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INNOVATIVE APPLICATIONS OF MULTIMODAL SENSING TECHNOLOGY IN SPORTS
REHABILITATION ASSESSMENT AND TRAINING

CONGCONG MA∗, KUN JIANG†, QIAN ZHAO‡, DECAI NI§, AND JIADONG ZHANG¶

Abstract. This study explores an innovative approach to evaluating the training effectiveness of lower limb exoskeleton robots
by integrating multiple data types, including electrophysiological signals and kinematic measurements, to assess patients’ walking
ability quantitatively. Through precisely defined synergistic indicators, this method effectively combines different types of data
and dramatically improves the efficiency and accuracy of rehabilitation assessment. First, the patient’s lower extremity electro
myoelectric activity and movement data were recorded while walking with exoskeleton assistance. Secondly, the key EMG and
kinematic features are analyzed and extracted by a collaborative quantization algorithm based on the theory of muscle cooperative
work. Then, this information from different levels is integrated to build a feature fusion model, based on which the lower limb motor
function score is calculated. The development of multi-channel lower limb exoskeleton human-computer interaction technology for
sports training can provide a variety of standardized and standardized auxiliary training for athletes and meet the human body’s
multi-sensory immersion. A multi-step, multi-degree-of-freedom motion planning algorithm is proposed to reproduce various
activities the human body requires. Secondly, the lower extremity-oriented multi-modal human-computer interaction technology is
studied to realize the display and guidance of standard movement in information space on the virtual reality competition training
simulation platform. Build a motion database to assist and correct basic motion in physical space. The experimental results showed
a significant correlation between the extracted myoelectric and kinematic synergistic features and the clinical evaluation tools, with
the correlation coefficients reaching 0.832 and 0.859, respectively. The fusion features show a stronger correlation when applying
the K-nearest neighbor (KNN) algorithm. This evaluation method cannot only optimize the training strategy of the exoskeleton
robot according to the results but also provide the possibility to realize the ”man in the ring” mode of evaluation and training
simultaneously.

Key words: Rehabilitation assessment; Muscle coordination; Mode fusion; Machine learning; Stroke; Multimodal sensing
technology.

1. Introduction. With an aging population and increasing incidence of chronic diseases, lower limb dys-
function has become a severe challenge in the field of global public health. Lower limb rehabilitation is related
to individual quality of life and is an essential part of the rational allocation of social medical resources. Tra-
ditional rehabilitation assessment and training often rely on the experienced judgment of professionals and
a single assessment means, which limits the accuracy and individuation of rehabilitation effects. Therefore,
exploring more scientific and efficient lower limb rehabilitation assessment and training methods has become
one of the hot spots in rehabilitation engineering.

The development of multimodal sensing technology provides a new opportunity to solve this problem.
Multimodal sensing technology refers to integrating a variety of sensors, such as electromyography (EMG),
accelerometer, gyroscope, pressure sensor, etc., to capture the electrophysiology, kinematics and dynamics of
the human body simultaneously. This technology can provide more prosperous and detailed data in time and
space to achieve a more comprehensive and in-depth understanding of the human movement function. In
lower limb rehabilitation, applying multi-modal sensing technology can realize the accurate and quantitative
assessment of patients’ walking ability and provide a scientific basis for developing personalized rehabilitation
training plans.

The paper [1] shows that EMG based on a single pathway can automatically evaluate the degree of damage
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in stroke patients and produce quantitative grading indicators corresponding to clinical scores. The researchers
developed a portable exercise test bed. A comprehensive evaluation method of upper limb motor function was
constructed by using an extreme learning machine. This method is suitable for clinical and home environments.
In the paper [2], a neurorehabilitation evaluation method was constructed using the surface EMG signal of
limbs. The paper [3] puts forward a new idea of quantitative evaluation of motor function using a mechanical
arm’s strength and trajectory characteristics. The research results will enhance the effectiveness and credibility
of rehabilitation evaluation, expand its scope of application, and promote the broad application of rehabilitation
robots. In addition, due to the rapid development of computer science and technology in recent years, machine
learning has been paid more and more attention [4]. Current research on action evaluation based on machine
learning usually divides behaviors into two categories: right and wrong. The result is only 0 or 1. This method
can only be qualitatively described, unable to achieve a quantitative analysis of movement quality at each
level and unable to identify incremental changes in patients’ imagination. Moreover, the modeling process is
relatively complicated, requiring specific training samples.

