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THE ENVIRONMENT PERCEPTION AND PATH PLANNING ALGORITHM FOR
DRIVERLESS CARS BASED ON COMPUTER PROCESSING AND MULTI-SENSOR

FUSION
YOUJIN ZHAO∗

Abstract. This paper selects suitable sensors and equipment based on the characteristics of urban road traffic. Then, a
multi-sensor information fusion system based on millimeter-wave radar/camera is established. In this way, the road traffic safety
can be effectively controlled. Then, by improving D-S evidential reasoning, a ”goal-decision” two-level information fusion method
is established. Then, the multi-layer fusion experiment of multi-source sensing data under a tunnel environment is carried out.
Experiments show that the ROI region correlation using camera and millimeter wave radar can improve the detection accuracy
by 9.66%, effectively solving the limitations of single-sensor detection for automatic driving under complex conditions. The D-S
evidential reasoning method processes the automatic driving sensor data. This reduces the false report rate of the sensor by 2.75%.

Key words: Tunnel environment; Driverless; Multi-sensing technology; D-S Principle of evidence; Goal - Determine the Layer
2 integration strategy.

1. Introduction. In recent years, due to the rapid development of artificial intelligence, its role in car
driving is becoming increasingly apparent. This makes the car’s operation on the road more efficient and safe.
Driverless perception is the ”eyes” of the car. At present, unmanned vehicles take the road surface as the main
body, and the accuracy of their perception can meet most of the traffic monitoring requirements [1]. But most
highways in China have underground tunnels at present. Its driving conditions are bad, noise interference is
serious, and it is easy to cause the phenomenon of ”missing detection” and ”false detection” in driving. This
causes traffic accidents inside the tunnel. However, the current domestic and foreign researches lack sufficient
attention to the unmanned vehicles in the tunnel environment, and it is urgent to break through the problem
of safety and reliability perception under this specific condition.

Some scholars use the D-S evidence principle and multi-sensor data for system fault diagnosis [2]. Some
scholars have compared and studied the primary probability distribution from the perspectives of neural net-
works, Bayes and D-S. Some researchers have used SVM to solve fundamental probability assignment problems
in D-S evidential reasoning and have applied it to practical fault diagnosis experiments. Some scholars add the
unknown variable m(x) to the D-S evidence theory to reduce the contradiction between the evidence [3]. Some
studies have used box-line and average substitution methods to detect and repair abnormal points and then
used the adaptive weight fusion method for multilevel fusion of multiple sensor points of the same type. Finally,
the D-S evidence information fusion method is adopted to solve the multi-objective coordination problem in
complex scenes. Some scholars have studied improved D-S evidence reasoning methods to overcome the severe
contradictions in the existing methods [4]. This project intends to use the D-S evidence theory to optimize
it. Then, the multi-dimensional information fusion method is designed. This project will effectively integrate
multi-source sensor data at the target layer and the decision layer, which can obtain accurate information and
lay a foundation for the application of vehicle control decision-making, autonomous obstacle avoidance, path
planning and other aspects.

2. Design of automatic driving tunnel environment awareness system. Given the poor lighting
conditions and instability of unmanned driving in underground traffic, it is necessary to carry out a unique
design of its hardware [5]. Considering the tunnel’s specific working conditions and the sensor’s hardware
characteristics, a collaborative sensing and identification method based on millimeter-wave radar and camera is
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Fig. 2.1: Architecture of unmanned multi-sensor fusion sensing system.

proposed [6]. In addition, multiple ultrasonic radars can be set around the vehicle body to achieve the purpose
of short-range collision avoidance. The layout scheme of the multi-sensor sensing System for unmanned vehicles
is shown in Figure 2.1 (the picture is quoted in System, Design and Experimental Validation of Autonomous
Vehicle in an Unconstrained Environment).

