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IMPROVING NODE LOCALIZATION ACCURACY IN WIRELESS SENSOR NETWORKS
BASED ON COMPUTER VISION AND DEEP LEARNING OPTIMIZATION

LIANJUN YI ∗

Abstract. In order to solve the problem of angular effects and reduced positioning accuracy caused by rapid speed changes in
position tracking and positioning methods in wireless sensor networks, as well as the difficulty of improving positioning accuracy
with a single solution, the author proposes a research on improving node positioning accuracy in wireless sensor networks based
on computer vision and deep learning optimization. The author proposes a tracking and localization method using Kalman
filtering (KF) and visual assistance on the TI CC2431 ZPS platform. On the basis of normalized cross-correlation, visual assistance
calibration technology is used to extract the position of reference nodes as landmarks using visual assistance methods. Then, the
KF method is used to calibrate the position estimation, which randomly generates virtual nodes for neural network training. Then,
the priority positioning node is located and used as the anchor node for the next positioning, and the wireless loop is used for
positioning calculation. The experimental results show that both the TI ZPS method and the KF based method have an estimated
position error distance of over 55%, which is less than 2.2m and 1.8m, respectively, The proposed tracking and positioning method
has an estimated position error distance of over 55% less than 1.4m. The method proposed by the author effectively avoids
uncertainty caused by system errors in actual dynamic environments, reduces angular effects in position estimation systems, and
improves positioning accuracy.
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1. Introduction. With the development of information technology, data is growing at a massive speed,
and more and more data is being discovered and utilized. Data that was once unattainable or unused can
be collected under the background of new technologies, thus forming the era of big data [1]. Sensors, as an
important source of information collection in the physical world, are widely used in various industries. Different
sensors have different functions, and a large number of sensors use the same protocol to form a network called
Wireless Sensor Networks (WSNs) [2,3]. Wireless sensor networks can achieve functions such as data perception,
data collection, and data transmission. Usually, wireless sensors use hardware devices that collect information
as wireless sensor nodes, such as smoke alarms, water level monitoring sensors, water quality monitoring sensors,
video monitors, etc. These sensors are mainly used to collect certain data. The broad definition of wireless
sensors refers to all devices that can provide data, which expands the range of wireless sensors from both
ends [4]. In traditional application industries, data collection, data transmission, and other functions can
be achieved by installing embedded devices. For example, in traditional washing machines, adding power
starters and wireless receiving modules can achieve semi-automatic control. The washing machine can be
operated through mobile phones, and shared bicycles can be shared in real-time by adding Bluetooth locks
or 4G modules [5]. The emergence of wireless sensor technology has upgraded many functions in traditional
industries, and traditional devices are empowered with new functions through new technologies. In the context
of new technologies, with the development of 5G and cloud computing, a large number of new products come
with the function of implanting wireless sensors. For example, autonomous vehicles are a new device filled with
wireless sensors, such as SLAM photodetectors, steering wheel controllers, brake systems, path imaging, etc.,
all of which collect data through sensors and provide real-time feedback through data transmission. Various
wireless sensors are no longer simple single individuals, but they become a collaborative whole. After being hard
IPed by intelligent algorithms, sensors can even become execution agencies [6]. Wireless sensors with unlimited
types, functions, manufacturers, and regions can form a wireless sensor network within a certain range using
the same communication protocol. For example, ZigBee New communication methods such as Lora, NB IoT,
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Sigfox, and WiFi can be embedded in devices through communication modules for self-organizing networks.
2. Literature Review. Numerical optimization is an accurate iterative optimization method, and the