This project intends to research multi-source sensing data fusion of lower limb exoskeleton systems. In
this project, real-time acquisition of lower extremity surface electromyography and movement information was
carried out. Then, the patient is comprehensively evaluated from various aspects, such as movement and
electrophysiology, to guide individual rehabilitation exercises and carry out guided rehabilitation exercises for
the patient. A multi-step, multi-degree-of-freedom motion planning algorithm is proposed to reproduce various
activities the human body requires [5]. Secondly, the lower extremity-oriented multi-modal human-computer
interaction technology is studied to realize the display and guidance of standard movement in information space
on the virtual reality competition training simulation platform. Build a motion database to assist and correct
basic motion in physical space. Study the relationship between evaluation criteria and scale [6]. Finally, the
score data are imported into the data fusion model to obtain the score of the machine test. The research results
of this project will lay a foundation for applying the lower limb exoskeleton robot in stroke.

2. Lower limb exoskeleton multi-modal interaction system.

2.1. System Architecture. This project draws on the next generation of information-physical fusion
technology (HCPS) to study the multi-modal interaction technology for the human body. In this process, the
communication between man and machine and the control of the path is required, and it is required to accurately
understand and implement the person’s intention [7]. At the same time, it can meet the purpose of efficient
information transmission and feedback. Under the background of the rapid development of the new generation
of information technology, the digital intelligent technology represented by virtual reality and extended reality
has laid the foundation for optimizing man-machine collaboration. Compared with the traditional CPS, the
new generation of urban health management is a human-centered ternary system [8]. Its goal is to achieve
cooperation and co-prosperity and guide the improvement of work efficiency. Figure 2.1 depicts the hierarchical
structure of HPCS (image cited in A Triple Human-Digital Twin Architecture for Cyber-Physical Systems). It
controls the entire physical system by sensing the user’s presence, views and behaviors. The information system
is added to the human-computer interaction process through the interactive cycle of pedestrian, information,
and entity models. In this way, the profound combination of the trinity of ”man-machine-thing” is gradually
achieved.

2.2. System Functions. This project will study human-machine integration technology for lower limbs.
It consists of three modules: a virtual reality simulator, a motion database, and a lower limb exoskeleton
(Figure 2.2). Establish the information interaction model between the human endoskeleton and VR. The
combination of reality and virtual provides more realistic movement training guidance for the human body to
improve the training effect. The general applicability of the system is improved by collecting 4 motion nodes
and transforming them into the limb movement of the training object [9]. The lower limb exoskeleton robot
proposed in this project has the advantages of a simple structure, good adaptability and a flexible response
mechanism. It can provide a variety of force feedback methods for all kinds of moving objects. The virtual body
controller of the upper computer and the actual model of the lower limb exoskeleton robot arm of the slave foot
constitute the whole control system. It mainly includes a virtual reality competitive training simulator and
action data set design. Through the detection of virtual objects, the trajectory information of virtual objects
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Fig. 2.1: Human-information-physical system structure.

is fed back to the actuator [10]. Then, the lower limb exoskeleton robot is supported by force perception, and
VR simulators enhance the vision and hearing so students can obtain standardized and immersive exercise
experiences in movement training.

Students wear an exoskeleton robot, virtual reality headset and motion capture tracker, and follow the in-
structor to do basic movements in virtual reality. Students can complete the standard sports training according
to their own wishes through pre-programmed programming in the virtual simulation system. The lower limb
exoskeleton robot arm adopts a force feedback device to realize the dynamic perception of the body [11]. The
system ensures the standardization of the body and improves the training effect. The system helps students
carry out basic competitive sports training using multi-sensory information such as vision, hearing and touch.