2.1. Goal-decision two-level information fusion strategy. For the specific driving scene of the tun-
nel, selecting the appropriate sensor and layout is the fundamental guarantee of obtaining efficient detection
information. An efficient calculation method for sensing information is designed to achieve accurate detection
[7]. Then, post-processing based on the data collected by multiple sensors is the key to improving detection
accuracy.

2.1.1. Two-layer information fusion induction method. A reasonable information fusion method
using multiple sensors is proposed. First, the ultrasonic sensor has some problems, such as small range and
difficulty locating obstacles, and the fusion of multi-sensor information is directly related to the accuracy of
recognition results. Secondly, the diversity of the detection environment leads to the scattered arrangement of
ultrasonic sensors, and there is no compelling data fusion [8]. Therefore, the design of this paper only plays
the role of collision avoidance alarm.

This paper proposes a fusion algorithm based on the target layer. That is the feature and decision fusion
algorithms [9]. Because of the light conditions in the tunnel, the information obtained is more complicated
than the road conditions on the ground. Therefore, data loss should be reduced as much as possible to ensure
data quality. This project intends to study the information fusion method at two ”target layer - decision layer”
levels for unmanned vehicles in tunnels. Its data Fusion process is shown in Figure 2.2 (image cited in Sensor
Fusion for Radar Detection).

2.1.2. Information fusion model of two-layer perceptron. This paper proposes a two-layer informa-
tion fusion model based on the ”target layer - decision layer.” This project uses millimeter-wave radar and a
camera as the hardware platform for integration [10]. The fusion of target layer and decision layer and the final
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Fig. 2.2: Two-layer fusion strategy based on millimeter wave and camera.

Fig. 2.3: Two-level information fusion model of millimeter wave radar and camera.

result output are realized through the acquisition and processing of multiple sensors. First, the camera detects
objects, forming two types of sensing areas. Secondly, the correlation analysis of the two categories of interest
regions is carried out and compared with the threshold. In this way, the Adaboost quadratic discriminant
method is adopted. Finally, through the D-S theory of evidence, Obtain the motion state of an unmanned
vehicle (Figure 2.3 cited in Using millimeter-wave radar to evaluate the performance of dummy models for
advanced driving) assistance systems test).

D-S evidence theory has lower prior requirements. It has significant advantages in dealing with uncertain
information such as combination and decision [11]. The Adaboost method uses weighted changes to train and
learn the primary classifier and then uses different sampling weights to complete the kernel of multiple classifiers
(Figure 2.4). This is to reduce the weight of the correct and wrong samples so that the following classification
will focus on identifying the problematic samples. It improves classification accuracy by reclassifying new
training samples with existing weights. It combines all classifiers according to some criteria to form a new
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Fig. 2.4: Overall flow chart of Adaboost algorithm.

Fig. 2.5: D-S evidence fusion process diagram.

robust classifier, the final decision classifier.

2.2. The basic probability is reconfigured by constructing an evidence vector. The principal
diagram of the D-S evidence fusion process based on multi-source information is shown in Figure 2.5. It fully
uses the advantages of various sensors to detect the distance and Angle of obstacles ahead through vision
and millimeter wave radar [12]. The D-S evidence theory comprehensive criterion is used to fuse multi-source
information and judge the final fusion effect.

Define the identity frame as F = {B1, B2, B3, . . . , Bn}. Let’s call Hi = [hi (B1) , hi (B2) , . . . , hi (Bn)]
T the

evidence vector. The element hi (Bj) in the evidence vector Hi represents the confidence of class j provided by
sensor i. Here i = 1, 2, . . . ,m; j = 1, 2, . . . , n; So, the evidence set is HH = {H1,H2,H3, . . . , Hm}. Construct
the distance A between the evidence vectors. The distance of the vectors is the degree of directional deviation
between the two vectors [13]. This paper uses the Pearson correlation coefficient to characterize the distance
between two evidence vectors. Compared with cosine similarity, the Pearson correlation coefficient can pre-
vent error interference when the vector only shifts. It can measure the difference between two spatial vector
individuals well.
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Fig. 3.1: Radar wave detection road surface model.