quality of the solutions obtained greatly depends on the selection of the initial state [7]. When applied to
node localization problems, improvements need to be made based on the inherent properties of the problem
itself. For example, Mobile Forest Protection Network (FPWSN) has shown significant advantages in reducing
forestry economic losses and improving fire prevention efficiency, Mobile Forest Protection Wireless Sensor
Networks (FPWSN) have been widely used in the forest conservation sector. Nevertheless, at the current stage
of development, the impact of sensor nodes on the system is frequently overlooked in forest fire prevention
and control efforts. Xie, J. et al. devised a novel clustering method tailored for mobile FPWSN termed
Boltzmann Adaptive Chaotic Salp Swarm Optimization Clustering (BACSSOC). This innovative approach
aims to significantly extend the lifespan of the system, minimize energy usage, and diminish system latency [8].
Jin, Z. et al. explored strategies for deploying sensor nodes to minimize deployment costs while guaranteeing
continuous target coverage. They utilized the Confidence Information Coverage (CIC) model to formulate the
Minimum Deployment Cost Target Permanent Coverage (CICMTP) problem, with the objective of minimizing
the sensor node count needed for deployment [9]. Yu, Q. et al. introduced a framework that integrates
wireless sensor networks with the Internet of Things (WSN IoT SEC) for advanced environmental monitoring.
The study leverages SEM technology to partition the analysis, exploring individual targets with the aid of
detectors, machine learning models, and classifiers. A thorough investigation was undertaken, drawing insights
from evaluation results and identified patterns, with a focus on highlighting crucial recommendations and
underscoring the importance of SEM analysis [10].

The author proposes a position tracking system combined with visual assistance methods in the WSN envi-
ronment, with the aim of exploring how to improve the corner effect caused by the tracking system. Compared
to traditional position estimation, based on normalized cross correlation, the visual assistance method of the
NCC method detects landmark positions as calibration, alleviating the angular effects caused by filtering and
tracking techniques. More accurate position estimation was obtained in a static WSN environment.

3. Research Methods.
3.1. Basic knowledge.
3.1.1. State and observation equations. In a state-space representation of a dynamic system, if the

system is described by a probability density, the state equation of the system measured by MT at time k is
given by the following mathematical model 3.1:

xλ+1 = funx(xk, uK) ↔ f(xk+1|xk) (3.1)

The observation equation is as follows 3.2:

zk = funz(xk, ϵk) ↔ h(zk|xk) (3.2)

Among them,xk,funk(),uk,zk,funz() and ϵk are respectively state vectors, transformation equations, pro-
cess noise with a known distribution, observation vectors, observation equations, and observation noise with a
known distribution. The mathematical model and measurement of linear dynamic systems are represented by
the following equations 3.3 and 3.4:

xk+1 = Φkxk + uk, uk ∼ N(0, Qk) (3.3)

E{un, u
T
k } =

{
Qk, n = k

0, n ̸= k
= δ(k − n)Qk (3.4)

The observation equation is as follows 3.5,3.6:

zk = Hkxk + ϵk, ϵ ∼ N(0, Rk) (3.5)
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E{ϵn, ϵTk } =

{
Rk, n = k

0, n ̸= k
= δ(k − n)Rk (3.6)

Among them, xk,Φk,ukand Qk are the state matrix, state transition matrix, model noise matrix, and model
noise covariance matrix, respectively [11,12]. uk and ϵk is a Gaussian vector that is independent of the zero
mean of the corresponding covariance matrices Qk and Rk.

3.1.2. Kalman filtering. Assuming that vector x = [x1, · · · , xn]
T is composed of independent compo-

nents, i = 1, · · · , n. The PDF of x consists of independent PDFs of x1, · · · , xn. N(x;m,P ) is The Gaussian
density of n-dimensional vectors, the n-dimensional Gaussian density function is defined as follows 3.7:

N(x;m,P )
∆
x|2πP |−1/2exp{(−1

2
(x−m)TP−1(x−m))} (3.7)

Among them, x,m, P are parameters, mean, and covariance, respectively. At time t = tk, the vector x(t)
value is xk. At time t = tk, vector x(t) gives the estimated value xk|j at time t = tj is represented by double
subscripts [13].

(1) Prediction stage (time update stage). From From k to k+1, the state prediction and prediction error
covariance are calculated using the following equations 3.8, 3.9, and 3.10:

x̃k+1 = ϕkx̂k (3.8)

P̃k+1 = ΦkP̂kΦ
T
k +Qk (3.9)

P̂k = {êkêk}, P̃k = E{ẽkẽkT } (3.10)

Among them, ekj
∆
= xk|j−xk, ek|k

∆
= x̂k−xk = êk, ek|k−1

∆
= x̃k−xk = ẽk ◦ x̂k, x̃k, ek|j , êk, ẽk are state estimation

matrix, the status forecast matrix, the status error matrix, the estimated error matrix, and the forecast error
matrix are respectively[14].