2.3. System Hardware. The system hardware completed the pressure feedback, including the motor
drive and vibration two-force feedback. The hardware control scheme is given in Figure 2.3. The system
comprises an STM32 development board, HC-05 Bluetooth module, MPU6050 module, vibration motor, EPOS
drive, MAXON-Re35 motor, etc.

The athletes’ hearing and force perception are enhanced by VR technology and lower limb exoskeleton
technology. A method based on motor drive and vibration feedback is proposed to realize multi-mode human-
computer interaction [12]. The first is to set the relevant parameters, and then put on the robotic arm and
helmet on the leg. The Angle marker sensor is used to track the movement of the current trainer. The current
motion orientation of the trainer and the changed reference motion orientation are determined. Figure 2.4
shows the multi-modal interactive execution process of the lower extremity exoskeleton.

3. Quantitative method of lower limb movement based on muscle synergy theory.
3.1. Muscle collaborative extraction. Muscle coordination, as an optimal central regulation mode, is

clinically significant for recovery after a stroke. Studies have shown a high degree of consistency in healthy
people’s coordination of body movements [13]. This project seeks the mechanism of muscular coordination
as universal neuromuscular coordination and to provide the temporal characteristics of the active-induced
sEMG quantified muscle coordination. The existing decomposition methods mainly include factor analysis,
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Fig. 2.2: Framework of multi-modal interaction system for lower extremity exoskeleton.

Fig. 2.3: Hardware control block diagram of lower extremity exoskeleton multi-mode interaction system.

non-negative matrix decomposition, principal component analysis, etc., which decompose multi-channel sEMG
data and obtain fewer samples with high characterization ability. The basic mathematical model of code
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Fig. 2.4: Multi-modal interactive execution flow.

composition is expressed in formula (3.1):

Yn·τ = Rn·λ × Jλ·τ = [R1, R2, · · · , Rλ]× [J1, J2, · · · , Jλ]T =

λ∑
i=1

RiJi +D (3.1)

It is known that the matrix Yn·τ can be divided into two parts: one is the coordination unit Rn·λ, and the
other is the excitation factor Jλ·τ . Where D is the error matrix that can be ignored. Where n represents the
number of channels, τ represents the number of samples, λ represents the number of cooperative elements, T
represents the exchange number, and i represents the number of matrices.

The traditional joint extraction method uses matrix decomposition to map the original sample to the lower
dimension while maintaining the characteristic. Principal component analysis (PCA) is a typical feature extrac-
tion method based on probability distribution, which can effectively deal with samples containing redundant
information [14]. It has significant application value in pattern recognition, machine vision, etc. By solving A
linear orthogonal transformation of R matrix, the obtained data U is converted into an implicit low-dimensional
matrix C :

C = RTU (3.2)

In equation (3.3), the method of obtaining each component of matrix C is expressed:

cij = rTi uj (3.3)

where cij is the element of a low-dimensional matrix C, ri is its orthogonal vector, uj is the eigenvector, and T
is the commutation sign. The loss function F is represented by the maximum value of the converted difference
to obtain the orthogonal vector ri :

F = max
1

N

s∑
i=1

N∑
j=1

(
rTi uj − rTj ū

)2
= max

s∑
i=1

rTi Bri

s.t. rTi ri = 1

(3.4)