The distance sαβ between the two vectors is constructed, which is the directional deviation between the two
vectors. This paper uses the Pearson correlation coefficient to characterize the distance between two evidence
vectors. This method overcomes the error of the traditional feature extraction method based on wavelet
transform. It’s an excellent way to measure the difference between two vectors. Under the identification
framework F = {B1, B2, B3, . . . , Bn}, the distance sαβ between evidence Hα and Hβ is determined by equation
(2.1), where Hα,Hβ ∈ HH :

sαβ = e1−ϱ(Hα,Hβ)

Q (Hα,Hβ) =
Cov (Hα,Hβ)√
Var [Hα] Var [Hβ ]

=
h
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2
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(2.1)

The evidence weighting factor η (Hα) was determined. The model is used to characterize the importance of the
corresponding evidence information Hα in the image. The weighted assignment factor η (Hα) during the final
fusion processing is:

η (Hα) = [1− in (Hα)] e
−in(Hα) (2.2)

3. Low-resolution tunnel identification under multi-sensor information fusion.
3.1. Uncertainty in tunnel detection by radar wave. Millimeter wave radar has the advantages of

strong anti-interference, good penetration and high detection resolution. It is suitable for monitoring the road
environment throughout the day and is a powerful aid to road perception and detection [14]. Through the
analysis of the damaged road surface pits, the concrete steps of detecting the road surface with radar waves are
described (Figure 3.1).

When the radar sends out multiple beams to detect the road, the middle component wave in Figure 3.1
deflects outward from the bottom of the pit to form an effective wave. Bounce off the ground and back onto
the radar. Multiple pulse signals emitted by radar are processed. The damaged road surface topography can
be detected using the residual signal and the actual signal [15]. When the distance between two rays on the
boundary of the damaged road is L, and the Angle between one ray and the ground is ζ, which can be calculated
by the phase difference between the echo signals received by the radar, and the depth is h, then the value of 1
can be measured and calculated by using the lost waste wave. Then, the irradiation relation shown in Figure
3.1 can be obtained: {

h = l+∆τ
sin(ζ±∆ω)

h > l+∆τ
cos(ζ±∆ω)

(3.1)
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∆ω represents the radar’s sweep Angle deviation, ω represents the measurement error, and h represents the
size of the crater on the damaged road surface. Its value can be calculated according to the minimum values
measured [16]. It can construct a road recognition system based on radar waves.

3.2. Sensor information fusion strategy. Assuming that the boundary detected by vision and radar
wave detectors is Ucam and urad , the overlapping area of the two boundaries is Rj , and the area of the two
boundaries is Rh, then the intersection ratio of the IOU is:

IOU =
Rj

Rh
(3.2)

If the IOU in Formula 3.2 is 0.6 to 1 , it can be determined that both the camera and the radar wave have
detected the road, and the measurement data of both are verified and consistent. It has high credibility. If A
suitable number is not found, then the global neighbor algorithm is used to conduct data correlation, set the
radar and camera failed to match the target point m,n, their distance to the specified point lr, lc, according to
the distance between the position and the coordinate point, according to this number to arrange the coordinate,
you can obtain the vision and radar target point matrix T,U . The residual amount of the radar and camera
detection points at the time u is denoting ξij(u). It can be expressed by the formula (3.3):

ξij(u) = Ξj(u)−HRi(u) (3.3)

H stands for state transfer matrix, The standardized distance from the camera detection point j to the radar
detection point. The following formula can express me

l2ij = ΞT
ij(u)R

−1
ij (u)ξij(u) (3.4)

R−1
ij (u) represents the covariance matrix of ξij(u).Fi is the threshold of radar detection point i. If the normalized

distance is not greater than the threshold, it indicates that the camera detection point is in the coverage area of
the radar detection point. They can work together [17]. Each radar detection point corresponds to the camera
detection point. The cost distribution in the GNN algorithm is as follows

Φij =

{
l2ij , l

2
ij ≤ Fi

Fi, l
2
lj > Fi

(3.5)

The docking and matching point cloud data on the unpaved road are realized by solving the cost equation.
Then, the radar and camera perception data are organically combined.