(2) Innovation stage. The calculation formula for the innovation stage is as follows 3.11,3.12:

zzk = zk −Hkx̃k (3.11)

Kk = P̃kH
T
k [Hk, P̃HT

k +Rk]
−1 (3.12)

Among them, zzk and Kk are the innovation matrix and the Kalman gain matrix, respectively.
(3) Correction phase. The state estimation and the update of the estimation error covariance are as follows

3.13,3.14:

x̂k = x̃k +Kkzzk (3.13)

P̂k = [I −KkHk]P̃k (3.14)

Among them, I represents the identity matrix.
3.1.3. Normalized cross-correlation. To determine a reference node as a route marker (RN)�the author

combined a pattern recognition method with RN (ID) for estimating position calibration [15]. It is well-known
that NCC is one of the most basic area-based matching techniques. The NCC scheme is extensively utilized
in image processing applications, as it can mitigate brightness discrepancies between images and templates
resulting from varying lighting conditions. The NCC equations used by the author are 3.15, 3.16, 3.17, 3.18,
3.19, and 3.20:

GT =

∑n
i=1

∑m
j=1 GT (xi, yj)

n ·m
(3.15)
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GS =

∑n
i=1

∑m
j=1 GS(xi, yj)

n ·m
(3.16)

σT =

√∑n
i=1

∑m
j=1(GT (xi, yj)−GT )2

n ·m− 1
(3.17)

σS =

√∑n
i=1

∑m
j=1(GS(xi, yj)−GS)2

n ·m− 1
(3.18)

σTS =

∑n
i=1

∑m
j=1[(GT (xi, yj)−GT ) · (GS(xi, yj)−GS)]

n ·m− 1
(3.19)

r =
σTS

σTσS
(3.20)

Among them, GT (x, y) and GS(x, y) are grayscale images of the target window and search window, respectively;
GT and GS are the grayscale values of the target window and search window, respectively; m and n are the
number of rows and columns, respectively.

3.1.4. ZigBee positioning system. The ZigBee network, which is IEEE 802.15.4, is designed to facilitate
the communication of information at a low, low-power and cost-free time while maintaining the route. In Figure
1, a fundamental location system utilizing a ZigBee network is shown, wherein the Received Signal Strength
Indicator (RSSI) is used to measure the power of a received wireless signal. The ZigBee Positioning System
(ZPS) includes three kinds of nodes, namely, an index, a RN, and a BN. The coordinator is attached directly
to the computer as shown in Figure 1. The RNs, which are located in a known position, send to the BN their
equipment ID and its coordinates. Each stationary RN is located at a predefined location. A BN node collects
a signal from an RN in accordance with an RSSI value for an RN. When a BN receives a signal from an RN, it
identifies a distance between a BN and an individual RN by means of the RSSI sample collected together with
a route loss model. The location of the BN is then computed according to the RNN coordinates. Eventually,
the BN’s estimated location is transferred through a WSN to a Location-Based Services (LBS) app.

3.2. Proposed algorithm. The method for measuring uncertainty in WSN utilizes the widely-used com-
mercial system ZPS, which is based on the CC2431 positioning engine developed by Texas Instruments (TI).
Detailed technical information about the TI CC2431 can be found at http://www.ti.com/product/cc2431. The
TI CC2431 is a hardware localization engine specifically designed for low-power local area network (ZigBee)
applications within WSN [16-18]. In Ad Hoc wireless networks, it is used to evaluate BN position estimation
based on RSSI values (from RN, obtained by centralized computing methods). According to the RSSI value,
The TI CC2431 positioning engine independently outputs (X , Y) Coordinates. The author focuses on having
independent (X , Y) The localization and tracking scheme for the group.