where π represents the mean of u, and B represents the covariance matrix of U. The eigenvector refers to
the local maximum eigenvalue on ri. The corresponding eigenvalue δi and corresponding eigenvector vi are
obtained by the HSVD method, and then the orthogonal matrix τ · λ is obtained. Here, U is the trained τ · n
dimension EMG signal ( τ is 1 sample number of gait cycles, n is 8 channels), and R is the number of muscle
coordination units in the human body ( λ is the number of muscle coordination units). C is data converted
to dimension λ · y. The eigenvalues and eigenvectors after singular value decomposition are used to measure
the similarity. When walking, the muscle group of the leg can be divided into 5 cooperative modes, so the
cooperative unit λ is represented by 5 .
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3.2. Collaborative Quantification. Y = {y1, y2, y3, · · · , yn} is the action data, where n is the number
of extracted steps yi(i = 1, 2, · · · , n), and is the data of a step. Through principal component analysis, the
convector vi, ui is obtained, corresponding to the eigenvector δi, ξi. When two objects have similar motions in
higher dimensions, their orbits should be similar. So, the sequence must also be the same when the corresponding
action is similar. A joint decomposition method based on principal component analysis is proposed to realize
the joint analysis of motion parameters [15]. In this way, the retrieval and classification of motion parameters
are realized.

Si = max
din(Z)

= min
a∈z

∥Bu∥2
∥u∥2

(3.5)

If two actions are similar, their conformal vectors v1 and u1 should be roughly parallel. There is |v1 · u1| =
|v1∥∥u1 ∥cos(α) ≈ v1∥u1| = 1.α is the Angle of the two common vectors v1 and u1. The sEMG, and action se-
quences of different training segments were analyzed by weight similarity measure to evaluate patients’ recovery
status quantitatively.

χ(A,Q) =
1

2

n∑
i=1

((
Si∑n
i=1 Si

+
ηi∑π
i=1 ηi

)
|vi · ui|

)
(3.6)

Where n is the eigenvalue number, A is the baseline data set by the reference control group, and Q is
the patient data. Si, ηi is the i eigenvalue of the reference and experimental data. It corresponds to the i-
cooperation vector ve, ui. In this way, only the convectors of the two action matrices and their corresponding
eigenvalues are obtained without the influence of other action information [16]. The algorithm can capture the
similarity between λ conformal vectors and use corresponding eigenvalues for weight calculation. χ is in the
range from o to 1 . The closer it is to 1 , the better the patient fits the control group.

3.3. Modal fusion evaluation model. The most significant difference in each stage is the cooperation
mode and the movement mode of each independent part. It focuses on gradually transforming the overall
rehabilitation process to a standard and complex movement mode to achieve the brain reassembly effect [17].
This method is challenging to detect if a single sensor is used for detection, so additional characteristics are
needed to classify each specific action more deeply. A joint coordination vector Gi is constructed to verify the
practicality of this collaboration feature, expressed by the following formula (3.7)

Gi = [Di, · · · , Dn,Λi, · · · ,Λn] (3.7)

Where Di is the neurophysiological characteristic of cooperation, Λi is the motor coordination characteristic,
and n is the number of cooperative characteristics. A predictive score Zi for the patient’s lower limb recovery
can be obtained using a guided machine-learning model:

Zi = I (Gi) (3.8)

The KNN method is used to train 5 neighbors. The eigenvalue space U is defined as an n-dimensional vector
space of real numbers (ui, uj) ∈ U, ui =

(
u
(1)
i , u

(2)
i , · · · , u(n)

i

)
, uj =

(
u
(1)
j , u

(2)
j , · · · , u(n)

j

)
.H is expressed as a

function of the distance of (ui, uj). Using the formula (3.9) in Euclidean geometry:

H (ui, uj) =

(
a∑

i=1

∣∣∣u(i)
i − u

(n)
j

∣∣∣2) 1
2

(3.9)

Here l is the dimension of the eigenspace U . The least squares support vector machine is regarded as a multi-
layer feedforward neural network whose training model comprises 130 neurons. The quasi-Newton algorithm is
used to optimize the weights and deviations, and the convergence efficiency of the algorithm is improved. Set
the maximum depth of the RF to 5 . The radiation basis function is the core of the algorithm. Where Zi is the
result of the pattern, and does the evaluation value correspond to the result of the pattern, it is more detailed
than the conventional category evaluation. From the 6 people, 60 cases were selected as experimental samples,
and the other 4 cases were used as test data.
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Fig. 4.1: Weight comparison of synergies between healthy subjects and patients.