4. Vehicle fusion perception test in a tunnel environment.

4.1. Identification parameter setting. First, set up the buffer queue system. Because the camera’s
frame rate selected in this paper is 30 FPS, and the maximum detection range is 60 meters. Setting a buffer
time of 30 frames at a time can also ensure driving safety. When an accident occurs during data fusion, the
ultrasonic radar’s proximity collision avoidance command can be immediately transmitted to the industrial
control computer, and an emergency stop command can be executed [18]. It guarantees the safety of the
vehicle. A basic probability distribution model based on D-S evidence theory is proposed. Then, in groups of
20 frames, each level of data is gradually entered into the cache. The D-S evidential reasoning method is used
to combine the criteria to achieve the purpose of enhancing the detection accuracy. Finally, data such as target
type, relative position and relative speed are obtained.

4.2. Test results and analysis. This project selects 20 indicators found in the actual road operation as
the research object to test the application effect of the two-layer information fusion method of ”target layer
+ decision layer” in the actual traffic scene. The fusion results of environmental perception in two stages of
tunnel testing are shown in Table 4.1. By studying the ”target layer and decision layer” fusion, the information
fusion between millimeter wave and image can be accomplished efficiently under practical test conditions. In
this way, objects in the line of sight can be accurately detected and obtain status information.
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Table 4.1: Results of a two-stage perception test in a tunnel.

Target ID Longitudinal coor-
dinates (m)

Lateral coordi-
nates (m)

Longitudinal rela-
tive velocity (m/s)

Lateral relative ve-
locity (m/s)

Target level fusion
results

1 24.146 -0.729 6.281 0.010 car/0.80
2 11.208 0.542 -8.552 0.000 person/0.87
3 16.073 -0.708 5.333 0.000 car/0.88
4 11.021 -0.719 1.219 0.000 car/0.87
5 49.927 -0.729 8.115 0.010 car/0.38
6 18.417 -0.646 4.469 0.010 car/0.77
7 32.521 -0.490 5.646 0.000 truck/0.44
8 32.156 -0.552 4.802 0.021 car/0.77
9 36.740 -0.302 3.490 0.010 car/0.88
10 19.875 -0.583 6.229 0.019 car/0.77
11 28.479 0.500 -8.510 0.000 car/0.41
12 73.708 -0.500 3.271 0.010 car/0.85
13 45.469 -0.521 1.854 0.010 car/0.84
14 6.396 -0.490 3.760 0.021 car/0.73
15 19.198 -0.438 6.135 0.010 car/0.74
16 53.125 0.021 10.125 0.000 sign/0.47
17 19.490 -0.677 5.396 0.010 car/0.78
18 21.760 -0.417 6.979 0.010 car/0.77
19 14.917 -0.500 6.406 0.000 car/0.57
20 38.729 -0.448 8.125 0.000 car/0.77

5. Conclusion. According to the characteristics of the current tunnel unmanned vehicle environment, the
approach to improve the accuracy of intelligent perception of unmanned driving is studied from the perspectives
of hardware selection, layout and information fusion. The experimental platform of the experimental vehicle
was constructed, and the underground tunnel with suitable lighting was selected as the experimental site for
experimental testing. Experimental results show that this method can improve the image detection accuracy by
9.66%. It can solve the problem that the traditional camera has poor visual perception ability in the roadway.
The image information fusion method based on the decision layer proposed in this project will effectively reduce
the false reports of images. So, the detection ability of tunnel images is improved effectively.
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