3.2.1. Formulaization of problems. To enhance the accuracy of position tracking, the tracking method
can be reformulated as a filtering problem. This involves integrating Kalman Filter (KF) based techniques into
position estimation systems using tracking algorithms to enhance the accuracy of the positioning system. While
the state and measurement models typically operate within two-dimensional linear Gaussian systems, extending
the approach to three-dimensional models is straightforward within the framework of filtering methods. The
two-dimensional model vector xk = [x1,k, x2,k, ẋ1,k, ẋ2,k]

T represents the state of MT at time k, where, x1,k and
x2,k respectively represent X , Y coordinate. ẋ1,k = s1,k and ẋ2,k = s2,k are represent the velocities in the X and
Y directions, respectively [19]. The speed model for the MT is founded on speed noise. The two-dimensional
model of the MT characterizes its movement and observed position by incorporating random elements, and the
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Fig. 3.1: Simple positioning system based on ZigBee network

formula for calculation is provided in equations 3.21 and 3.22.
x1,k+1

x2,k+1

ẋ1,k+1

ẋ2,k+1

 =


x1,k+1

x2,k+1

s1,k+1

s2,k+1

 =


1 0 ∆k 0
0 1 0 ∆k

0 0 1 0
0 0 0 1

 =


x1,k+1

x2,k+1

ẋ1,k+1

ẋ2,k+1

 =


u1,k+1

u2,k+1

u3,k+1

u4,k+1

 (3.21)

[
z1,k
z2,k

]
=

[
1 0 0 0
0 1 0 0

]
=


x1,k+1

x2,k+1

ẋ1,k+1

ẋ2,k+1

+

[
ϵ1,k
ϵ2,k

]
(3.22)

Among them, ∆k is the measurement period between k and k+1. The difference between equations 3.3 and 3.5
and equations 3.21 and 3.22 can be represented by uk = [u1,k, u2,, u3,k, u4,k]

T for process noise; zk = [z1,k, z2,k]
and ϵk = [ϵ1,k, ϵ2,k] represents respectively Observation information and measurement noise of MT at time k
[20].

3.2.2. Visual assisted position estimation. In the WSN environment, signals are affected by reflection,
diffraction, scattering, and attenuation effects during propagation, and the instability of RSSI values can also
affect positioning accuracy. The signal feedback of the TI CC2431 positioning engine is greatly affected by
RSSI information, which can reduce positioning accuracy [21]. To enhance positioning accuracy, a technique
leveraging auxiliary markers is employed to counteract angular distortions caused by filtering and tracking
methods in dynamic, changing environmental conditions. This method facilitates calibration and positioning
based on sensor landmark positions. RN landmarks are extracted from video features using the NCC method
for precise position estimation. Moreover, to conserve energy and extend the lifespan of intelligent mobile
terminals utilizing the NCC method for position estimation, this approach enables the simultaneous operation
of two modes based on a shared threshold: Sleep mode and activity mode. The threshold, derived from RSSI
and ZPS testing platforms, determines whether the visual assistance algorithm remains in active mode based
on the detected RSSI level [22]. As the BN nears the RN, the video camera of the intelligent mobile terminal
initiates path recording and subsequently identifies landmarks using the NCC method. Conversely, when the
RSSI surpasses the threshold, the visual assistance algorithm transitions into sleep mode, halting path recording
by the video camera. Figure 3.2 illustrates an instance of the visual assistance scheme utilizing the NCC method.
Experimental findings demonstrate the efficacy of the NCC method in accurately extracting RN from video
features as the correct landmark.



Improving Node Localization Accuracy inWireless Sensor Networks based on Computer Vision and Deep Learning Optimization 893

Fig. 3.2: Example of extracting RN as a landmark

3.3. Analysis of RBF-HOP localization algorithm.
3.3.1. The process of positioning algorithm. The positioning algorithm mode adopted by the author

is centralized. In this model, the key point of this model is to transmit the hop number of the WSN to one of
the WSN’s non-known nodes and its anchor points, and then analyzes and determines the specific positions of
each unknown node through this processing center. This approach doesn’t demand high hardware specifications
for wireless sensors and concurrently lowers the energy consumption of wireless sensor node processing during
positioning operations. However, this computational technique necessitates awareness of the minimum hop
count value between nodes within the wireless sensor network. The positioning calculation process mainly
includes the following points: Firstly, adjust the hop count of each anchor node to 0, that is, adjust it to the
initialization position, so that further calculations can be carried out; Secondly, once an anchor node has been
identified, it will be able to transmit a particular position message to the adjacent nodes; Thirdly, for each
neighboring node that receives information packets, the hop count should be updated to the anchor node’s hop
count, and then an additional 1 should be added to this hop count. After that, the information packets should
be propagated to the next adjacent node; Upon receiving hop count information from the preceding node, the
subsequent node adjusts its hop count to ensure that each node’s hop count reaches the minimum value. Then,
the next hop count information is propagated to other nodes; The fifth step is to repeatedly update the node
hop count operation until the node hop count information no longer changes [23].