4. Test results and analysis.

4.1. Comparison between healthy subjects and patients. The collaborative element weights of the
healthy and patient sides were shown in Figure 4.1 for the BRS3 stage subjects. This index ranges from o
to 1 , indicating the strength of muscle activity from large to small. Due to the contraction of local muscles
after stroke, the local myoelectric activity is reduced, so the weight of the affected limb is generally lower than
that of the healthy side [18]. However, in the BRS3 stage, the activation weight of the affected area of the left
ventricle was significantly higher than that of the healthy area. This is due to increased limb strength caused
by muscle spasms in the left ventricle.

The moving sample size tables BRS6 and BRS3 taken from the patient are shown in Figure 4.2. Patients
in the BRS6 stage can walk independently, and their indicators are comparable to those of ordinary people.
However, BRS3 stage patients often have instability due to limb pain and decreased ability to control movement.
In particular, weakness of the hip flexors can significantly reduce the range of motion of the hip joint. The
affected knee cannot fully flex and extend during both the upright and the rocking phases due to the weak flexor
muscles of the knee flexor tendon, which prevents it from achieving normal hip flexion during both the upright
and the rocking phases. Under normal circumstances, the maximum bending of the patient’s foot occurs at the
beginning of walking, but the degree of bending of the patient’s knees is small, resulting in the patient’s feet
not being lifted from the ground. In addition, because the patient cannot fully lift the front ball of the affected
side during the rocking phase, the initial contact appears to be on the flat ball of the foot rather than the heel.

The flexion and extension motion of the affected upper limb decreased significantly in the swaying period,
and due to the lack of lower limb muscle strength, it could not independently complete its weight when standing.
By studying sEMG and joint Angle, the cause of the limited range of limb movement after stroke. Grade 3
patients, due to their limited joint flexibility, will produce muscle convulsions and other symptoms, so their
movements often end prematurely or deviate. The above two points can more directly reflect the shortcomings
of patients in lower limb movement.

4.2. Research on the characteristics of the cooperation index.. The paper divided 10 patients
into 4 different BRS stages. In Figure 4.3, there are significant differences in the characteristics of the joint
index among patients with various BRS stages. Among them, the collaborative characteristics of SEMG appear
more in Stage 6 and Stage 3. The S7 muscle twitching was more severe in BRS5 patients, so the cooperative
properties of sEMG were very different from normal controls, with two abnormal values. During the same
period, the data of the movement index were relatively stable. In terms of movement parameters, the data
distribution of patients with the BRS3 stage is very different, and the variation is considerable compared with
the average population, mainly because the symptom of patient S6 is that he is unable to speak in the right limb,
and because his disease has only been over one month, there are a small number of movement samples. BRS3
stage patients have severe sports injury and spasmodic muscle tonia, and their motor and electromyographic
coordination index is lower than usual. However, since the standard deviation of BRS6 stage patients was
significantly lower than that of 3-5 stage patients, both sEMG and motor coordination index were relatively
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Fig. 4.2: Comparison of subjects’ lower extremity angles.

Fig. 4.3: Data distribution of BRS staging coordination index.

stable, suggesting that the muscle control function and Angle curve of BRS6 stage patients were relatively
stable when walking.

5. Conclusion. This paper intends to construct a set of collaborative feature-based walking function
assessment methods for stroke patients and combine this assessment method with BRS scale grading to verify
the correctness of this method. Studies have shown that this scale is highly correlated with the conventional BRS
scale. The research results can improve the accuracy of clinical evaluation and help update the motion trajectory
of the lower limb exoskeleton in real time based on evaluation data. From the clinical level, the evaluation system
proposed in this study can better meet the needs of newly admitted patients, provide evaluation indicators for
newly admitted patients, and shorten the evaluation cycle of rehabilitation doctors. The research results of this
paper provide a basis for rehabilitation doctors to make a reasonable rehabilitation plan.
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