteration can obtain accurate node carbon potential
calculation results within any period of time. Finally, the finite recursive method was used to calculate the
carbon potential of all nodes in the network. The specific calculation formula is as follows:

Yica, Pioi + Xjeq, Gio?
Zieﬂi P+ Zjer G

In the formula, P; represents the active power injected by the node; G; represents the active power of
the power unit branch; ;, €; represents the set of carbon emissions and node injection for the i-th and j-th
electricity, respectively. Determine if all nodes have been polled, and if all node carbon potentials have been
obtained, complete the recursion.

Step 4. Under the condition of allowable deviation, the prediction model was solved and the peak prediction
results of electricity carbon emissions were obtained [19].

O'j:

(3.8)

3.4. Experiment. In order to verify the rationality of the author’s virtual electric field carbon emission
peak prediction method, relevant experiments were designed to verify the feasibility of the method. By analyzing
the direction and scale of power exchange between the distribution network and the main network, determine
the calculation order of carbon emissions between each major network. If active power is injected into the main
grid, it can be used as the main grid power supply, not as the main grid load. If active power is injected into the
main grid distribution network, the boundary information between distributed power sources and conventional
thermal power plants is used to analyze carbon emissions in the distribution network. Building on this, the
carbon potential and injection power of the root node were used as key variables for the main network, and
the carbon emissions of the main network were calculated. The distribution of these carbon emissions was then
analyzed based on the carbon emission flow within the main network [20].

4. Results and Discussion. The peak of carbon emissions does not mean that the carbon emissions reach
their peak in a year, but rather that a stable trend in carbon emissions in a certain region begins from that
year. Under the baseline scenario, low-carbon scenario, and enhanced low-carbon scenario, the peak carbon
emissions were collected as shown in Table 4.1.

According to Figure 4.1(a), there is a maximum error of 6 million tons between the peak carbon emissions
of the STIRPAT model method and the data in Table 4.1 under the baseline scenario; There is a maximum
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Table 4.1: Carbon Emission Peak Collection Results

year Peak carbon emissions/10000 tons
/year  Benchmark scenario Low carbon scenario  Strengthening low-carbon scenarios
2008 27001 26001 27001
2010 38001 37001 38001
2012 37001 36001 37001
2014 40001 39001 40001
2016 36001 38001 35001
2018 34001 37001 30001
2020 32001 36001 25001
2022 30001 35001 20001
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error of 5 million tons between the peak carbon emissions of the STIRPAT model method and the data in
Table 4.1 under low-carbon scenarios; There is a maximum error of 4 million tons between the peak carbon
emissions of the STIRPAT model method and the data in Table 4.1 under the enhanced low-carbon scenario.
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According to Figure 4.1(b), there is a maximum error of 4 million tons between the carbon emission peak of
the dual regression prediction model method and the data in Table 1 under the baseline scenario; There is a
maximum error of 5 million tons between the carbon emission peak of the dual regression prediction model
method in the low-carbon scenario and the data in Table 1; There is a maximum error of 6 million tons between
the carbon emission peak of the dual regression prediction model method under the strengthened low-carbon
scenario and the data in Table 4.1. According to Figure 4.3(c), it can be seen that the peak carbon emissions
under the three scenarios using the research method are consistent with the data in Table 1. Based on the
above analysis results, it can be concluded that the peak carbon emissions from electricity using the research
method are consistent with actual data, indicating that the prediction results of this method are more accurate.

5. Conclusion. The author proposes a study on virtual power plant carbon emission prediction and
sensitivity evaluation based on big data and multi-scale analysis. Due to the non-linear trend of carbon emission
changes, the grey BP neural network is used for carbon emission peak prediction. The reason is that the grey
BP neural network has good non mapping ability and can flexibly set parameters according to actual situations.
The Lasso regression screening method and recursive calculation method are used to solve the model, and the
relevant results of electricity carbon emission peak prediction are obtained. The experimental results show that
under the baseline scenario, low-carbon scenario, and enhanced low-carbon scenario, the peak carbon emissions
of the author’s research method are consistent with the actual values, all of which are 40 million tons, 390
million tons, and 40 million tons. The rationality of the author’s research method has been verified by the
experiment, which can provide technical support for carbon emission control.
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