For instance, if the sensor has if the whole WSN has N nodes, and there are M anchor nodes (m
<
=), then

Among m anchor nodes may be determined to be n, the planar position coordinates of the t-th node can be
represented as mt = (xt, yt). In the process of calculating the minimum hop count of an unknown node, the hop
count information is directly sent to the service processing center, and the information of that node is recorded
and processed. Randomly generate several virtual nodes in a wireless sensor network, and number them in
order, counting them as 1, 2, 3, etc. The node plane coordinates are marked according to the numbers. Then,
using the known radiation radius of the sensor nodes, combined with the hop calculation process, calculate
the specific hop count value from each virtual node to the anchor node. Record their hop count in a matrix
format, and input the matrix hop count into the input layer of the RBF neural network for training, after the
training is completed, its corresponding expected output value is the actual coordinates calculated by the node
[24]. Moreover, it is also possible to take the hop count of the anchor point as a training input in RBF net and
compute the coordinate of the anchor point.

3.3.2. Localization of Unknown Nodes. The RBF neural network has memory after being trained
with input from nodes, and can use its memory function to simulate the hop characteristics and position
relationships in wireless sensor networks. There is a matrix hop count between each unknown node and the
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Fig. 4.1: Position estimation results of MT (BN) moving along the test path in the TI ZPS platform

anchor node, so in the process of selecting priority positioning nodes, the hop count matrix can also be selected.
For example, when the hop matrix of the anchor node is nmt = [ht1ht2ht3 · · ·htm] and the hop matrix is input
into the trained RBF neural network, there are: Nodes the coordinates of nt are (xt, yt). The localization
algorithm process for its unknown nodes is as follows: firstly, randomly generate several unknown nodes and
anchor nodes, assuming that the number of unknown nodes is n and the number of anchor nodes is m; The
second is to randomly generate several virtual nodes, assuming that the number of virtual nodes is denoted as
v; Thirdly, utilizing virtual nodes to train RBF neural networks; The fourth is to select the optimal localization
node from several unknown nodes, and then input it into the network for localization; The fifth is to use a series
of nodes with known positions as anchor nodes; The sixth step is to locate the loop nodes until all unknown
nodes are accurately located.

4. Result analysis.

4.1. Experimental setup. The experimental platform is located on the top floor of the Remote Sensing
Research Center, with a sampling distance of 1 meter, RNs (1-26) are widely distributed on rooftops, with
15 RNs distributed in the closed-loop path of sampling locations. In addition, in order to obtain the optimal
and precise position of the sampling points, the isotropic radiation characteristics of the antenna are enhanced
in the positioning system. Hence, to enhance the accuracy of RSSI measurements, a straightforward antenna
radiation mapping approach was employed. This involved positioning the BN on a turntable capable of rotating
to ensure that the RN’s radiation antenna consistently faced north, west, south, and east. RSSI information
was then recorded at various distances between the RN and BN (ranging from 1 to 10 meters) in each direction.
This data was subsequently input into the TI CC2431 system to estimate the location. Nonetheless, within
wireless network systems, positional errors depend on the information environment RN deployment mode and
density. Usually, the more RNs available within the same given area, the more accurate the localization.

4.2. ZigBee positioning system. In wireless network systems, ZPS uses the RSSI value of the TI CC2431
positioning engine for localization. This experiment used a visual assistance scheme combined with TI CC2431
ZPS platform for position estimation and trajectory tracking. As the MT traverses the designated testing
path, the experimental outcomes of position estimation based on the TIZPS platform are depicted in Figure
4.1. In this representation, the symbol ”x” denotes the estimated position, representing the ZPS measurements.
To validate the proposed scheme’s experimental findings, Figure 4.1 showcases the corresponding positional
parameters associated with the estimated results. It is assumed, without loss of generality, that the MT in
equation 3.21 maintains a stable state, with the measurement period (sample time) between k and k+1 set to
1 second. Additionally, Figure 4.1 illustrates the visual position as defined in equation 3.22.
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Fig. 4.2: CDPF of error distance for ZPS (observation) and KF based tracking methods

4.3. Position estimation based on Kalman filtering. Figure 4.2 shows the results of the simulation
for the location estimation in a tracking system. The results show that the location precision obtained by this
method is superior to that of nontracking. In particular, Kalman Filter (KF), being based on the optimum
tracking of a Gauss model, usually produces the best linear estimation in the mean square error. Therefore,
it is possible to consider the location precision in the KF tracing scheme as an upper limit of the CDF (CDF)
for location estimation under Gauss circumstance [25]. The results show that the TI ZPS scheme has an
estimated position error distance of over 56% less than 2.2 meters; With the KF-based approach, over 55% of
estimated position error distances fall below 1.8 meters. The precision of KF tracing is better than that of
ZPS nontracking, as demonstrated by the experiments in Figure 4.3. Notably, the KF method’s hallmark is
its recursive minimum mean square error state algorithm. Consequently, the position error observed in the KF
tracking algorithm can serve as the upper bound for the cumulative distribution function (CDF) across various
position estimation methods.

4.4. Visual assisted position estimation. Based on the experience values provided by TI company,
The TI CC2431 positioning engine sets the threshold for RSSI in the ZPS platform to 60. When the Received
Signal Strength Indicator (RSSI) exceeds 60, the visual assistance algorithm shifts into active mode, initiating
landmark detection via the NCC method. Figure 4.3 showcases the experimental outcomes of a visual assistance
scheme utilizing the NCC method. The ’r’ value denotes the most probable video frame when encountering
landmarks. Drawing insights from the experimental findings depicted in Figure 4.3, When the r value is around
0.6, most high peaks can be clearly distinguished, and the optimal value is estimated to be 0.62. Therefore, in
the NCC method The threshold for r value is set to 0.62, at this point, RN can accurately detect landmarks and
achieve good results. The results indicate that over 55% of estimated position error distances are less than 1.4
meters. The experimental results in Figure 4.3 show that the proposed scheme has better positioning accuracy
than non visual assisted methods. Visual assistance methods can provide high-precision positioning estimation
and trajectory tracking. The combination of NCC based visual technology and KF based algorithms shows
that the tracking scheme proposed by the author results in close proximity to MT’s tracking and positioning.
Therefore, the visual assistance method based on NCC method can effectively solve and overcome the impact
of dynamic time changing environments on the path. Due to the suitability of this position tracking platform
for various practical applications.

In scenarios where GPS signals are unavailable, such as indoors or in outdoor environments with signal
blockages, continuous real-time position tracking becomes challenging. Hence, integrating various strategies into
position estimation systems becomes crucial for enhancing positioning accuracy. Combining visual assistance
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Fig. 4.3: Comparison of ZPS (observation), KF based and visually assisted KF trajectory tracking methods

Fig. 4.4: RN image matching results based on NCC method when MT (BN) moves along the test path

methods with position tracking technology forms a pivotal component, acting as a fuse within multi-sensor
positioning systems. This fusion approach significantly improves the accuracy of MT position estimation in
Location-Based Services (LBS) applications.

5. Conclusion. The author proposes a visual assisted method for position estimation and trajectory
tracking based on the WSN environment. In the ZPS platform, based on the KF method, MT can accurately
track position changes and improve positioning accuracy. In addition, The NCC process matches RN images
and extracts RN as landmarks from video features. In a stable operational setting, the KF tracking scheme
leverages RN information to refine position estimation, effectively mitigating angular distortions. Experimental
findings underscore the superior accuracy of the proposed scheme over non-tracking and non-visual assistance
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methods. Notably, more than 55% of estimated positions exhibit error distances of less than 1.4 meters. By
integrating visual assistance and KF tracking methodologies within the ZPS platform of WSN, the author’s
proposed positioning and tracking platform offers significant enhancements compared to standalone approaches,
which has strong advantages for various LBS applications. The author only considered static WSN, mainly
to facilitate formal description of the problem. In the future, more challenging dynamic WSN tracking and
localization problems will be considered.
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(No.GJJ2204405)
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